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Abstract

We propose a novel kernel approach to dimension reduction for supervised learn-
ing: feature extraction and variable selection; the formerconstructs a small num-
ber of features from predictors, and the latter finds a subsetof predictors. First,
a method of linear feature extraction is proposed using the gradient of regression
function, based on the recent development of the kernel method. In compari-
son with other existing methods, the proposed one has wide applicability without
strong assumptions on the regressor or type of variables, and uses computationally
simple eigendecomposition, thus applicable to large data sets. Second, in combi-
nation of a sparse penalty, the method is extended to variable selection, following
the approach by Chen et al. [2]. Experimental results show that the proposed meth-
ods successfully find effective features and variables without parametric models.

1 Introduction

Dimension reduction is involved in most of modern data analysis, in which high dimensional data
must be handled. There are two categories of dimension reduction: feature extraction, in which a
linear or nonlinear mapping to a low-dimensional space is pursued, andvariable selection, in which
a subset of variables is selected. This paper discusses boththe methods in supervised learning.

Let (X,Y ) be a random vector such thatX = (X1, . . . , Xm) ∈ R
m. The domain ofY can be

arbitrary, either continuous, discrete, or structured. The goal of dimension reduction in supervised
setting is to find such features or a subset of variablesX that explainY as effectively as possible.
This paper focuses linear dimension reduction, in which linear combinations of the components of
X are used to make effective features. Although there are manymethods for extracting nonlinear
features, this paper confines its attentions on linear features, since linear methods are more stable
than nonlinear feature extraction, which depends stronglyon the choice of the nonlinearity, and after
establishing a linear method, extension to a nonlinear one would not be difficult.

We first develop a method for linear feature extraction with kernels, and extend it to variable selec-
tion with a sparseness penalty. The most significant point ofthe proposed methods is that we do
not assume any parametric models on the conditional probability, or make strong assumptions on
the distribution of variables. This differs from many othermethods, particularly for variable selec-
tion, where a specific parametric model is often assumed. Beyond the classical approaches such as
Fisher Discriminant Analysis and Canonical Correlation Analysis to linear dimension reduction, the
modern approach is based on the notion of conditional independence; we assume for the distribution

p(Y |X) = p̃(Y |BTX) or equivalently Y⊥⊥X |BTX, (1)

whereB is a projection matrix (BTB = Id) onto ad-dimensional subspace (d < m) in R
m, and

wish to estimateB. For variable selection, we further assume that some rows ofB may be zero.
The subspace spanned by the columns ofB is called theeffective direction for regression, or EDR
space[14]. Our goal is thus to estimateB without specific parametric models forp(y|x).
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First, consider the linear feature extraction based on Eq. (1). The first method using this formula-
tion is thesliced inverse regression(SIR, [13]), which employs the fact that the inverse regression
E[X|Y ] lies in the EDR space under some assumptions. Many methods have been proposed in this
vein of inverse regression ([4, 12] among others). While the methods are computationally simple,
they often need some strong assumptions on the distributionof X such as elliptic symmetry.

There are two most relevant works to this paper. The first one is the dimension reduction with the
gradient of regressorE[Y |X = x] [11, 17]. As explained in Sec. 2.1, under Eq. (1) the gradient
is contained in the EDR space. One can thus estimate the spaceby some standard nonparametric
method. There are some limitations in this approach, however: the nonparametric gradient esti-
mation in high-dimensional spaces is challenging, and the method may not work unless the noise
is additive. The second one is the kernel dimension reduction (KDR, [8, 9, 28]), which uses the
kernel method for characterizing the conditional independence to overcome various limitations of
existing methods. While KDR applies to a wide class of problems without any strong assumptions
on the distributions or types ofX or Y , and shows high estimation accuracy for small data sets, its
optimization has a problem: the gradient descent method used for KDR may have local optima, and
needs many matrix inversions, which prohibits applicationto high-dimensional or large data.

We propose a kernel method for linear feature extraction using the gradient-based approach, but
unlike the existing ones [11, 17], the gradient is estimatedbased on the recent development of the
kernel method [9, 19]. It solves the problems of existing methods: by virtue of the kernel method,Y
can be of arbitrary type, and the kernel estimator is stable without careful decrease of bandwidth. It
solves also the problem of KDR: the estimator by an eigenproblem needs no numerical optimization.
The method is thus applicable to large and high-dimensionaldata, as we demonstrate experimentally.

Second, by using the above feature extraction in conjunction with a sparseness penalty, we propose a
novel method for variable selection. Recently extensive studies have been done for variable selection
with a sparseness penalty such as LASSO [23] and SCAD [6]. It is also known that with appropriate
choice of regularization coefficients they have oracle property [6, 25, 30]. These methods, however,
use some specific model for regression such as linear regression, which is a limitation of the methods.
Chen et al. [2] proposed a novel method for sparse variable selection based on the objective function
of linear feature extraction formulated as an eigenproblemsuch as SIR. We follow this approach to
derive our method for variable selection. Unlike the methods used in [2], the proposed one does not
require strong assumptions on the regressor or distribution, and thus provides a variable selection
method based on the conditional independence irrespectiveof the regression model.

2 Gradient-based kernel dimension reduction

2.1 Gradient of a regression function and dimension reduction

We review the basic idea of the gradient-based method [11, 17] for dimension reduction. Suppose
Y is anR-valued random variable. If the assumption of Eq. (1) holds,we have

∂
∂xE[Y |X = x] = ∂

∂x

∫
yp(y|x)dy =

∫
y ∂
∂x p̃(y|B

Tx)dy = B
∫
y ∂

∂z p̃(y|z)
∣∣
z=BT x

dy,

which implies that the gradient∂∂xE[Y |X = x] at anyx is contained in the EDR space. Based on
this fact, the average derivative estimates (ADE, [17]) hasbeen proposed to estimateB. In the more
recent method [11], a standard local linear least squares with a smoothing kernel (not necessarily
positive definite, [5]) is used for estimating the gradient,and the dimensionality of the projection
is continuously reduced to the desired one in the iteration.Since the gradient estimation for high-
dimensional data is difficult in general, the iterative reduction is expected to give more accurate
estimation. We call the method in [11] iterative average derivative estimates (IADE) in the sequel.

2.2 Kernel method for estimating gradient of regression

For a setΩ, a (R-valued)positive definite kernelk on Ω is a symmetric kernelk : Ω × Ω → R

such that
∑n

i,j=1 cicjk(xi, xj) ≥ 0 for anyx1, . . . , xn in Ω andc1, . . . , cn ∈ R. It is known that
a positive definite kernel onΩ uniquely defines a Hilbert spaceH consisting of functions onΩ,
in which the reproducing property〈f, k(·, x)〉H = f(x) (∀f ∈ H) holds, where〈·, ·〉H is the inner
product ofH. The Hilbert spaceH is called thereproducing kernel Hilbert space(RKHS) associated
with k. We assume that an RKHS is always separable.
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In deriving a kernel method based on the approach in Sec. 2.1,the fundamental tool is the repro-
ducing property for the derivative of a function. It is known(e.g., [21] Sec. 4.3) that if a positive
definite kernelk(x, y) on an open set in the Euclidean space is continuously differentiable with re-
spect tox andy, everyf in the corresponding RKHSH is continuously differentiable. If further
∂
∂xk(·, x) ∈ H, we have

∂f

∂x
=

〈
f,

∂

∂x
k(·, x)

〉
H
. (2)

This reproducing property combined with the following kernel estimator of the conditional expec-
tation (see [8, 9, 19] for details) will provide a method for dimension reduction. Let(X,Y ) be a
random variable onX × Y with probabilityP . We always assume that the p.d.f.p(x, y) and the
conditional p.d.f.p(y|x) exist, and that a positive definite kernel is measurable and bounded. LetkX
andkY be positive definite kernels onX andY, respectively, with respective RKHSHX andHY .
The (uncentered)covariance operatorCY X : HX → HY is defined by the equation

〈g, CY Xf〉HY
= E[f(X)g(Y )] = E

[
〈f,ΦX (X)〉HX

〈ΦY(Y ), g〉HY

]
(3)

for all f ∈ HX , g ∈ HY , whereΦX (x) = kX (·, x) andΦY(y) = kY(·, y). Similarly, CXX

denotes the operator onHX that satisfies〈f2, CXXf1〉 = E[f2(X)f1(X)] for any f1, f2 ∈ HX .
These definitions are straightforward extensions of the ordinary covariance matrices, if we con-
sider the covariance of the random vectorsΦX (X) andΦY(Y ) on the RKHSs. One of the advan-
tages of the kernel method is that estimation with finite datais straightforward. Given i.i.d. sample
(X1, Y1), . . . , (Xn, Yn) with law P , the covariance operator is estimated by

Ĉ
(n)
Y Xf = 1

n

∑n
i=1kY(·, Yi)〈kX (·, Xi), f〉HX

Ĉ
(n)
XXf = 1

n

∑n
i=1kX (·, Xi)〈kX (·, Xi), f〉HX

. (4)

It is known [8] that ifE[g(Y )|X = ·] ∈ HX holds forg ∈ HY , then we haveCXXE[g(Y )|X =
·] = CXY g. If furtherCXX is injective1, this relation can be expressed as

E[g(Y )|X = ·] = CXX
−1CXY g. (5)

While the assumptionE[g(Y )|X = ·] ∈ HX may not hold in general, we can nonetheless obtain an
empirical estimator based on Eq. (5), namely,

(Ĉ
(n)
XX + εnI)

−1Ĉ
(n)
XY g,

whereεn is a regularization coefficient in Tikhonov-type regularization. Note that the above expres-
sion is the kernel ridge regression ofg(Y ) on X. As we discuss in Supplements, we can in fact
prove rigorously that this estimator converges toE[g(Y )|X = ·].
Assume now thatX = R

m, CXX is injective,kX (x, x̃) is continuously differentiable,E[g(Y )|X =
x] ∈ HX for anyg ∈ HY , and ∂

∂xkX (·, x) ∈ R(CXX), whereR denotes the range of the operator.

From Eqs. (5) and (2),∂∂xE[g(Y )|X = x] = 〈C−1
XXCXY g,

∂kX (·,x)
∂x 〉 = 〈g, CY XC−1

XX
∂kX (·,x)

∂x 〉.
With g = kY(·, ỹ), we obtain the gradient of regression of the feature vectorΦY(Y ) onX as

∂

∂x
E[ΦY(Y )|X = x] = CY XC−1

XX

∂kX (·, x)
∂x

. (6)

2.3 Gradient-based kernel method for linear feature extraction

It follows from the same argument as in Sec. 2.1 that∂
∂xE[kY(·, y)|X = x] = Ξ(x)B with an

operatorΞ(x) from R
m to HY , where we use a slight abuse of notation by identifying the operator

Ξ(x) with a matrix. In combination with Eq. (6), we have

BT 〈Ξ(x),Ξ(x)〉HY
B =

〈∂kX (·, x)
∂x

,C−1
XXCXY CY XC−1

XX

∂kX (·, x)
∂x

〉
HX

=: M(x), (7)

which shows that the eigenvectors for non-zero eigenvaluesof m ×m matrixM(x) are contained
in the EDR space. This fact is the basis of our method. In contrast to the conventional gradient-
based method described in Sec. 2.1, this method incorporates high (or infinite) dimensional regressor
E[ΦY(Y )|X = x].

1Noting 〈CXXf, f〉 = E[f(X)2], it is easy to see thatCXX is injective, ifkX is a continuous kernel on a
topological spaceX , andPX is a Borel probability measure such thatP (U) > 0 for any open setU in X .
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Given i.i.d. sample(X1, Y1), . . . , (Xn, Yn) from the true distribution, based on the empirical covari-
ance operators Eq. (4) and regularized inversions, the matrix M(x) is estimated by

M̂n(x) =
〈∂kX (·,x)

∂x ,
(
Ĉ

(n)
XX + εnI

)−1
Ĉ

(n)
XY Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1 ∂kX (·,x)
∂x

〉

= ∇kX(x)T (GX + nεnI)
−1GY (GX + nεnI)

−1∇kX(x), (8)

where GX and GY are the Gram matrices(kX (Xi, Xj)) and (kY(Yi, Yj)), respectively, and
∇kX(x) = (∂kX (X1, x)/∂x, · · · , ∂kX (Xn, x)/∂x)

T ∈ R
n.

As the eigenvectors ofM(x) are contained in the EDR space for anyx, we propose to use the
average ofM(Xi) over all the data pointsXi, and define

M̃n := 1
n

∑n
i=1M̂n(Xi) =

1
n

∑n
i=1∇kX(Xi)

T (GX + nεnIn)
−1GY (GX + nεnIn)

−1∇kX(Xi).

We call the dimension reduction with the matrix̃Mn thegradient-based kernel dimension reduction
(gKDR). For linear feature extraction, the projection matrix B in Eq. (1) is then estimated simply
by the topd eigenvectors ofM̃n. We call this method gKDR-FEX.

The proposed method applies to a wide class of problems; in contrast to many existing methods,
the gKDR-FEX can handle any type of data forY including multinomial or structured variables,
and make no strong assumptions on the regressor or distribution of X. Additionally, since the
gKDR incorporates the high dimensional feature vectorΦY(Y ), it works for any regression relation
including multiplicative noise, for which many existing methods such as SIR and IADE fail.

As in all kernel methods, the results of gKDR depend on the choice of kernels. We use the cross-
validation (CV) for choosing kernels and parameters, combined with some regression or classifica-
tion method. In this paper, the k-nearest neighbor (kNN) regression / classification is used in CV
for its simplicity: for each candidate of a kernel or parameter, we compute the CV error by the kNN
method with(BTXi, Yi), whereB is given by gKDR, and choose the one that gives the least error.

The time complexity of the matrix inversions and the eigendecomposition for gKDR areO(n3),
which is prohibitive for large data sets. We can apply, however, low-rank approximation of Gram
matrices, such as incomplete Cholesky decomposition. The space complexity may be also a problem
of gKDR, since(∇kX(Xi))

n
i=1 hasn2 × m dimension. In the case of Gaussian kernel, where

∂
∂xa kX(Xj , x)|x=Xi

= 1
σ2 (X

a
j − Xa

i ) exp(−‖Xj − Xi‖2/(2σ2)), we have a way of reducing
the necessary memory by low rank approximation. LetGX ≈ RRT andGY ≈ HHT be the
low rank approximation withrx = rkR, ry = rkH (rx, ry < n,m). With the notationF :=
(GX + nεnIn)

−1H andΘas
i = 1

σ2X
a
i Ris, we have, for1 ≤ a, b ≤ m,

M̃n,ab =
∑n

i=1

∑ry
t=1Γ

t
iaΓ

t
ib, Γt

ia =
∑rx

s=1Ris

(∑n
j=1Θ

as
j Fjt

)
−∑rx

s=1Θ
as
i

(∑n
j=1RjsFjt

)
.

With this method, the complexity isO(nmr) in space andO(nm2r) in time (r = max{rx, ry}),
which is much more efficient in memory than straightforward implementation.

We introduce two variants of gKDR-FEX. First, since accurate nonparametric estimation with high-
dimensionalX is not easy, we propose a method for decreasing the dimensionality iteratively. Using
gKDR-FEX, we first find a matrixB1 of dimensionalityd1 larger than the targetd, project dataXi

onto the subspace asZ(1)
i = BT

1 Xi, find the projection matrixB2 (d1 × d2 matrix) forZ(1)
i onto a

d2 (d2 < d1) dimensional subspace, and repeat this process. We call this method gKDR-FEXi.

Second, ifY takes onlyL points as in classification, the Gram matrixGY and thusM̃n are of rankL
at most (see Eq. (8)), which is a strong limitation of gKDR. Note that this problem is shared by many
linear dimension reduction methods including CCA and slice-based methods. To solve this problem,
we propose to use the variation of̂Mn(x) over the pointsx = Xi instead of the averagẽMn. By
partitioning{1, . . . , n} into T1, . . . , T`, the projection matriceŝB[a] given by the eigenvectors of

M̂[a] =
∑

i∈Ta
M̂(Xi) are used to definêP = 1

`

∑`
a=1 B̂[a]B̂

T
[a]. The estimator ofB is then given

by the topd eigenvectors of̂P . We call this method gKDR-FEXv.

2.4 Theoretical analysis of gKDR

We have derived the gKDR method based on the necessary condition of EDR space. The following
theorem shows that it is also sufficient, ifkY is characteristic. A positive definite kernelk on a
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gKDR
-FEX

gKDR
-FEXi

gKDR
-FEXv IADE SIR II KDR

gKDR-FEX
+KDR

(A) n = 100 0.1989 0.1639 0.2002 0.1372 0.2986 0.2807 0.0883
(A) n = 200 0.1264 0.0995 0.1287 0.0857 0.2077 0.1175 0.0501
(B) n = 100 0.1500 0.1358 0.1630 0.1690 0.3137 0.2138 0.1076
(B) n = 200 0.0755 0.0750 0.0802 0.0940 0.2129 0.1440 0.0506
(C) n = 200 0.1919 0.2322 0.1930 0.7724 0.7326 0.1479 0.1285
(C) n = 400 0.1346 0.1372 0.1369 0.7863 0.7167 0.0897 0.0893

Table 1: gKDE-FEX for synthetic data: mean discrepancies over 100 runs.

measurable space ischaracteristicif EP [k(·, X)] = EQ[k(·, X)] meansP = Q, i.e., the mean of
feature vector uniquely determines a probability [9, 20]. Examples include Gaussian kernel.

In the following theoretical results, we assume (i)∂kX (·, x)/∂xa ∈ R(CXX) (a = 1, . . . ,m), (ii)
E[kY(y,X)|X = ·] ∈ HX for anyy ∈ Y, and (iii)E[g(Y )|BTX = z] is a differentiable function
of z for anyg ∈ HY and the linear functionalg 7→ ∂E[g(Y )|BTX = z]/∂z is continuous for anyz.
In the sequel, the subspace spanned by the columns ofB is denoted bySpan(B), and the Frobenius
norm of a matrixM by ‖M‖F . The proofs are given in Supplements.

Theorem 1. In addition to the above assumptions (i)-(iii), assume thatthe kernelkY is character-
istic. If the eigenspaces for the non-zero eigenvalues ofE[M(X)] are included inSpan(B), thenY
andX are conditionally independent givenBTX.

We can obtain the rate of consistency for̂Mn(x) andM̃n.

Theorem 2. In addition to (i)-(iii), assume that∂kX (·,x)
∂xa ∈ R(Cβ+1

XX ) (a = 1, . . . ,m) for some

β ≥ 0, andE[kY(y, Y )|X = ·] ∈ HX for everyy ∈ Y. Then, forεn = n−max{ 1
3 ,

1
2β+2}, we have

M̂n(x)−M(x) = Op

(
n−min{ 1

3 ,
2β+1
4β+4}

)

for everyx ∈ X as n → ∞. If further E[‖M(X)‖2F ] < ∞ and ∂kX (·,x)
∂xa = Cβ+1

XX ha
x with

E‖ha
X‖HX

< ∞, thenM̃n → E[M(X)] in the same order as above.

Note that, assuming that the eigenvalues ofM(x) or E[M(X)] are all distinct, the convergence
of matrices implies the convergence of the eigenvectors [22], thus the estimator of gKDR-FEX is
consistent to the subspace given by the top eigenvectors ofE[M(X)].

2.5 Experiments with gKDR-FEX

We always use the Gaussian kernelk(x, x̃) = exp(− 1
2σ2 ‖x− x̃‖2) in the kernel method below. First

we use three synthetic data to verify the basic performance of gKDR-FEX(i,v). The data are gener-
ated by (A):Y = Z sin(

√
5Z)+W ,Z = 1√

5
(1, 2, 0, . . . , 0)TX, (B):Y = (Z3

1+Z2)(Z1−Z3
2 )+W ,

Z1 = 1√
2
(1, 1, 0, . . . , 0)TX,Z2 = 1√

2
(1,−1, 0, . . . , 0)TX, where10-dimensionalX is generated

by the uniform distribution on[−1, 1]10 andW is independent noise withN(0, 10−2), and (C):
Y = Z4E, Z = (1, 0, . . . , 0)TX, where each component of10-dimensionalX is independently
generated by the truncated normal distributionN(0, 1/4) ∗ I[−1,1] andE ∼ N(0, 1) is a multi-
plicative noise. The discrepancy between the estimatorB and the true projectorB0 is measured by
‖B0B

T
0 (Im −BBT )‖F /d. For choosing the parameterσ in Gaussian kernel and the regularization

parameterεn, the CV in Sec. 2.3 with kNN (k = 5, manually chosen to optimize the results) is
used with 8 different values given bycσmed (0.5 ≤ c ≤ 10), whereσmed is the median of pairwise
distances of data [10], and̀= 4, 5, 6, 7 for εn = 10−` (a similar strategy is used for the CV below).

We compare the results with those of IADE, SIR II [13], and KDR. The IADE has seven parameters
[11], and we tuned two of them (h1 andρmin) manually to optimize the performance. For SIR II,
we tried several numbers of slices, and chose the one that gave the best result. From Table 1, we see
that gKDR-FEX(i,v) show much better results than SIR II in all the cases. The IADE works better
than these methods for (A), while for (B) and (C) it works worse. Since (C) has multiplicative noise,
the IADE does not obtain meaningful estimation. The KDR attains higher accuracy for (C), but less
accurate for (A) and (B) withn = 100; this undesired result is caused by failure of optimizationin
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All variables

(H) Heart Disease (I) Ionoshpere (B) Breast-cancer-Wisconsin
(m:13,ntr:129,ntest:148) (m:34,ntr:151,ntest:200) (m:30,ntr:200,ntest:369)

Figure 1: Classification accuracy with gKDR-v and KDR for binary classification problems.m, ntr

andntest are the dimension ofX, training data size, and testing data size, respectively.

Dim. 10 20 30 40 50
gKDR + kNN 13.53 4.55 – – –

gKDR-v + kNN 13.15 4.55 4.81 5.26 5.58
CCA + kNN 22.77 6.74 – – –
SIR-II + kNN 77.42 70.11 63.44 52.66 50.61
gKDR + SVM 14.43 5.00 – – –

gKDR-v + SVM 16.87 4.75 3.85 3.59 3.08
CCA + SVM 13.09 6.54 – – –

L

gKDR
+SVM

Corr
+SVM

Corr
+SVM

(500) (2000)
10 12.0 15.7 8.3
20 16.2 30.2 18.0
30 18.0 29.2 24.0
40 21.8 35.4 25.0
50 19.5 41.1 29.0

Table 2: Left: ISOLET - classification errors for test data (percentage). Right: Amazon Reviews -
10-fold cross-validation errors (%) for classification

some runs (see Supplements for error bars). We also used the results of gKDR-FEX as the initial
state for KDR, which improved the accuracy significantly for(A) and (B). Note however that these
data sets are very small in size and dimension, and KDR is not applicable to large data used later.

One way of evaluating dimension reduction methods in supervised learning is to consider the classi-
fication or regression accuracy after projecting data onto the estimated subspaces. We next used three
data sets for binary classification,heart-disease(H), ionoshpere(I), and breast-cancer-Wisconsin
(B), from UCI repository [7], and evaluated the classification rates of gKDR-FEXv with kNN clas-
sifiers (k = 7). We compared them with KDR, as KDR shows high accuracy for small data sets.
From Fig. 1, we see gKDR-FEXv shows competitive accuracy with KDR: slightly worse for (I), and
slightly better for (B). The computation of gKDR-FEXv for these data sets can be much faster than
that of KDR. For each parameter set, the computational time of gKDR vs KDR was, in (H) 0.044
sec / 622 sec (d = 11), in (I) 0.l03 sec / 84.77 sec (d = 20), and in (B) 0.116 sec / 615 sec (d = 20).

The next two data sets taken from UCI repository are larger inthe sample size and dimensionality,
for which the optimization of KDR is difficult to apply. The first one is ISOLET, which provides
617 dimensional continuous features of speech signals to classify 26 alphabets. In addition to 6238
training data, 1559 test data are separately provided. We evaluate the classification errors with the
kNN classifier (k = 5) and 1-vs-1 SVM to see the effectiveness of the estimated subspaces (see
Table 2). From the information on the data at the UCI repository, the best performance with neural
networks and C4.5 with ECOC are 3.27% and 6.61%, respectively. In comparison with these results,
the low dimensional subspaces found by gKDR-FEX and gKDR-FEXv maintain the information for
classification effectively. SIR-II does not find meaningfulfeatures.

The second data set is author identification of Amazon commerce reviews with 10000 dimensional
linguistic features. The total number of authors is 50, and 30 reviews were collected for each author;
the total size of data is thus 1500. We varied the used number of authors (L) to make different levels
of difficulty for the tasks. The reduced dimensionality by gKDR-FEX is set to the same asL, and the
10-fold CV errors with data projected on the estimated EDR space are evaluated using 1-vs-1 SVM.
As comparison, the squared sum of variable-wise Pearson correlations,

∑L
`=1 Corr[X

a, Y `]2, is also
used for choosing explanatory variables (a = 1, . . . , 10000). Such variable selection methods with
Pearson correlation are popularly used for very high dimensional data. The variables with top500
and2000 correlations are used to make SVM classifiers. As we can see from Table 2, the gKDR-
FEX gives much more effective subspaces for regression thanthe Pearson correlation method, when
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the number of authors is large. The creator of the data set hasalso reported the classification result
with a neural network model [15]; for 50 authors, the 10-foldCV error with 2000 selected variables
is 19.51%, which is similar to the gKDR-FEX result with only 50 linear features.

3 Variable selection with gKDR

In recent years, extensive studies have been done on variable selection with a sparseness penalty
([6, 16, 18, 23–27, 29, 30] among many others). In supervisedsetting, these studies often consider
some specific model for the regression such as least square orlogistic regression. While consistency
and oracle property have been also established for many methods, the assumption that there is a true
parameter in the model may not hold in practice, and thus a strong restriction of the methods. It
is then important to consider more flexible ways of variable selection without assuming any para-
metric model on the regression. The gKDR approach is appealing to this problem, since it realizes
conditional independence without strong assumptions for regression or distribution of variables.

Chen et al. [2] recently proposed the Coordinate-Independent Sparse (CIS) method, which is a semi-
parametric method for sparse variable selection. In CIS, the linear featureBTX is assumed with
some rows ofB zero, but no parametric model is specified for regression. Wewish to estimateB so
that the zero-rows should be estimated as zeros. This is achieved by imposing the sparseness penalty
of the group LASSO [29] in combination with an objective function of linear feature extraction
written in the form of eigenproblem such as SIR and PFC [3].

We follow the CIS method for our variable selection with gKDR; since the gKDR is given by the
eigenproblem with matrixM̃n, the CIS method is applied straightforwardly. The significance of our
method is that the gKDR formulates the conditional independence ofY andX givenBTX, while
the existing CIS-based methods in [2] realize only weaker conditions under strong assumptions.

3.1 Sparse variable selection with gKDR

Throughout this section, it is assumed that the true probability satisfies Eq. (1) withB = B0 =
(vT

01, . . . ,v
T
0m)T , and with some1 ≤ q ≤ m thej-th rowv0j is non-zero forj ≤ q andv0j = 0

for j ≥ q + 1. The projection matrix isB = (b1, . . . ,bd) = (vT
1 , . . . ,v

T
m)T , wherebi is thei-th

column andvj is thej-th row. The proposed variable selection method, gKDR-VS, estimatesB by

B̂λ = arg min
B:BTB=Id

[
−Tr[BT M̃nB] +

m∑

i=1

λi‖vi‖
]
, (9)

where‖vj‖ is the Euclidean norm andλ = (λ1, . . . , λm) ∈ R
m
+ is the regularization coefficients.

To optimize Eq. (9), as in [2], we used the local quadratic approximation [6], which is simple and
fast. We used the matlab code provided at the homepage of X. Chen.

The choice ofλ is crucial on the practical performance of sparse variable selection. As a theoretical
guarantee, we will show that some asymptotic condition provides model consistency. In practice, as
in the Adaptive Lasso [30], it is suitable to considerλ = λ(θ) define by

λi = θ‖ṽi‖−r

whereθ andr are positive numbers, and̃vi is the row vector ofB̃0, the solution to gKDR without
penalty, i.e.,B̃0 = argminBTB=Id −Tr[BT M̃nB]. We usedr = 1/2 for all of our experiments.

To choose the parameterθ, a BIC-based method is often used in sparse variable selection [27, 31]
with theoretical guarantee of model consistency. We use a BIC-type method for choosingθ by
minimizing

BICθ = −Tr[B̂T
λ(θ)M̃nB̂λ(θ)] + Cndfθ

log n

n
, (10)

where dfθ = d(p − d) is the degree of freedom of̂Bλ(θ) with p the number of non-zero rows in

B̂λ(θ), andCn is a positive number ofOp(1). We usedCn = α1 log log(m) with α1 is the largest
eigenvalue ofM̃n. The log log(m) factor is used in [27], where increasing number of variablesis
discussed, andα1 is introduced to adjust the scale ofTr[B̂T

λ M̃nB̂λ]; we use CV for choosing the
hyperparameters (kernel and regularization coefficient),in which the values ofTr[B̂T

λ M̃nB̂λ] is not
normalized well for different choices.
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gKDR
-VS

CIS
-SIR

(A) n = 60 .94/.99/75 .89/1.0/65
(A) n = 120 1.0/1.0/98 .99/1.0/97
(B) n = 100 .92/.84/63 .19/.85/1
(B) n = 200 .98/.89/75 .18/.85/1

Table 3: gKDR-VS and CIS-SIR
with synthetic data (ratio of non-
zeros in1 ≤ j ≤ q / ratio of ze-
ros inq + 1 ≤ j ≤ m / number of
correct models among 100 runs).

Method gKDR-VS CIS-SIR CIS-PFC
CRIM 0 0 0 0 0 0

ZN 0 0 -0.000 -0.008 0 0
INDUS 0 0 0 0 0 0
CHAS 0 0 0 0 0 0
NOX 0 0 0 0 0 0
RM 0.896 0.393 -1.00 -1.253 1.045 -1.390
AGE 0 0 0.005 -0.022 -0.003 -0.011
DIS -0.169 0.022 0 0 0 0
RAD 0.018 -0.000 0 0 0 0
TAX 0 0 0.001 -0.001 -0.001 -0.005

PTRATIO -0.376 0.919 0.049 0.003 -0.038 0.007
B 0 0 -0.001 0.002 0.001 0.005

LSTAT -0.165 0.017 0.043 -0.114 -0.043 -0.113

Table 4: Boston Housing Data: estimated sparse EDR.

3.2 Theoretical results on gKDR-VS

This subsection shows the model consistency of the gKDR-VS.All the proofs are shown in Supple-
ments. Letαn = max{λj | 1 ≤ j ≤ q} andβn = min{λj | q + 1 ≤ j ≤ m}. The eigenvalues of
M = E[M(X)] areη1 ≥ . . . ≥ ηm ≥ 0. For twom × d matricesBi (i = 1, 2) with BT

i Bi = Id,
we defineD(B1, B2) = ‖B1B

T
1 −B2B

T
2 ‖, where‖ · ‖ is the operator norm.

Theorem 3. Suppose‖M̃n − M‖F = Op(n
−τ ) for someτ > 0. If nταn → 0 asn → ∞ and

ηq > ηq+1, then the estimator̂Bλ in Eq. (9) satisfiesD(B̂λ, B0) = Op(n
−τ ) asn → ∞.

We saw in Theorem 2 that under some conditionsM̃n converges toM at the rateOp(n
−τ ) with

1/4 ≤ τ ≤ 1/3. Thus Theorem 3 shows that̂Bλ is also consistent of the same rate.

Theorem 4. In addition to the assumptions in Theorem 3, assumenτβn → ∞ asn → ∞. Then,
for all q + 1 ≤ j ≤ m, Pr(v̂j = 0) → 1 asn → ∞, wherev̂j is thej-th row ofB̂λ.

3.3 Experiments with gKDR-VS

We first apply the gKDR-VS withd = 1 to synthetic data generated by the following two models:
(A): Y = X1 +X2 +X3 +W and (B):Y = (X1 +X2 +X3)4W , where the noiseW follows
N(0, 1). For (A),X = (X1, . . . , X24) is generated byN(0,Σ) with Σij = (1/2)|i−j| (1 ≤ i, j ≤
24), and for (B)X = (X1, . . . , X10) by N(0, 4I10). Note that (B) includes multiplicative noise,
which cannot be handled by many dimension reduction methods. In comparison, the CIS method
with SIR is also applied to the same data. The regularizationparameter of CIS-SIR is chosen by
BIC described in [2]. While both the methods work effectivelyfor (A), only gKDR-VS can handle
the multiplicative noise of (C).

The next experiment usesBoston Housingdata, which has been often used for variable selection.
The responseY is the median value of homes in each tract, and thirteen variables are used to explain
it. The detail of the variables is described in Supplements,Sec. E. The results of gKDR-VS and CIS-
SIR / CIS-PFC withd = 2 are shown in Table 4. The variables selected by gKDR-VS are RM, DIS,
RAD, PTRATIO and LSTAT, which are slightly different from the CIS methods. In a previous study
[1], the four variables RM, TAX, PTRATIO and LSTAT are considered to have major contribution.

4 Conclusions

We have proposed a gradient-based kernel approach for dimension reduction in supervised learn-
ing. The method is based on the general kernel formulation ofconditional independence, and thus
has wide applicability without strong restrictions on the model or variables. The linear feature
extraction, gKDR-FEX, finds effective features with simpleeigendecomposition, even when other
conventional methods are not applicable by multiplicativenoise or high-dimensionality. The con-
sistency is also guaranteed. We have extended the method to variable selection (gKDR-VS) with a
sparseness penalty, and demonstrated its promising performance with synthetic and real world data.
The model consistency has been also proved.
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