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Abstract

We propose a novel kernel approach to dimension reductiosufeervised learn-
ing: feature extraction and variable selection; the foromrstructs a small num-
ber of features from predictors, and the latter finds a suliisptedictors. First,
a method of linear feature extraction is proposed using thdignt of regression
function, based on the recent development of the kernel adethn compari-
son with other existing methods, the proposed one has wiglicapility without
strong assumptions on the regressor or type of variabldsjses computationally
simple eigendecomposition, thus applicable to large detta Second, in combi-
nation of a sparse penalty, the method is extended to varsabection, following
the approach by Chen et al. [2]. Experimental results shatthie proposed meth-
ods successfully find effective features and variablesawitiparametric models.

1 Introduction

Dimension reduction is involved in most of modern data asialyin which high dimensional data
must be handled. There are two categories of dimension tiedudeature extractionin which a
linear or nonlinear mapping to a low-dimensional space isyeed, andrariable selectionin which

a subset of variables is selected. This paper discussesheothethods in supervised learning.

Let (X,Y) be a random vector such that = (X!,..., X™) € R™. The domain ofY” can be
arbitrary, either continuous, discrete, or structurede §bal of dimension reduction in supervised
setting is to find such features or a subset of varialllebat explainy” as effectively as possible.
This paper focuses linear dimension reduction, in whicedmcombinations of the components of
X are used to make effective features. Although there are maatiiods for extracting nonlinear
features, this paper confines its attentions on linear feafisince linear methods are more stable
than nonlinear feature extraction, which depends strooglhe choice of the nonlinearity, and after
establishing a linear method, extension to a nonlinear anddwnot be difficult.

We first develop a method for linear feature extraction withnlels, and extend it to variable selec-
tion with a sparseness penalty. The most significant poith@fproposed methods is that we do
not assume any parametric models on the conditional priifyalor make strong assumptions on
the distribution of variables. This differs from many otlmeethods, particularly for variable selec-
tion, where a specific parametric model is often assumedomEthe classical approaches such as
Fisher Discriminant Analysis and Canonical Correlatioralysis to linear dimension reduction, the
modern approach is based on the notion of conditional intdgrece; we assume for the distribution

p(Y|X)=p(Y|BTX) orequivalenty Y1 X|BTX, 1)

where B is a projection matrix B’ B = I,;) onto ad-dimensional subspacée « m) in R™, and

wish to estimateB. For variable selection, we further assume that some rows ofay be zero.
The subspace spanned by the column&a$ called theeffective direction for regressigior EDR

space[14]. Our goal is thus to estimat® without specific parametric models fpfy|x).



First, consider the linear feature extraction based on Eq.The first method using this formula-
tion is thesliced inverse regressiofsIR, [13]), which employs the fact that the inverse regmss

E[X|Y] lies in the EDR space under some assumptions. Many metheddlean proposed in this
vein of inverse regression ([4, 12] among others). While tlethwmds are computationally simple,
they often need some strong assumptions on the distribafidghsuch as elliptic symmetry.

There are two most relevant works to this paper. The first siilea dimension reduction with the
gradient of regressaf[Y'|X = z] [11, 17]. As explained in Sec. 2.1, under Eq. (1) the gradient
is contained in the EDR space. One can thus estimate the bgamme standard nonparametric
method. There are some limitations in this approach, howethe nonparametric gradient esti-
mation in high-dimensional spaces is challenging, and tethad may not work unless the noise
is additive. The second one is the kernel dimension redu¢i®R, [8, 9, 28]), which uses the
kernel method for characterizing the conditional indeerg to overcome various limitations of
existing methods. While KDR applies to a wide class of prolslevithout any strong assumptions
on the distributions or types of or Y, and shows high estimation accuracy for small data sets, its
optimization has a problem: the gradient descent methadi fasd&Kk DR may have local optima, and
needs many matrix inversions, which prohibits applicatmhigh-dimensional or large data.

We propose a kernel method for linear feature extractiongugtie gradient-based approach, but
unlike the existing ones [11, 17], the gradient is estimdtasked on the recent development of the
kernel method [9, 19]. It solves the problems of existinghods: by virtue of the kernel methaoH,
can be of arbitrary type, and the kernel estimator is staltleowt careful decrease of bandwidth. It
solves also the problem of KDR: the estimator by an eigeriprolmeeds no numerical optimization.
The method is thus applicable to large and high-dimensidetal, as we demonstrate experimentally.

Second, by using the above feature extraction in conjunetith a sparseness penalty, we propose a
novel method for variable selection. Recently extensivdiss have been done for variable selection
with a sparseness penalty such as LASSO [23] and SCAD [@ alisio known that with appropriate
choice of regularization coefficients they have oracle proyp[6, 25, 30]. These methods, however,
use some specific model for regression such as linear régnesaich is a limitation of the methods.
Chen et al. [2] proposed a novel method for sparse varialdetsan based on the objective function
of linear feature extraction formulated as an eigenprotdanh as SIR. We follow this approach to
derive our method for variable selection. Unlike the methased in [2], the proposed one does not
require strong assumptions on the regressor or distribuéind thus provides a variable selection
method based on the conditional independence irrespetihe regression model.

2 Gradient-based kernel dimension reduction

2.1 Gradient of a regression function and dimension reductin

We review the basic idea of the gradient-based method []Jifot dimension reduction. Suppose
Y is anR-valued random variable. If the assumption of Eq. (1) haldshave

LEYIX =a] =2 [yp(yle)dy = [y 25y B x)dy = B[y Lp(y|2)|._gr, 4y,

which implies that the gradienf- E[Y'|X = z] at anyx is contained in the EDR space. Based on
this fact, the average derivative estimates (ADE, [17])teen proposed to estimale In the more
recent method [11], a standard local linear least squardsavsmoothing kernel (not necessarily
positive definite, [5]) is used for estimating the gradieamd the dimensionality of the projection
is continuously reduced to the desired one in the iteratince the gradient estimation for high-
dimensional data is difficult in general, the iterative retibn is expected to give more accurate
estimation. We call the method in [11] iterative averagevagive estimates (IADE) in the sequel.

2.2 Kernel method for estimating gradient of regression

For a sef(?, a (R-valued)positive definite kernet on Q2 is a symmetric kernet : Q@ x Q@ - R
such thatzzj.:1 cicik(z;,x;) > 0foranyzy,...,z, in Qandey,...,c, € R. Itis known that
a positive definite kernel o uniquely defines a Hilbert spad¢ consisting of functions o,
in which the reproducing propertyf, k(-,z)} = f(x) (Vf € H) holds, wherg-, -)4 is the inner
product ofH. The Hilbert spacé{ is called theeproducing kernel Hilbert spad®KHS) associated
with k. We assume that an RKHS is always separable.



In deriving a kernel method based on the approach in Sectt&ifundamental tool is the repro-
ducing property for the derivative of a function. It is knoag, [21] Sec. 4.3) that if a positive
definite kernek(z, y) on an open set in the Euclidean space is continuously diffiedgle with re-

spect tox andy, every f in the corresponding RKH% is continuously differentiable. If further

5-k(-,x) € H, we have
o= (5 k) @

This reproducing property combmed with the following kelrestimator of the conditional expec-
tation (see [8, 9, 19] for details) will provide a method fomeénsion reduction. LetX,Y") be a
random variable o’ x ) with probability P. We always assume that the p.gifz, y) and the
conditional p.d.fp(y|z) exist, and that a positive definite kernel is measurable andded. Lek y
andky be positive definite kernels ol and), respectively, with respective RKHB x andHy.
The (uncenteredjovariance operato€y x : Hx — Hy is defined by the equation

(9:Cyx fhay = ELf(X)g(YV)] = E[(f, 2x(X))2 (2y(Y), 9)3, ] ®)

forall f € Hy,g € Hy, Wwhere®x(z) = kx(-,z) and ®y(y) = ky(-,y). Similarly, Cxx
denotes the operator A that satisfies fo, Cx x f1) = E[f2(X)f1(X)] for any f1, fo € Hx.
These definitions are straightforward extensions of thénargt covariance matrices, if we con-
sider the covariance of the random vectérg(X) and®,,(Y") on the RKHSs. One of the advan-
tages of the kernel method is that estimation with finite datraightforward. Given i.i.d. sample
(X1,Y1),...,(X,,Y,) with law P, the covariance operator is estimated by

OV f =150 ky (Vi) (ke (5 Xa), Pace CN%S = 2500 1k (- Xo) (ke (4 X, ot (8)

It is known [8] that if E[g(Y')| X = -] € Hx holds forg € Hy, then we havel'x x E[g(Y)|X =
] = Cxyyg. If further Cx x is injectivé!, this relation can be expressed as

Elg(Y)|X =] =Cxx 'Cxvg. (5)

While the assumptio[¢(Y)| X = -] € Ha may not hold in general, we can nonetheless obtain an
empirical estimator based on Eqg. (5), namely,

(GE;I;( +enl)” 10( xv9;
whereg,, is a regularization coefficient in Tikhonov-type regulation. Note that the above expres-

sion is the kernel ridge regression ¢fft") on X. As we discuss in Supplements, we can in fact
prove rigorously that this estimator convergedig(Y)| X = .

Assume now that’ = R™, Cx x is injective,kx (x, ) is continuously differentiabley[g(Y )| X =
z] € H foranyg € Hy, and L kx(-,z) € R(Cxx), whereR denotes the range of the operator.
From Egs. (5) and (2}2 E[g(Y)|X = a] = (CxyCxyg, Zaltl) = (g, Oy x Oy Zxlt)y,
With g = ky (-, 9), we obtain the gradient of regression of the feature vebtaY’) on X as
0 1 Okx (-, x)

S By(V)|X = a] = CyxCrk =

ox )

2.3 Gradient-based kernel method for linear feature extration

It follows from the same argument as in Sec. 2.1 tg?aE [ky(-,y)|X = z] = Z(x)B with an
operator=(x) from R™ to Hy, where we use a slight abuse of notation by identifying therajor
=(x) with a matrix. In combination with Eg. (6), we have
= Okx (-, ) _y Okx (-, x)
- — _ ’ 1 —.

BT (E(z),E(2))uy B = <7€)x CxxCxvCyxCxk X oo >7‘lx s M(z), (7)
which shows that the eigenvectors for non-zero eigenvalfies x m matrix M (x) are contained
in the EDR space. This fact is the basis of our method. In eshto the conventional gradient-

based method described in Sec. 2.1, this method incorgdrage (or infinite) dimensional regressor
E[®y(Y)|X = z].

Noting (Cx x f, f) = E[f(X)?], itis easy to see thalx x is injective, ifkx is a continuous kernel on a
topological space’, and Px is a Borel probability measure such tiatU') > 0 for any open set/ in X.



Giveni.i.d. samplé Xy, Y1),..., (X,,Y,) from the true distribution, based on the empirical covari-
ance operators Eq. (4) and regularized inversions, thexmiaf(x) is estimated by

M\n(x) <6k,\é; @) (C(”) +6n1)_16‘§?§),5§/”}( (6%)( te, ) 18kx( z)>
:ka( ) (Gx—f—nfn )_1Gy(GX +n5nl)_1VkX( ), (8)
where Gx and Gy are the Gram matrice§kx (X;, X;)) and (ky(Y;,Y;)), respectively, and
Vkx(z) = (0kx(X1,2)/0z, -+ ,0kx(Xp, x)/0x)T € R™.

As the eigenvectors al/ (z) are contained in the EDR space for anywe propose to use the
average of\/ (X;) over all the data pointX;, and define

M, == 15" M, (X;) = 157 Vkx(X)T(Gx + nen,) "Gy (Gx + nenl,) ' Vkx (X5).

We call the dimension reduction with the matii%, thegradient-based kernel dimension reduction
(9KDR). For linear feature extraction, the projection mat in Eq. (1) is then estimated simply
by the topd eigenvectors oft/,,. We call this method gKDR-FEX.

The proposed method applies to a wide class of problems;ritrast to many existing methods,
the gKDR-FEX can handle any type of data idrincluding multinomial or structured variables,
and make no strong assumptions on the regressor or digtrbat X. Additionally, since the
gKDR incorporates the high dimensional feature vedg(Y"), it works for any regression relation
including multiplicative noise, for which many existing theds such as SIR and IADE fail.

As in all kernel methods, the results of gkDR depend on thécehof kernels. We use the cross-
validation (CV) for choosing kernels and parameters, comdbiwith some regression or classifica-
tion method. In this paper, the k-nearest neighbor (kNNjessgjon / classification is used in CV
for its simplicity: for each candidate of a kernel or paragnetve compute the CV error by the KNN
method with( BT X;,Y;), whereB is given by gkDR, and choose the one that gives the least error

The time complexity of the matrix inversions and the eigaateposition for gKDR are)(n?),
which is prohibitive for large data sets. We can apply, h@velow-rank approximation of Gram
matrices, such as incomplete Cholesky decomposition. paeescomplexity may be also a problem
of gKDR, since(Vkx(X;))™, hasn? x m dimension. In the case of Gaussian kernel, where
o kx (X, @) |e=x, = (X — X2)exp(—||X; — X;]|?/(20?)), we have a way of reducing
the necessary memory by low rank approximation. Get ~ RRT andGy ~ HHT be the
low rank approximation with, = rkR,r, = rkH (ry,ry < n,m). With the notationF' :=
(Gx + nenl,) ' H and©¢* = L X¢R;,, we have, forl < a,b <m,

-M’n,ab Zz 1 Z,y Ft szv Fga = ZZilRis (Z?=16?8th) - 2211@?8 (Z?:lestt)'
With this method, the complexity i©(nmr) in space and(nm?r) in time (- = max{r,,r,}),
which is much more efficient in memory than straightforwarmpbiementation.

We introduce two variants of gKDR-FEX. First, since accemabnparametric estimation with high-
dimensionalX is not easy, we propose a method for decreasing the dimetityateratively. Using
gKDR-FEX, we first find a matrix3; of dimensionalityd; larger than the target, project dataX;

onto the subspace &FD BT X;, find the projection matrixB; (d; x do matrix) forZ( ) onto a
ds (d2 < dy) dimensional subspace, and repeat this process. We cathtthod gKDR- “FEXi.

Second, ifY” takes onlyL points as in classification, the Gram matfix and thus),, are of rankL
at most (see Eq. (8)), which is a strong limitation of gk DR i&lthat this problem is shared by many
linear dimension reduction methods including CCA and sliased methods. To solve this problem,

we propose to use the variation Efn(x) over the pointst = X; instead of the averag¥/,,. By
partitioning{1,...,n} into Ty, ..., T, the projection matriceﬁ[a] given by the eigenvectors of
My = Y er, M(X;) are used to defin® = 1 2! | E[Q]E[E]. The estimator of3 is then given
by the topd eigenvectors of. We call this method gKDR-FEXuv.

2.4 Theoretical analysis of gKDR

We have derived the gkDR method based on the necessary iconofitEDR space. The following
theorem shows that it is also sufficient,Af, is characteristic. A positive definite kernelon a



gKDR | gKDR | gKDR gKDR-FEX
-FEX | -FEXi | -FEXv || IADE | SIRIl | KDR +KDR
(A)Yn =100 || 0.1989 | 0.1639 | 0.2002 || 0.1372 | 0.2986 || 0.2807 | 0.0883
(A) n =200 | 0.1264 | 0.0995 | 0.1287 || 0.0857 | 0.2077 || 0.1175| 0.0501
(B)n =100 || 0.1500 | 0.1358 | 0.1630 || 0.1690 | 0.3137 || 0.2138 | 0.1076
(B)n =200 | 0.0755 | 0.0750 | 0.0802 || 0.0940 | 0.2129 || 0.1440| 0.0506
(Cyn =200 || 0.1919 | 0.2322 | 0.1930 || 0.7724 | 0.7326 || 0.1479| 0.1285
(C)n =400 || 0.1346 | 0.1372 | 0.1369 || 0.7863 | 0.7167 || 0.0897 | 0.0893

Table 1: gKDE-FEX for synthetic data: mean discrepancies @0 runs.

measurable space ébaracteristicif Ep[k(-, X)) = Eg[k(-,X)] meansP = @, i.e., the mean of
feature vector uniquely determines a probability [9, 20jaiples include Gaussian kernel.

In the following theoretical results, we assumedbx (-, z)/0z* € R(Cxx) (a =1,...,m), (i)
Elky(y,X)|X =] € Hx foranyy € Y, and (iii) E[g(Y)|BT X = 2] is a differentiable function
of z for anyg € H, and the linear functional — 0E[g(Y)|BT X = 2]/0z is continuous for any.
In the sequel, the subspace spanned by the columBssflenoted byspan(B), and the Frobenius
norm of a matrixM by ||M||r. The proofs are given in Supplements.

Theorem 1. In addition to the above assumptions (i)-(iii), assume thatkernelk,, is character-
istic. If the eigenspaces for the non-zero eigenvaluds[of (X)] are included ifSpan(B), thenY’
and X are conditionally independent gives’ X .

We can obtain the rate of consistency faf, () and M,,.

Theorem 2. In addition to (i)-(iii), assume thaf% € R(Cﬁ}l) (a = 1,...,m) for some
B>0,andE[ky(y,Y)|X =] € Ha for everyy € V. Then, fore,, = n~ ">{5:355:} we have

M, (x) = M(x) = O, (n= "5 350))

for everyz € X asn — oo. If further E[|M(X)||2] < oo and 2202 — oF 1 pa with

E||h% |1, < oo, thenM,, — E[M(X)] in the same order as above.

Note that, assuming that the eigenvalues\éfz) or E[M (X)] are all distinct, the convergence
of matrices implies the convergence of the eigenvector [BRs the estimator of gKDR-FEX is
consistent to the subspace given by the top eigenvectdr$iaf{ X )].

2.5 Experiments with gKkDR-FEX

We always use the Gaussian kerhet, 7)) = exp(— 5 || — Z||) in the kernel method below. First
we use three synthetic data to verify the basic performahg&DbR-FEX(i,v). The data are gener-

ated by (A):Y = Zsin(v/52)+W,Z = %(1, 2,0,...,00TX,(B):Y = (Z}4+Z2) (21— Z3)+W,

7, = %(1,1,07...,0)TX, Zoy = %(1, —-1,0,...,0)T X, where10-dimensionalX is generated

by the uniform distribution orj—1,1]'° and W is independent noise withV(0,10~2), and (C):

Y = Z*E, Z = (1,0,...,0)T X, where each component o6-dimensionalX is independently
generated by the truncated normal distributi®if0, 1/4) * I;_, ;; and £ ~ N(0,1) is a multi-
plicative noise. The discrepancy between the estim@tand the true projectaB, is measured by
|BoBL (I, — BBT)||r/d. For choosing the parameteiin Gaussian kernel and the regularization
parametek,,, the CV in Sec. 2.3 with KNNK = 5, manually chosen to optimize the results) is
used with 8 different values given k.4 (0.5 < ¢ < 10), whereo,,,.q is the median of pairwise
distances of data [10], arfd= 4, 5, 6, 7 for ¢,, = 10~¢ (a similar strategy is used for the CV below).

We compare the results with those of IADE, SIR Il [13], and KORe IADE has seven parameters
[11], and we tuned two of thermk( and p,,;,,) manually to optimize the performance. For SIR I,
we tried several numbers of slices, and chose the one thathawest result. From Table 1, we see
that gk DR-FEX(i,v) show much better results than SIR Il ihthé cases. The IADE works better
than these methods for (A), while for (B) and (C) it works warSince (C) has multiplicative noise,
the IADE does not obtain meaningful estimation. The KDRiagtdigher accuracy for (C), but less
accurate for (A) and (B) witlw = 100; this undesired result is caused by failure of optimization
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Figure 1: Classification accuracy with gKDR-v and KDR fordain classification problemsu, n,
andn..s; are the dimension ok, training data size, and testing data size, respectively.

Dim. 10 20 30 40 50 gKDR Corr Corr
gKDR + kNN 13.53 455 - - - L | +SVM +SVM +SVM
gKDR-v+kNN | 13.15 455 4.81 5.26 5.58 (500)  (2000)
CCA + kNN 22.77 6.74 - - - 10 12.0 15.7 8.3
SIR-1l + KNN 77.42 70.11 63.44 5266 50.61 20 16.2 30.2 18.0
gKDR + SVM 14.43 5.00 - - - 30 18.0 29.2 24.0
gKDR-v + SVM | 16.87 4.75 3.85 3.59 3.08 40 21.8 354 25.0
CCA + SVM 13.09 6.54 - - - 50 19.5 41.1 29.0

Table 2: Left: ISOLET - classification errors for test datar(entage). Right: Amazon Reviews -
10-fold cross-validation error§4) for classification

some runs (see Supplements for error bars). We also useddgtisrof gKkDR-FEX as the initial
state for KDR, which improved the accuracy significantly ay and (B). Note however that these
data sets are very small in size and dimension, and KDR isppicable to large data used later.

One way of evaluating dimension reduction methods in supethMearning is to consider the classi-
fication or regression accuracy after projecting data dre@stimated subspaces. We next used three
data sets for binary classificationeart-diseas¢H), ionoshpereg(l), and breast-cancer-Wisconsin
(B), from UCI repository [7], and evaluated the classifioatrates of gk DR-FEXv with kNN clas-
sifiers k& = 7). We compared them with KDR, as KDR shows high accuracy faulsdata sets.
From Fig. 1, we see gKDR-FEXv shows competitive accurach WIDR: slightly worse for (1), and
slightly better for (B). The computation of gKkDR-FEXv fordke data sets can be much faster than
that of KDR. For each parameter set, the computational tigK®R vs KDR was, in (H) 0.044
sec /622 secd= 11),in (1) 0.103 sec / 84.77 sed (= 20), and in (B) 0.116 sec/ 615 set £ 20).

The next two data sets taken from UCI repository are largénénsample size and dimensionality,
for which the optimization of KDR is difficult to apply. The $irone is ISOLET, which provides
617 dimensional continuous features of speech signalassify 26 alphabets. In addition to 6238
training data, 1559 test data are separately provided. \Mei@e the classification errors with the
kNN classifier k = 5) and 1-vs-1 SVM to see the effectiveness of the estimatedpades (see
Table 2). From the information on the data at the UCI repogitte best performance with neural
networks and C4.5 with ECOC are 3.27% and 6.61%, respegtivetomparison with these results,
the low dimensional subspaces found by gKDR-FEX and gKDRaFEaintain the information for
classification effectively. SIR-1l does not find meaningiedtures.

The second data set is author identification of Amazon coroeneviews with 10000 dimensional
linguistic features. The total number of authors is 50, ahde¥iews were collected for each author;
the total size of data is thus 1500. We varied the used nunilzertibors () to make different levels
of difficulty for the tasks. The reduced dimensionality bylgR-FEX is set to the same ds and the
10-fold CV errors with data projected on the estimated ED&tsfare evaluated using 1-vs-1 SVM.
As comparison, the squared sum of variable-wise Pearsmlations,Zle Corr[X?,Y*]?,is also
used for choosing explanatory variablas= 1, ...,10000). Such variable selection methods with
Pearson correlation are popularly used for very high dinoeras data. The variables with tdj)0
and2000 correlations are used to make SVM classifiers. As we can see Table 2, the gKDR-
FEX gives much more effective subspaces for regressiontttgaRearson correlation method, when



the number of authors is large. The creator of the data setlbaseported the classification result
with a neural network model [15]; for 50 authors, the 10-fGM error with 2000 selected variables
is 19.51%, which is similar to the gKDR-FEX result with only 50 lineadtures.

3 Variable selection with gKDR

In recent years, extensive studies have been done on @asalsdction with a sparseness penalty
([6, 16, 18, 23-27, 29, 30] among many others). In superdsdtihg, these studies often consider
some specific model for the regression such as least squigistic regression. While consistency
and oracle property have been also established for manyoagtthe assumption that there is a true
parameter in the model may not hold in practice, and thuscagtrestriction of the methods. It
is then important to consider more flexible ways of varialdkeestion without assuming any para-
metric model on the regression. The gKDR approach is appe#di this problem, since it realizes
conditional independence without strong assumptionsdgirassion or distribution of variables.

Chen et al. [2] recently proposed the Coordinate-Indepatr§earse (CIS) method, which is a semi-
parametric method for sparse variable selection. In Cl&Jitrear featureB” X is assumed with
some rows ofB zero, but no parametric model is specified for regressionwisl to estimates so
that the zero-rows should be estimated as zeros. This ievahby imposing the sparseness penalty
of the group LASSO [29] in combination with an objective ftina of linear feature extraction
written in the form of eigenproblem such as SIR and PFC [3].

We follow the CIS method for our variable selection with gKkDdtce the gKDR is given by the
eigenproblem with matri®/,,, the CIS method is applied straightforwardly. The signifimaof our
method is that the gKDR formulates the conditional indepewe ofY and X given BT X, while
the existing ClIS-based methods in [2] realize only weaked@@mns under strong assumptions.

3.1 Sparse variable selection with gKDR

Throughout this section, it is assumed that the true prdibabatisfies Eq. (1) withB = By =
(vl ...,vE )T, and with somed < ¢ < m the j-th row vy, is non-zero forj < g andvg; = 0

for j > q + 1. The projection matrix i3 = (by,...,by) = (vI,...,v1)T, whereb; is thei-th
column andv; is thej-th row. The proposed variable selection method, gkDR-\s8reatesB by

A~ _ . . T ~ m ) )
By = arg B:BnTlgl:Id [ Tr[B* M, B] + ; /\ZHVlH} , 9)
where||v;|| is the Euclidean norm andl = (A, ..., \,,) € R is the regularization coefficients.
To optimize Eq. (9), as in [2], we used the local quadraticrapimation [6], which is simple and
fast. We used the matlab code provided at the homepage oféh.Ch

The choice of\ is crucial on the practical performance of sparse variadliecsion. As a theoretical
guarantee, we will show that some asymptotic condition idles/model consistency. In practice, as
in the Adaptive Lasso [30], it is suitable to consides \(9) define by

Ai = 0vil| 7"
wheref andr are positive numbers, ang is the row vector ofB,, the solution to gKDR without
penalty, i.e.By = arg mingrp_y, —Tr[BT M, B]. We used- = 1/2 for all of our experiments.

To choose the parametéra BIC-based method is often used in sparse variable smie@v, 31]
with theoretical guarantee of model consistency. We useGtigbe method for choosing by
minimizing

logn

BICy = —Tx[B} ) M, Bx)] + Clfy (10)

n
where df = d(p — d) is the degree of freedom cﬂ?w) with p the number of non-zero rows in
Ek(g), andC,, is a positive number aD,,(1). We used’,, = a1 loglog(m) with a4 is the largest
eigenvalue ofM,,. Theloglog(m) factor is used in [27], where increasing number of variaides
discussed, and; is introduced to adjust the scale @f[@f]\%ﬁﬂ; we use CV for choosing the

hyperparameters (kernel and regularization coefficiemtyhich the values oTr[EATMnﬁA] is not
normalized well for different choices.



gKDR cis Method gKDRVS CISSIR CIS-PFC
VS SR CRIM 0 0 0 0 0 0
ZN 0 o 0.000  -0.008 0 o
(A) n =60 .94/.99/75 .89/1.0/65 INDUS 0 o0 0 o0 0 o
(A) n =120 | 1.0/1.0/98 .99/1.0/97 CHAS 0 © 0 o 0 0
(B)n =100 | .92/.84/63  .19/.85/1 '\éeolv)f 0 8906 %393 1 80 O»1 253 1 (?45 ° -1.390
(B)n =200 | .98/.89/75 .18/.85/1 AGE "0 o 0005 -0.022 -0.003 -0.011
DIS 0169 0.022 0 o 0 o
Table 3: gKDR-VS and CIS-SIR RAD 0.018  -0.000 0 o0 0 0
with synthetic data (ratio of non- PTRATO | 0276 0518 0040 0003 003 0007
zeros inl < j < ¢/ ratio of ze- B o o 0001 0002 0001 0.005
rosing + 1 < j < m/ number of LSTAT | -0.165 0.017 0043 -0.114 -0.043 -0.113

correct models among 100 runs). Table 4: Boston Housing Data: estimated sparse EDR.

3.2 Theoretical results on gKkDR-VS

This subsection shows the model consistency of the gKDRAWShe proofs are shown in Supple-
ments. Lety, = max{\; | 1 < j < ¢} andg, = min{}; | ¢ +1 < j < m}. The eigenvalues of
M = E[M(X)] aren; > ... > n,, > 0. For twom x d matricesB; (i = 1,2) with B} B; = I,,
we defineD(By, B2) = |B1BY — B2B1||, where|| - || is the operator norm.

Theorem 3. Supposd|M,, — M|z = O,(n"7) for somer > 0. If n"a,, — 0 asn — oo and
74 > Ng+1. then the estimataB,, in Eq. (9) satisfied (B,, By) = O,(n~7) asn — oo.

We saw in Theorem 2 that under some conditidiis converges ta\/ at the rate0,(n~7) with
1/4 <7 <1/3. Thus Theorem 3 shows th&t, is also consistent of the same rate.

Theorem 4. In addition to the assumptions in Theorem 3, assufM®g, — oo asn — oo. Then,
forall g +1 <j <m,Pr(v; =0) — 1 asn — oo, wherev; is thej-th row of B,.

3.3 Experiments with gkDR-VS

We first apply the gKDR-VS withl = 1 to synthetic data generated by the following two models:
(A):Y = X'+ X2+ X34 Wand (B):Y = (X! + X2+ X3)*IW, where the noisél” follows
N(0,1). For (A), X = (X1,..., X?%)is generated bV (0, %) with =;; = (1/2)l"=71 (1 < 4,5 <
24), and for (B) X = (X1,..., X'%) by N(0,41I15). Note that (B) includes multiplicative noise,
which cannot be handled by many dimension reduction methismdsomparison, the CIS method
with SIR is also applied to the same data. The regularizgiBmameter of CIS-SIR is chosen by
BIC described in [2]. While both the methods work effectividy (A), only gkDR-VS can handle
the multiplicative noise of (C).

The next experiment uséston Housinglata, which has been often used for variable selection.
The respons# is the median value of homes in each tract, and thirteenblagare used to explain

it. The detail of the variables is described in Supplemeses, E. The results of gKDR-VS and CIS-
SIR / CIS-PFC withd = 2 are shown in Table 4. The variables selected by gKDR-VS are RS,
RAD, PTRATIO and LSTAT, which are slightly different fromerCIS methods. In a previous study
[1], the four variables RM, TAX, PTRATIO and LSTAT are consiéd to have major contribution.

4 Conclusions

We have proposed a gradient-based kernel approach for diomereduction in supervised learn-
ing. The method is based on the general kernel formulaticonditional independence, and thus
has wide applicability without strong restrictions on thedual or variables. The linear feature
extraction, gkDR-FEX, finds effective features with simpigendecomposition, even when other
conventional methods are not applicable by multiplicatieése or high-dimensionality. The con-
sistency is also guaranteed. We have extended the methediable selection (QKDR-VS) with a
sparseness penalty, and demonstrated its promising perfime with synthetic and real world data.
The model consistency has been also proved.
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