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Abstract

We propose a multiresolution Gaussian process to capturg-rlange, non-
Markovian dependencies while allowing for abrupt changebsraon-stationarity.
The multiresolution GP hierarchically couples a collestad smooth GPs, each
defined over an element of a random nested partition. Longeaependen-
cies are captured by the top-level GP while the partitiom{zodefine the abrupt
changes. Due to the inherent conjugacy of the GPs, one céytieally marginal-
ize the GPs and compute the marginal likelihood of the olagems given the par-
tition tree. This property allows for efficient inferencetbg partition itself, for
which we employ graph-theoretic techniques. We apply thiiresolution GP to
the analysis of magnetoencephalography (MEG) recordifigsain activity.

1 Introduction

A key challenge in many time series applications is captulimg-range dependencies for which
Markov-based models are insufficient. One method of adorgdkis challenge is through em-
ploying a Gaussian process (GP) with an appropriate (nawHiienited) covariance function. How-
ever, GPs typically assume smoothness properties thatleakdy elements of the signal if abrupt
changes occur. The Matérn kernel enables less smoothdaecbut assumes a stationary process
that does not adapt to varying levels of smoothness. Lilkevaschangepoin®fl] or partition [8]
model between smooth functions fails to capture long ramgeddencies spanning changepoints.

Another long-memory process is the fractional ARIMA pracEs 13]. Wavelet methods have also
been proposed, including recently for smooth functiondwliscontinuities2]. We take a funda-
mentally different approach based on GPs that allows @adinterpretability, (ii) local stationarity,
(iii) irregular grids of observations, and (iv) sharinganfnation across related time series.

As a motivating application, consider magnetoencephalulyy (MEG) recordings of brain activity
in response to some word stimulus. Due to the low signaleisairatio (SNR) regime, multiple
trials are often recorded, presentinfuactional data analysiscenario. Each trial results in a noisy
trajectory with key discontinuities (e.g., after stimurset). Although there are overall similarities
between the trials, there are also key differences thatrdrased on various physiological phenom-
ena, as depicted in Fig. We clearly see abrupt changes as well as long-range ctioredaKey to
the data analysis is the ability to share information abbetdverall trajectory between the single
trials without forcing unrealistic smoothness assumpgion the single trials themselves.

In order to capture both long-range dependencies and paltdigtcontinuities, we propose a mul-
tiresolution GP (mGP) that hierarchically couples a cditetof smooth GPs, each defined over an
element of a nested partition set. The top-level GP captssooth global trajectory, while the
partition points define abrupt changes in correlation irdidzy the lower-level GPs. Due to the in-
herent conjugacy of the GPs, conditioned on the partitiantpdhe resulting function at the bottom
level is marginally GP-distributed with a partition-deplent (and thus non-stationary) covariance
function. The correlation between any two observatigrendy; generated by the mGP at locations
x; andz; is a function of the distandéz; — x;|| and which partition sets contain bathandzx;.

In a standard regression setting, the marginal GP strucdiutige mGP allows us to compute the
marginal likelihood of the data conditioned on the partitienabling efficient inference of the par-
tition itself. We integrate over the hierarchy of GPs andyadmple the partition points. For our
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Figure 2:mGP on a balanced, binary tree
Figure 1: For sensor 1 and worbouse Left: Data from three partition: Parent function is split byl =
trials; Middle: Empirical correlation matrix from 20 trial®ight: {-Ai,.45}. Recursing down the tree, each
Hierarchical segmentation produced by recursive minitivzeof partition has a GP with mean given by its
normalized cut objective, with color indicating tree level parent function restricted to that set.

proposal distribution, we borrow the graph-theoretic id&@ormalized cut§22) often used inimage
segmentation. Our inferences integrate over the partite allowing blurring of discontinuities
and producing functions which can appear smooth when disaoties are not present in the data.

2 Background

A GP provides a distribution on real-valued functighsX — R, with the property that the function
evaluated at any finite collection of points is jointly Gaass The GP, denoted GFR., c), is uniquely
defined by itsnean functionn andcovariance functior. Thatis,f ~ GP(m, ¢) if and only if for
alln > 1andzy,...,z,, (f(x1),..., f(xn)) ~ Nn(p, K), with g = [m(x1),...,m(z,)] and
[K)ij = c(zi,z;). The properties (e.g., continuity, smoothness, peribdieitc.) of functions
drawn from a given GP are determined by the covariance fomciihe squared exponential kernel,
c(z,2") = dexp(—r||z —2'||3), leads to smooth functions. Hereis ascalehyperparameter and

is thebandwidthdetermining the extent of the correlationfrover X'. See [Lg] for further details.

3 Multiresolution Gaussian Process Formulation

Our interest is in modeling a functigrthat (i) is locally smooth, (ii) exhibits long-range comibns
(i.e., corfg(x), g(z')) > 0for ||« — 2|| relatively large), and (iii) has abrupt changes. We begin by
modeling a single function, but with a specification thatligaends itself to modeling aollection

of functions that share a common global trajectory, as erplon Sec4.

GenerativeModel Assume a set of noisy observatians- {y1,...,yn}, y: € R, of the function
g atlocations{z1,...,x,}, z; € X C RP:
yi = g(xi) + €, € ~N(0,0%). (1)

We hierarchically defing as follows. Letd = {A° A ... AF~!} be a nested partition, dree
partition, of X' with A% = X', X = |, Af, AL N AL = (), and A! C A" for somek. Furthermore,
assume that eacH! is a contiguous subset &f. Fig. 2 depicts a balanced, binary tree partition. We

define aglobal parent functioron A° as f° ~ GP(0, ¢). This function captures the overall shape
of g and its long-range dependencies. Then, over each pasiiod! we independently draw

FACAD) ~ GRUFEH (A, ). 2
That is, the mean of the GP is given by the parent functiomicéstl to the current partition set. Due
to the conditional independence of these drafifs;an have discontinuities at the partition points.
However, due to the coupling of GPs through the tr¢fewill maintain aspects of the shape ff.
Finally, we sety = f“~!. A pictorial representation of the mGP is shown in Flg.

We can equivalently represent the mGP asdditiveGP model:¢(Af) ~ GP(0,¢f), g = >, ¢*.

Covariance Function We assume a squared exponential kemel= df exp(—«!t||z — 2'||3),
encouraging local smoothness over each partitiontéeWe focus onté = d‘ with 3,2, (d)* < 1
for finite variance regardless of tree depth and additigradtouraging lower levels to vary less from
their parent function, providing regularization and rainess to the choice df.

We typically assume bandwidth$ = «/||.4¢||2 so that each child function is locally as smooth as
its parent. One can think of this formulation as akin to atiifgrocess: zooming in on any partition,
the locally defined function has the same smoothness asftitatgarent over the larger partition.
Thus, lower levels encode finer-resolution details. We tietiee covariance hyperparameterg as
{d°,...,d"=1 Kk}, and omit the dependency in conditional distributions fotational simplicity.
See the Supplementary Material for discussion of otheriblessovariance specifications.
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Induced Marginal GP The conditional independencies of our mGP imply that
L—-1
oo ) = [ o) TLptr? | A2, @)
=1

Due to the inherent conjugacy of the GPs, one can analytioadirginalize the hierarchy of GPs
conditioned on the partition tred yielding

g| A~ GPo0,cY), chﬂAe (4)

Here e (z,2") = 1if 2,2’ € A% and 0 otherwise. Eq4] provides an interpretation of the mGP

as a (marglnally) partition- dependent GP, where the pamtitl defines the discontinuities in the
covariance functior®,. The covariance function encodes local smoothnegsamid discontinuities
at the partition points. Note that, defines anon-stationarycovariance function.

The correlation between any two observatignandy; at locationse; andz; generated as in EqL)
is a function of how many tree levels contain bathandz; and the distancéz; — z;||. Letr!
index the partition set such that Af,; andL;; the lowest level for whictx; andz; fall into the

same set (i.e., the largeksuch that-! - r%). Then, forz; # x;,
L; L;
X2 e (@i ) Xl dtexp(—=kllzi — ;| 13/11AL13)

coryi, y; | A) = =
’ Mecqigy (02 + X0 Cre (Th, m) 02+, d

)

(®)

where the second equality follows from assuming the preshodescribed kernels. An example
correlation matrix is shown in Figd(c).  determines the width of the bands while controls the
contribution of levek. Sinced’ is square summable, lower levels are less influential.

Marginal Likelihood Based on avector of observationsy = [y1---y,) at locations
X = [z;---x,), We can restrict our attention to evaluating the GPsxat Let f‘(x) =
[f¢(x1)--- f*(z,)]". By definition of the GP, we have
— — ¢ 1y Lj i, Tj € Al
P |7 ), A~ NP 30, K, [l = { ) i ©
The level-specific covariance matriX, is block-diagonal with structure determined by the level-

specific partition4’. Observations are generatedyas g(x) ~ N(g(x),0?1,). Recalling Eq. ),
standard results yield

g(x) |A~N( ZK@) y|A~N(O,aQIn+LZ_1Kg). (7)

£=0

This result can also be derived from the induced mGP of £gWe see that the marginal likelihood
p(y | A) has a closed form. Alternatively, one can condition on theaG&hy level’:

y|ff<>A~N(ff o1, + Zm) ®)

(=041

A key advantage of the mGP is the conditional conjugacy ofatent GPs that allows us to compute
the likelihood of the data simply conditioned on the hierdeal partitionA (see Eq.T)). This fact
is fundamental to the efficiency of the partition inferencegedure described in Séeg.

4 Multiple Trials

In many applications, such as the motivating MEG applicgtime has aollectionof observations
of an underlying signal. To capture the common global ttajgcof these trials while still allowing
for trial-specific variability, we model each as a realiaatfrom an mGP with gaharedparent func-
tion 9. One could trivially allow for alternative structures oenarchical sharing beyongf if an
application warranted. For simplicity, and due to the nmattivg MEG application, we additionally
assume shared changepoints between the trials, thougdsthisnption can also be relaxed.
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Figure 3: (a) Three trials and (b) all 100 trials of data generated feoBtlevel mGP with a shared parent
function f° and partition4 (randomly sampled). (c) True correlation matrix. (d) Erigar correlation matrix
from 100 trials. (e) Hierarchical segmentation produceddayrsive minimization of normalized cut objective.

GenerativeModel  For each trialy ) = {3\, ... 4%}, we model
yl(j) = g(j)(xi) + egj), egj) ~ N(0,0%), (9)

with ¢(/) = fL—1.0) generated from a trial-specific GP hierargtfy— () — ... — fL-10)
with shared parent®. (Again, alternative structures can be considered.) Fram(& with ¢/ = 0,
and exploiting the independencefof®)}, independently for each

L-1
vy | fOx), A ~ N(y(j);fo(x),a2fn +> Ke). (10)
(=1

Note that with our GP-based formulation, we need not assunrecident observation locations
x1,...,T, between the trials. However, for simplicity of expositiove consider shared locations.

We compactly denote the covariance®y= 021, + Zf;ll K.

Simulated data generated from a 5-level mGP with sh#fexhd.A are shown in Fig3. The sample
correlation matrix is also shown. Compare with the MEG d4taig. 1. Both the qualitative struc-
ture of the raw time series as well as blockiness of the caticel matrix have striking similarities.

Posterior Global Trajectory and Predictions Based on a set of trialgy™"), ..., y())}, it is of
interest to infer the posterior g°. Standard Gaussian conjugacy results imply that

p(f0x) |y, ...y, A) = N( (Ko + I )y (Kt s ) ) (11)
wherey = £~1 D y(®. Likewise, the predictive distribution of data from a nevaltis
ply D [y W,y A) = /p(y(”” | 260, Dp(f0(x) |y D,y A)df?
:N((K51+JE—1)‘1y,z+ (K0_1+JE‘1)_1). (12)

Marginal Likelihood Since the set of trial3” = {y"), ..., y(/)} are generated from a shared
parent functionf®, the marginal likelihood does not decompose over trialstelad,

| Ko| '3z~ 772 1 () s—1o() | Lorppm1 —1y-1g
(27T)7nJ/Q|K071 + J271|1/2 €xp - 5 Zy by Yy + Ey (KO + ']2 ) VAR
(13)

p(Y [ A) =

See the Supplementary Material for a derivation. One caifyaasify that the above simplifies to
the marginal likelihood of Eq.4) whenJ = 1.

5 Inference of the Hierarchical Partition

In the formulation so far, we have assumed that the hiereatpartitionA is given. A key question
is to infer the partition from the data. Assume that we haverpr(.4) on the hierarchical partition.
Based on the fact that we can analytically comp(fg | .4), we can use importance sampling or
independence chain Metropolis Hastings to draw samples fhe posteriop(A | Y).

In what follows, we assume a balanced binary tree4orSee the Supplementary Material for a
discussion of how unbalanced trees can be considered vidioatidns to the covariance hyperpa-
rameter specification or by considering alternative prigr4) such as the Mondrian procesX.



Partition Prior We consider a prior solely on the partition poifts, . .., zor—1_; } rather than
taking tree level into account as well. Because of our tierées analysis focus, we assuiieC R.

We define a distributiod” on X’ and specifyp(A) = [], F'(z;). Generatively, one can think of
drawing2%~—! — 1 partition points fromF and deterministically forming a balanced binary tree
A from these. For multidimensional, one could use Voronoi tessellation and graph matching to
build the tree from the randomly selected Such a prior allows for trivial specification of a uniform
distribution onA (simply takingF' uniform onX’) or for eliciting prior information on changepoints,
such as based on physiological information for the MEG daliaiting such information in a level-
dependent setup is not straightforward. Also, despite comueployment, taking the partition point
at level/ as uniformly distributed over the parent séjfl yields high mass ol with small A.
This property is undesirable because it leads to trees vgthhjhunbalanced partitions.

Our resulting inferences perform Bayesian model averagireg trees. As such, even though we
specify a prior on partitions wit2“~* — 1 changepoints, the resulting functions can appear to
adaptively use fewer by averaging over the uncertaintyéndiscontinuity location.

Partition Proposal Although stochastic tree search algorithms tend to be aiefft in general,
we can harness the well-defined correlation structure &gsdcwith a given hierarchical partition
to much more efficiently search the tree space. One can tHiekery observed location; as a
node in a graph with edge weights betwegrmandz; defined by the magnitude of the correlation of
y; andy;. Based on this interpretation, the partition pointso€orrespond to graph cuts that bisect
small edge weights, as graphically depicted in BigAs such, we seek a method for hierarchically
cutting a graph. Given a cost matfiX with elementswv,,,, defined for all pairs of nodes, v in a set
V', thenormalized cutmetric [22] for partitioning V' into disjoint setsA and B is given by

NcuA, B) = cut(A, B) [asso¢A, V) ! + asso¢B, V)], (14)

where cUtA, B) = > c 4 ,ep Wuw @NA aSSOCA, V') = 3 4 v wuo- Typically, the cut point
is selected as the minimum of the metric rielitB) computed over all possible subsetsand B.
The normalized cut metric balances between the cost of edgghtg cut and the connectivity of the
cut component, thus avoiding cuts that separate small Bags1l shows an example of applying a
greedy normalized cuts algorithm (recursively minimizivayt{ A, B)) to MEG data.

Instead of deterministically selecting cut points, we emgpthe

cut1 1

normalized cut objective as a proposal distribution. Lettbst 2 1 cut2

. . . . [ i
matrix W be the at_>so|ute value of the empmgal correlation matr%-ﬁ@%@%)
computed from trialg{y™", ..., y(/)} (see Fig.1). Due to the ! i ;
natural ordering of our locations; € X C R, the algorithm is TIME d >

straightforwardly implemented. We step down the hieraréitst

proposing a cut of4° into { A1, AL} with probability Figure 4 lllustration of cutpoints

dividing contiguous segments at
q({A} A%}) x ncut(A} A%)A_ (15) points of low correlation.

At level ¢, eachA! is partitioned via a normalized cut proposal based on thenatitix of W corre-
sponding to the locations; € A¢. The probability of any partitiood under the specified proposal
distribution is simply computed as the product of the seqaei conditional probabilities of each
cut. This procedure generates cut points only at the obddogationsx;. More formally, the
partition point inX” is proposed as uniformly distributed betwegrandz; ;. Extensions to multi-
dimensionalt rely on spectral clustering algorithms based on the grajgiteicéan P4).

Markov Chain Monte Carlo An importance sampler draws hierarchical partitiofi®) ~ g,
with the proposal distributiopdefined as above, and then weights the sampleg.a§™) /q(A™))

to obtain posterior drawslP]. Such an approach is naively parallelizable, and thus afvlerto
efficient computations, though the effective sample sizg below if ¢ does not adequately match
the posteriop(A | V). Alternatively, a straightforward independence chain ideslis Hastings
algorithm (see Supplementary Material) is defined by iteelt proposing4’ ~ g which is accepted
with probabilitymin{r(A’ | A), 1} whereA is a previous sample of a hierarchical partition and

(A" | A) =p(Y | A)p(A")q(A)/[p(Y | A)p(A)g(A")]. (16)

The tailoring of the proposal distributigrto this application based on normalized cuts dramatically
aids in improving the acceptance rate relative to more rtedesproposals. However, the acceptance



rate tends to decrease as higher posterior probabilititipag.A are discovered, especially for trees
with many levels and large input spacE&gor which the search space is larger.

One benefit of the MCMC approach over importance samplirtgeigbility to include more intricate
tree proposals to increase efficiency. We choose to intexlieath local and global tree proposals. At
each iteration, we first randomly select a node in the tree @.partition se¢) and then propose a
new sequence of cuts for all children of this node. When tloémode is selected, corresponding to
A°, the proposal is equivalent to the global proposals presijoconsidered. We adapt the proposal
distribution for node selection to encourage more globatdees at first and then shift towards a
greater balance between local and global searches as tpdirsquprogresses. Sequential Monte
Carlo methods4] can also be considered, with particles generated as giwbpbsals.

Computational Complexity The per iteration complexity i©(n?), equivalent to a typical like-
lihood evaluation under a GP prior. Using dynamic prograngnihe cost associated with the nor-
malized cuts proposal §(n?(L — 1)). Standard techniques for more efficient GP computations are
readily applicable, as well as extensions that harnessdtiigivee block structure of the covariance.

6 Reated Work

Various aspects of the mGP have similarities to other mqutelgsosed in the literature that primarily
fall into two main categories: (i) GPs defined over a pantiéd input space, and (ii) collections of
GPs defined at tree nodes. The treed 8Rgptures non-stationarities by defining independent GPs
at the leaves of a Bayesian CART-partitioned input spacee rélated approach oflP] assumes

a Voronoi tessellation. For time serie®1] examines online inference of changepoints with GPs
modeling the data within each segment. These methods esgdtmupt changes, but do not allow for
long-range dependencies spanning changepoints nor adoaktlata hierarchical structure, both
inherent to our multiresolution perspective. A main mdiiva of the treed GP is the resulting
computational speed-ups of an independently partitiorfedA®wo-level hierarchical GP also aimed
at computational efficiency is considered ], where the top-level GP is defined at a coarser scale
and provides a piece-wise constant mean for lower-level@Rspre-partitioned input space.

[10, 11] consider covariance functions defined on a phylogenedie such that the covariance be-
tween function-valued traits depends on both their spditaance and evolutionary time spanned
via a common ancestor. Here, the tree defines the strengtstiarature of sharing between a col-
lection of functions rather than abrupt changes within thecfion. The Bayesian rose tree 6} [
considers a mixture of GP experts, as 14,[17], but using Bayesian hierarchical clustering with
arbitrary branching structure in place of a Dirichlet pregenixture. Such an approach is funda-
mentally different from the mGP: each GP is defined over theeemput space, data result from a
GP mixture, and input points are not necessarily spatidligtered. Alternatively, multiscale pro-
cesses have a long history (25): the variables define a Markov process on a typically bedan
binary tree and higher-level nodes capture coarser lef@inmation about the process. In contrast,
the higher level nodes in the mGP share the same temporaitiescand only vary in smoothness.

At a high level, the mGP differs from previous GP-based treel@ts in that the nodes of our tree
represent GPs over a contiguous subset of the input spazenstrained in a hierarchical fashion.
Thus, the mGP combines ideas of GP-based tree models and$&f-partition models.

As presented in Se@®, one can formulate an mGP as an additive GP where each GP guthe
decomposes independently over the level-specific partiifdhe input spac&’. The additive GPs

of [6] instead focus on coping with multivariate inputs, in a $émvain to hierarchical kernel learn-
ing [1], thus addressing an inherently different task.

7 Results

7.1 Synthetic Experiments

To assess our ability to infer a hierarchical partition Via proposed MCMC sampler, we generated
100 trials of length 200 from a 5-level mGP with a shared paiarction f°. The hyperparameters
were set tor? = 0.1, k = 10, d* = d®exp(—0.5({ + 1)) for £ = 0,...,L — 1 with d° = 5. The
data are shown in Fi@, along with the empirical correlation matrix that is usedhaescost matrix
for the normalized cuts proposals.

For inference, we set?> = 42/3 andd’ = (6%/3)exp(—0.5¢), wheres? is the average time-
specific sample variance: was as in the simulation. The hyperparameter mismatch dstnrztes
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Figure 5: For the data of Fig3, (a) true and (b) MAP partitions. (c) Trace plots of log likelod versus

MCMC iteration for 10 chains. Log likelihood under the truarition (Cyar) and minimized normalized cut
partition of Fig.3 (magentaare also shown. (d) Errors between posterior mghand truef® for GP, hGP, and

mGP. (e) Predictive log likelihood of 10 heldout sequences3P, hGP, and mGP with = 2, 5(true), 7, 10.

some robustness to mispecification. For a uniform prict), 10 independent MCMC chains were
run for 3000 iterations, thinned by 10. The first 1000 itenasi used pure global tree searches; the
sampler was then tempered to uniform node proposals. Thetefbf this choice are apparent in
the likelihood plot of Fig5, which also displays the true hierarchical partition and Riéstimate.
Compare to the normalized cuts partition of F3gespecially at the important level 1 cut. The full
simulation study took less than 7 minutes to run on a sin@e&sHz Intel Core i7 processor.

To assess sensitivity to the choicelgfwe compare the predictive log-likelihood of 10 heldout tes
sequences under an mGP with 2, 5, 7, and 10 levels. As showig.i®(€), there is a clear gain
going from 2 to 5 levels. However, overestimatibdnas minimal influence on predictive likelihood
since lower tree levels capture finer details and have lessatheffect. We also compare to a single
GP and a 2-level hierarchical GP (hGP) (see Se?). For a direct comparison, both use squared
exponential kernels. Hyperparameters were set as in thefor@ie top-level GP. The total variance
was also matched with the GP taking this as noise and the hi@fhgmbetween level 2 and noise.
In addition to better predictive performance, Figd) shows the mGP’s improved estimationfdf

7.2 MEG Analysis

We analyzed magnetoencephalography (MEG) recordingsusbnal activity collected from a hel-
met with gradiometers distributed over 102 locations adoilve head. The gradiometers measure
the spatial gradient of the magnetic activity in Teslas peten(T/m) P]. Since the firings of neu-
rons in the brain only induce a weak magnetic field outsidéefskull, the signal-to-noise ratio of
the MEG data is very low and typically multiple recordingstrials, of a given task are collected.
Our MEG data was recorded while a subject viewed 20 stimudcdleing concrete nouns (both
the written noun and a representative line drawing), withriérleaved trials per word. See the
Supplementary Material for further details on the data amboalyses presented herein.

Efficient sharing of information between the single trismportant for tasks such as word clas-
sification [7/]. A key insight of [7] was the importance of capturing the time-varying coriefa
between MEG sensors for performing classification. Howeter formulation still necessitates a
mean model. ] propose a 2-level hierarchical GP (hGP): a parent GP cagtine common global
trajectory, as in the mGP, and each trial-specific GP is cedtabout the entire parent function
This formulation maintains global smoothness at the irtliai trial level. The mGP instead mod-
els the trial-specific variability with a multi-level tred¢ GPs defined as deviations from the parent
function over local partitions, allowing for abrupt chasgelative to the smooth global trajectory.

For our analyses, we consider the words associated withbthikeling” and “tool” categories shown
in Fig. 7. Independently for each of the 10 words and 102 sensors, aimett a 5-level mGP
using 15 randomly selected trials as training data and therfaining for testing. Each trial was
of lengthn = 340. We ran 3 independent MCMC chains for 3000 iterations witthlgdobal and
local tree searches. We discarded the first 1000 samplesasrband thinned by 10. The mGP
hyperparameters were set exactly as in the simulated stuSgm 7.1 for structure learning and
then optimized over a grid to maximize the marginal likebdaf the training data.

We compare the predictive performance of the mGP in termsS¥ Mf heldout segments relative to
a GP and hGP, each with similarly optimized hyperparameiérs predictive mean conditioned on
data up to the heldout time is straightforwardly derivedrfiieg. (L2). For the mGP, the calculationis
averaged over the posterior samplesfofFig. 6 displays the MSEs decomposed by cortical region.

1The model of F] uses an hGP in a latent space. The mGP could be similarlpyegl
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Figure 6:Per-lobe comparison of mGP to (a) GP and (b) hGP: For varialugs ofr, % decrease in predictive
MSE of heldouty;.. 30 conditioned ony;i.,_; and 15 training sequences. (c) For a visual cortex sensor and
word hammey plots of test data, empirical mean (MLE), and hGP and mGRHigtiee mean for entire heldout
y*. (d) Boxplots of predictive log likelihood of heldogt* for the mGP and wavelet-based method ][

The results clearly indicate that the mGP consistently bet- vieual L1 Frontal L1
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ter captures the features of the data, and parucularly forhourse
sensors with large abrupt changes such as in the wsua‘imm
cortex. The heldout trials for a visual cortex sensor arehammer
displayed in Fig.6(c). Relative to the hGP, the mGPscrewdnvev

much better tracks the early dip in activity right after the S
visual stimulus onsett(= 0). The posterior distribu- Tine se)
tion of inferred changepoints at level 1, also broken down ey Tempoal Lt
by cortical region, are displayed in Fig. As expected,  fou
the visual cortex has the earliest changepoints. Similar e
trends are seen in the parietal lobe that handles percepf*mgj;wr
tion and sensory integration. The temporal lobe, whic

e
is key in semantic processing, has changepoints occur- e — g LI
ring later. These results concur with the findings2g|[ r; %!lre 7: Inferred changepoints at level 1

05 1
Time (sec)

semantic processing starts between 250 and 600 ms egated over sensors within each lobe:
word length (a visual feature) is decoded most accuratgfyyal top-lefy), frontal top-right), parietal
very near the standard 100ms response time (“n100”). (hottom-lef}, and temporalt{ottom-righ}.

We also compare our predictive performance to that of theslesbased functional mixed model
(wfmm) of [15]. The wfmm has become a standard approach for functional aladlysis since it
allows for spiky trajectories and efficient sharing of infation between trials. One limitation, how-
ever, is the restriction to a regular grid of observatiortsee Wfmm enables analysis in a multivariate
setting, but for a direct comparison we simply apply the wftaneach word and sensor indepen-
dently. Fig.6(d) shows boxplots of the predictive heldout log likelihaafdthe test trials under the
mGP and wfmm. The results are over 5 heldout trials, 102 senand 10 words. In addition to the
easier interpretability of the mGP, the predictive perfante also exceeds that of the wfmm.

8 Discussion

The mGP provides a flexible framework for characterizingdbpendence structure of real data,
such as the examined MEG recordings, capturing certaiifiegaimore accurately than previous
models. In particular, the mGP provides a hierarchicalfional data analysis framework for mod-
eling (i) strong, locally smooth sharing of information) @lobal long-range correlations, and (iii)
abrupt changes. The simplicity of the mGP formulation eeslfurther theoretical analysis, for
example, combining posterior consistency results frormgbkaoint analysis with those for GPs.
Although we focused on univariate time series analysis founulation is amenable to multivari-
ate functional data analysis extensions: one can natuaattpmmodate hierarchical dependence
structures through partial sharing of parents in the treppesibly via mGP factor models.

There are many interesting questions relating to the pexpogvariance function. Our fractal spec-
ification represents a particular choice to avoid over4petarization, although alternatives could
be considered. For hyperparameter inference, we anticipat joint sampling with the partition
would mix poorly, and consider it a topic for future expléost. Another interesting topic is to
explore proposals for more general tree structures. We\zethat the proposed mGP represents a
powerful, broadly applicable new framework for non-statioy analyses, especially in a functional
data analysis setting, and sets the foundation for mangeisiieg possible extensions.
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