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Abstract
We propose a multiresolution Gaussian process to capture long-range, non-
Markovian dependencies while allowing for abrupt changes and non-stationarity.
The multiresolution GP hierarchically couples a collection of smooth GPs, each
defined over an element of a random nested partition. Long-range dependen-
cies are captured by the top-level GP while the partition points define the abrupt
changes. Due to the inherent conjugacy of the GPs, one can analytically marginal-
ize the GPs and compute the marginal likelihood of the observations given the par-
tition tree. This property allows for efficient inference ofthe partition itself, for
which we employ graph-theoretic techniques. We apply the multiresolution GP to
the analysis of magnetoencephalography (MEG) recordings of brain activity.

1 Introduction

A key challenge in many time series applications is capturing long-range dependencies for which
Markov-based models are insufficient. One method of addressing this challenge is through em-
ploying a Gaussian process (GP) with an appropriate (non-band-limited) covariance function. How-
ever, GPs typically assume smoothness properties that can blur key elements of the signal if abrupt
changes occur. The Matérn kernel enables less smooth functions, but assumes a stationary process
that does not adapt to varying levels of smoothness. Likewise, a changepoint [21] or partition [8]
model between smooth functions fails to capture long range dependencies spanning changepoints.

Another long-memory process is the fractional ARIMA process [5, 13]. Wavelet methods have also
been proposed, including recently for smooth functions with discontinuities [2]. We take a funda-
mentally different approach based on GPs that allows (i) direct interpretability, (ii) local stationarity,
(iii) irregular grids of observations, and (iv) sharing information across related time series.

As a motivating application, consider magnetoencephalography (MEG) recordings of brain activity
in response to some word stimulus. Due to the low signal-to-noise-ratio (SNR) regime, multiple
trials are often recorded, presenting afunctional data analysisscenario. Each trial results in a noisy
trajectory with key discontinuities (e.g., after stimulusonset). Although there are overall similarities
between the trials, there are also key differences that occur based on various physiological phenom-
ena, as depicted in Fig.1. We clearly see abrupt changes as well as long-range correlations. Key to
the data analysis is the ability to share information about the overall trajectory between the single
trials without forcing unrealistic smoothness assumptions on the single trials themselves.

In order to capture both long-range dependencies and potential discontinuities, we propose a mul-
tiresolution GP (mGP) that hierarchically couples a collection of smooth GPs, each defined over an
element of a nested partition set. The top-level GP capturesa smooth global trajectory, while the
partition points define abrupt changes in correlation induced by the lower-level GPs. Due to the in-
herent conjugacy of the GPs, conditioned on the partition points the resulting function at the bottom
level is marginally GP-distributed with a partition-dependent (and thus non-stationary) covariance
function. The correlation between any two observationsyi andyj generated by the mGP at locations
xi andxj is a function of the distance||xi − xj || and which partition sets contain bothxi andxj .

In a standard regression setting, the marginal GP structureof the mGP allows us to compute the
marginal likelihood of the data conditioned on the partition, enabling efficient inference of the par-
tition itself. We integrate over the hierarchy of GPs and only sample the partition points. For our
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Figure 1: For sensor 1 and wordhouse, Left: Data from three
trials;Middle: Empirical correlation matrix from 20 trials;Right:
Hierarchical segmentation produced by recursive minimization of
normalized cut objective, with color indicating tree level.

Figure 2:mGP on a balanced, binary tree
partition: Parent function is split byA1 =
{A1

1,A
1
2}. Recursing down the tree, each

partition has a GP with mean given by its
parent function restricted to that set.

proposal distribution, we borrow the graph-theoretic ideaof normalized cuts[22] often used in image
segmentation. Our inferences integrate over the partitiontree, allowing blurring of discontinuities
and producing functions which can appear smooth when discontinuities are not present in the data.

2 Background
A GP provides a distribution on real-valued functionsf : X → ℜ, with the property that the function
evaluated at any finite collection of points is jointly Gaussian. The GP, denoted GP(m, c), is uniquely
defined by itsmean functionm andcovariance functionc. That is,f ∼ GP(m, c) if and only if for
all n ≥ 1 andx1, . . . , xn, (f(x1), . . . , f(xn)) ∼ Nn(µ,K), with µ = [m(x1), . . . ,m(xn)] and
[K]ij = c(xi, xj). The properties (e.g., continuity, smoothness, periodicity, etc.) of functions
drawn from a given GP are determined by the covariance function. The squared exponential kernel,
c(x, x′) = d exp(−κ||x−x′||22), leads to smooth functions. Here,d is ascalehyperparameter andκ
is thebandwidthdetermining the extent of the correlation inf overX . See [18] for further details.

3 Multiresolution Gaussian Process Formulation
Our interest is in modeling a functiong that (i) is locally smooth, (ii) exhibits long-range correlations
(i.e., corr(g(x), g(x′)) > 0 for ||x− x′|| relatively large), and (iii) has abrupt changes. We begin by
modeling a single function, but with a specification that readily lends itself to modeling acollection
of functions that share a common global trajectory, as explored in Sec.4.

Generative Model Assume a set of noisy observationsy = {y1, . . . , yn}, yi ∈ ℜ, of the function
g at locations{x1, . . . , xn}, xi ∈ X ⊂ ℜp:

yi = g(xi) + ǫi, ǫi ∼ N(0, σ2). (1)

We hierarchically defineg as follows. LetA = {A0,A1, . . . ,AL−1} be a nested partition, ortree
partition, of X with A0 = X , X =

⋃

i A
ℓ
i , A

ℓ
i ∩Aℓ

j = ∅, andAℓ
i ⊂ Aℓ−1

k for somek. Furthermore,
assume that eachAℓ

i is a contiguous subset ofX . Fig.2 depicts a balanced, binary tree partition. We
define aglobal parent functiononA0 asf0 ∼ GP(0, c0). This function captures the overall shape
of g and its long-range dependencies. Then, over each partitionsetAℓ

i we independently draw

f ℓ(Aℓ
i) ∼ GP(f ℓ−1(Aℓ

i), c
ℓ
i). (2)

That is, the mean of the GP is given by the parent function restricted to the current partition set. Due
to the conditional independence of these draws,f ℓ can have discontinuities at the partition points.
However, due to the coupling of GPs through the tree,f ℓ will maintain aspects of the shape off0.
Finally, we setg = fL−1. A pictorial representation of the mGP is shown in Fig.2.

We can equivalently represent the mGP as anadditiveGP model:φℓ(Aℓ
i) ∼ GP(0, cℓi), g =

∑

ℓ φ
ℓ.

Covariance Function We assume a squared exponential kernelcℓi = dℓi exp(−κℓ
i ||x − x′||22),

encouraging local smoothness over each partition setAℓ
i . We focus ondℓi = dℓ with

∑∞
ℓ=1(d

ℓ)2 < 1
for finite variance regardless of tree depth and additionally encouraging lower levels to vary less from
their parent function, providing regularization and robustness to the choice ofL.

We typically assume bandwidthsκℓ
i = κ/||Aℓ

i ||
2
2 so that each child function is locally as smooth as

its parent. One can think of this formulation as akin to a fractal process: zooming in on any partition,
the locally defined function has the same smoothness as that of its parent over the larger partition.
Thus, lower levels encode finer-resolution details. We denote the covariance hyperparameters asθ =
{d0, . . . , dL−1, κ}, and omit the dependency in conditional distributions for notational simplicity.
See the Supplementary Material for discussion of other possible covariance specifications.
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Induced Marginal GP The conditional independencies of our mGP imply that

p(g | A) =

∫

p(f0)
L−1
∏

ℓ=1

p(f ℓ | f ℓ−1,Aℓ)df0:L−2. (3)

Due to the inherent conjugacy of the GPs, one can analytically marginalize the hierarchy of GPs
conditioned on the partition treeA yielding

g | A ∼ GP(0, c∗A), c∗A =

L−1
∑

ℓ=0

∑

i

cℓiIAℓ
i
. (4)

Here,IAℓ
i
(x, x′) = 1 if x, x′ ∈ Aℓ

i and 0 otherwise. Eq. (4) provides an interpretation of the mGP
as a (marginally) partition-dependent GP, where the partition A defines the discontinuities in the
covariance functionc∗A. The covariance function encodes local smoothness ofg and discontinuities
at the partition points. Note thatc∗A defines anon-stationarycovariance function.

The correlation between any two observationsyi andyj at locationsxi andxj generated as in Eq. (1)
is a function of how many tree levels contain bothxi andxj and the distance||xi − xj ||. Let rℓi
index the partition set such thatxi ∈ Aℓ

rℓ
i

andLij the lowest level for whichxi andxj fall into the

same set (i.e., the largestℓ such thatrℓi = rℓj). Then, forxi 6= xj ,

corr(yi, yj | A) =

∑Lij

ℓ=0 c
ℓ
rℓ
i

(xi, xj)
∏

k∈{i,j}(σ
2 +

∑L−1
ℓ=0 cℓ

rℓ
k

(xk, xk))
1

2

=

∑Lij

ℓ=0 d
ℓ exp(−κ||xi − xj ||22/||A

ℓ
rℓ
i

||22)

σ2 +
∑L−1

ℓ=0 dℓ
,

(5)

where the second equality follows from assuming the previously described kernels. An example
correlation matrix is shown in Fig.3(c). κ determines the width of the bands whiledℓ controls the
contribution of levelℓ. Sincedℓ is square summable, lower levels are less influential.

Marginal Likelihood Based on avector of observationsy = [y1 · · · yn]′ at locations
x = [x1 · · ·xn]

′, we can restrict our attention to evaluating the GPs atx. Let f ℓ(x) =
[f ℓ(x1) · · · f ℓ(xn)]

′. By definition of the GP, we have

f ℓ(x) | f ℓ−1(x),Aℓ ∼ N(f ℓ−1(x),Kℓ), [Kℓ]i,j =

{

cℓr(xi, xj) xi, xj ∈ Aℓ
r

0 otherwise
. (6)

The level-specific covariance matrixKℓ is block-diagonal with structure determined by the level-
specific partitionAℓ. Observations are generated asy | g(x) ∼ N(g(x), σ2In). Recalling Eq. (3),
standard results yield

g(x) | A ∼ N

(

0,

L−1
∑

ℓ=0

Kℓ

)

y | A ∼ N

(

0, σ2In +

L−1
∑

ℓ=0

Kℓ

)

. (7)

This result can also be derived from the induced mGP of Eq. (4). We see that the marginal likelihood
p(y | A) has a closed form. Alternatively, one can condition on the GPat any levelℓ′:

y | f ℓ′(x),A ∼ N

(

f ℓ′(x), σ2In +

L−1
∑

ℓ=ℓ′+1

Kℓ

)

. (8)

A key advantage of the mGP is the conditional conjugacy of thelatent GPs that allows us to compute
the likelihood of the data simply conditioned on the hierarchical partitionA (see Eq. (7)). This fact
is fundamental to the efficiency of the partition inference procedure described in Sec.5.

4 Multiple Trials

In many applications, such as the motivating MEG application, one has acollectionof observations
of an underlying signal. To capture the common global trajectory of these trials while still allowing
for trial-specific variability, we model each as a realization from an mGP with asharedparent func-
tion f0. One could trivially allow for alternative structures of hierarchical sharing beyondf0 if an
application warranted. For simplicity, and due to the motivating MEG application, we additionally
assume shared changepoints between the trials, though thisassumption can also be relaxed.
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Figure 3: (a) Three trials and (b) all 100 trials of data generated froma 5-level mGP with a shared parent
functionf0 and partitionA (randomly sampled). (c) True correlation matrix. (d) Empirical correlation matrix
from 100 trials. (e) Hierarchical segmentation produced byrecursive minimization of normalized cut objective.

Generative Model For each trialy(j) = {y
(j)
1 , . . . , y

(j)
n }, we model

y
(j)
i = g(j)(xi) + ǫ

(j)
i , ǫ

(j)
i ∼ N(0, σ2), (9)

with g(j) = fL−1,(j) generated from a trial-specific GP hierarchyf0 → f1,(j) → · · · → fL−1,(j)

with shared parentf0. (Again, alternative structures can be considered.) From Eq. (8) with ℓ′ = 0,
and exploiting the independence of{f ℓ,(j)}, independently for eachj

y
(j) | f0(x),A ∼ N

(

y
(j); f0(x), σ2In +

L−1
∑

ℓ=1

Kℓ

)

. (10)

Note that with our GP-based formulation, we need not assume coincident observation locations
x1, . . . , xn between the trials. However, for simplicity of exposition,we consider shared locations.
We compactly denote the covariance byΣ = σ2In +

∑L−1
ℓ=1 Kℓ.

Simulated data generated from a 5-level mGP with sharedf0 andA are shown in Fig.3. The sample
correlation matrix is also shown. Compare with the MEG data of Fig. 1. Both the qualitative struc-
ture of the raw time series as well as blockiness of the correlation matrix have striking similarities.

Posterior Global Trajectory and Predictions Based on a set of trials{y(1), . . . ,y(J)}, it is of
interest to infer the posterior off0. Standard Gaussian conjugacy results imply that

p(f0(x) | y(1), . . . ,y(J),A) = N

(

(

K−1
0 + JΣ−1

)−1
ỹ,

(

K−1
0 + JΣ−1

)−1
)

, (11)

whereỹ = Σ−1
∑

i y
(i). Likewise, the predictive distribution of data from a new trial is

p(y(J+1) | y(1), . . . ,y(J),A) =

∫

p(y(J+1) | f0(x),A)p(f0(x) | y(1), . . . ,y(J),A)df0

= N

(

(

K−1
0 + JΣ−1

)−1
ỹ,Σ +

(

K−1
0 + JΣ−1

)−1
)

. (12)

Marginal Likelihood Since the set of trialsY = {y(1), . . . ,y(J)} are generated from a shared
parent functionf0, the marginal likelihood does not decompose over trials. Instead,

p(Y | A) =
|K0|

−1/2|Σ|−J/2

(2π)−nJ/2|K−1
0 + JΣ−1|1/2

exp

(

−
1

2

∑

i

y
(i)′Σ−1

y
(i) +

1

2
ỹ
′(K−1

0 + JΣ−1)−1
ỹ

)

.

(13)

See the Supplementary Material for a derivation. One can easily verify that the above simplifies to
the marginal likelihood of Eq. (7) whenJ = 1.

5 Inference of the Hierarchical Partition

In the formulation so far, we have assumed that the hierarchical partitionA is given. A key question
is to infer the partition from the data. Assume that we have prior p(A) on the hierarchical partition.
Based on the fact that we can analytically computep(Y | A), we can use importance sampling or
independence chain Metropolis Hastings to draw samples from the posteriorp(A | Y ).

In what follows, we assume a balanced binary tree forA. See the Supplementary Material for a
discussion of how unbalanced trees can be considered via modifications to the covariance hyperpa-
rameter specification or by considering alternative priorsp(A) such as the Mondrian process [20].
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Partition Prior We consider a prior solely on the partition points{z1, . . . , z2L−1−1} rather than
taking tree level into account as well. Because of our time-series analysis focus, we assumeX ⊂ ℜ.
We define a distributionF on X and specifyp(A) =

∏

i F (zi). Generatively, one can think of
drawing2L−1 − 1 partition points fromF and deterministically forming a balanced binary tree
A from these. For multidimensionalX , one could use Voronoi tessellation and graph matching to
build the tree from the randomly selectedzi. Such a prior allows for trivial specification of a uniform
distribution onA (simply takingF uniform onX ) or for eliciting prior information on changepoints,
such as based on physiological information for the MEG data.Eliciting such information in a level-
dependent setup is not straightforward. Also, despite common deployment, taking the partition point
at levelℓ as uniformly distributed over the parent setAℓ−1

i yields high mass onA with smallAℓ
i .

This property is undesirable because it leads to trees with highly unbalanced partitions.

Our resulting inferences perform Bayesian model averagingover trees. As such, even though we
specify a prior on partitions with2L−1 − 1 changepoints, the resulting functions can appear to
adaptively use fewer by averaging over the uncertainty in the discontinuity location.

Partition Proposal Although stochastic tree search algorithms tend to be inefficient in general,
we can harness the well-defined correlation structure associated with a given hierarchical partition
to much more efficiently search the tree space. One can think of every observed locationxi as a
node in a graph with edge weights betweenxi andxj defined by the magnitude of the correlation of
yi andyj . Based on this interpretation, the partition points ofA correspond to graph cuts that bisect
small edge weights, as graphically depicted in Fig.4. As such, we seek a method for hierarchically
cutting a graph. Given a cost matrixW with elementswuv defined for all pairs of nodesu, v in a set
V , thenormalized cutmetric [22] for partitioningV into disjoint setsA andB is given by

ncut(A,B) = cut(A,B)
[

assoc(A, V )−1 + assoc(B, V )−1
]

, (14)

where cut(A,B) =
∑

u∈A,v∈B wuv and assoc(A, V ) =
∑

u∈A,v∈V wuv . Typically, the cut point
is selected as the minimum of the metric ncut(A,B) computed over all possible subsetsA andB.
The normalized cut metric balances between the cost of edge weights cut and the connectivity of the
cut component, thus avoiding cuts that separate small sets.Fig. 1 shows an example of applying a
greedy normalized cuts algorithm (recursively minimizingncut(A,B)) to MEG data.

cut 1 
cut 2 cut 2 

TIME 

Figure 4: Illustration of cutpoints
dividing contiguous segments at
points of low correlation.

Instead of deterministically selecting cut points, we employ the
normalized cut objective as a proposal distribution. Let the cost
matrixW be the absolute value of the empirical correlation matrix
computed from trials{y(1), . . . ,y(J)} (see Fig.1). Due to the
natural ordering of our locationsxi ∈ X ⊂ ℜ, the algorithm is
straightforwardly implemented. We step down the hierarchy, first
proposing a cut ofA0 into {A1

1,A
1
2} with probability

q({A1
1,A

1
2}) ∝ ncut(A1

1,A
1
2)

−1. (15)

At level ℓ, eachAℓ
i is partitioned via a normalized cut proposal based on the submatrix ofW corre-

sponding to the locationsxi ∈ Aℓ
i . The probability of any partitionA under the specified proposal

distribution is simply computed as the product of the sequence of conditional probabilities of each
cut. This procedure generates cut points only at the observed locationsxi. More formally, the
partition point inX is proposed as uniformly distributed betweenxi andxi+1. Extensions to multi-
dimensionalX rely on spectral clustering algorithms based on the graph Laplacian [24].

Markov Chain Monte Carlo An importance sampler draws hierarchical partitionsA(m) ∼ q,
with the proposal distributionq defined as above, and then weights the samples byp(A(m))/q(A(m))
to obtain posterior draws [19]. Such an approach is naively parallelizable, and thus amenable to
efficient computations, though the effective sample size may be low if q does not adequately match
the posteriorp(A | Y ). Alternatively, a straightforward independence chain Metropolis Hastings
algorithm (see Supplementary Material) is defined by iteratively proposingA′ ∼ q which is accepted
with probabilitymin{r(A′ | A), 1} whereA is a previous sample of a hierarchical partition and

r(A′ | A) = p(Y | A′)p(A′)q(A)/[p(Y | A)p(A)q(A′)]. (16)

The tailoring of the proposal distributionq to this application based on normalized cuts dramatically
aids in improving the acceptance rate relative to more naivetree proposals. However, the acceptance
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rate tends to decrease as higher posterior probability partitionsA are discovered, especially for trees
with many levels and large input spacesX for which the search space is larger.

One benefit of the MCMC approach over importance sampling is the ability to include more intricate
tree proposals to increase efficiency. We choose to interleave both local and global tree proposals. At
each iteration, we first randomly select a node in the tree (i.e., a partition setAℓ

i ) and then propose a
new sequence of cuts for all children of this node. When the root node is selected, corresponding to
A0, the proposal is equivalent to the global proposals previously considered. We adapt the proposal
distribution for node selection to encourage more global searches at first and then shift towards a
greater balance between local and global searches as the sampling progresses. Sequential Monte
Carlo methods [4] can also be considered, with particles generated as globalproposals.

Computational Complexity The per iteration complexity isO(n3), equivalent to a typical like-
lihood evaluation under a GP prior. Using dynamic programming, the cost associated with the nor-
malized cuts proposal isO(n2(L−1)). Standard techniques for more efficient GP computations are
readily applicable, as well as extensions that harness the additive block structure of the covariance.

6 Related Work

Various aspects of the mGP have similarities to other modelsproposed in the literature that primarily
fall into two main categories: (i) GPs defined over a partitioned input space, and (ii) collections of
GPs defined at tree nodes. The treed GP [8] captures non-stationarities by defining independent GPs
at the leaves of a Bayesian CART-partitioned input space. The related approach of [12] assumes
a Voronoi tessellation. For time series, [21] examines online inference of changepoints with GPs
modeling the data within each segment. These methods capture abrupt changes, but do not allow for
long-range dependencies spanning changepoints nor a functional data hierarchical structure, both
inherent to our multiresolution perspective. A main motivation of the treed GP is the resulting
computational speed-ups of an independently partitioned GP. A two-level hierarchical GP also aimed
at computational efficiency is considered by [16], where the top-level GP is defined at a coarser scale
and provides a piece-wise constant mean for lower-level GPson a pre-partitioned input space.

[10, 11] consider covariance functions defined on a phylogenetic tree such that the covariance be-
tween function-valued traits depends on both their spatialdistance and evolutionary time spanned
via a common ancestor. Here, the tree defines the strength andstructure of sharing between a col-
lection of functions rather than abrupt changes within the function. The Bayesian rose tree of [3]
considers a mixture of GP experts, as in [14, 17], but using Bayesian hierarchical clustering with
arbitrary branching structure in place of a Dirichlet process mixture. Such an approach is funda-
mentally different from the mGP: each GP is defined over the entire input space, data result from a
GP mixture, and input points are not necessarily spatially clustered. Alternatively, multiscale pro-
cesses have a long history (cf. [25]): the variables define a Markov process on a typically balanced,
binary tree and higher-level nodes capture coarser level information about the process. In contrast,
the higher level nodes in the mGP share the same temporal resolution and only vary in smoothness.

At a high level, the mGP differs from previous GP-based tree models in that the nodes of our tree
represent GPs over a contiguous subset of the input spaceX constrained in a hierarchical fashion.
Thus, the mGP combines ideas of GP-based tree models and GP-based partition models.

As presented in Sec.3, one can formulate an mGP as an additive GP where each GP in thesum
decomposes independently over the level-specific partition of the input spaceX . The additive GPs
of [6] instead focus on coping with multivariate inputs, in a similar vain to hierarchical kernel learn-
ing [1], thus addressing an inherently different task.

7 Results
7.1 Synthetic Experiments
To assess our ability to infer a hierarchical partition via the proposed MCMC sampler, we generated
100 trials of length 200 from a 5-level mGP with a shared parent functionf0. The hyperparameters
were set toσ2 = 0.1, κ = 10, dℓ = d0 exp(−0.5(ℓ + 1)) for ℓ = 0, . . . , L − 1 with d0 = 5. The
data are shown in Fig.3, along with the empirical correlation matrix that is used asthe cost matrix
for the normalized cuts proposals.

For inference, we setσ2 = σ̂2/3 anddℓ = (σ̂2/3) exp(−0.5ℓ), whereσ̂2 is the average time-
specific sample variance.κ was as in the simulation. The hyperparameter mismatch demonstrates
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Figure 5: For the data of Fig.3, (a) true and (b) MAP partitions. (c) Trace plots of log likelihood versus
MCMC iteration for 10 chains. Log likelihood under the true partition (cyan) and minimized normalized cut
partition of Fig.3 (magenta) are also shown. (d) Errors between posterior meanf0 and truef0 for GP, hGP, and
mGP. (e) Predictive log likelihood of 10 heldout sequences for GP, hGP, and mGP withL = 2, 5(true), 7, 10.

some robustness to mispecification. For a uniform priorp(A), 10 independent MCMC chains were
run for 3000 iterations, thinned by 10. The first 1000 iterations used pure global tree searches; the
sampler was then tempered to uniform node proposals. The effects of this choice are apparent in
the likelihood plot of Fig.5, which also displays the true hierarchical partition and MAP estimate.
Compare to the normalized cuts partition of Fig.3, especially at the important level 1 cut. The full
simulation study took less than 7 minutes to run on a single 1.8 GHz Intel Core i7 processor.

To assess sensitivity to the choice ofL, we compare the predictive log-likelihood of 10 heldout test
sequences under an mGP with 2, 5, 7, and 10 levels. As shown in Fig. 5(e), there is a clear gain
going from 2 to 5 levels. However, overestimatingL has minimal influence on predictive likelihood
since lower tree levels capture finer details and have less overall effect. We also compare to a single
GP and a 2-level hierarchical GP (hGP) (see Sec.7.2). For a direct comparison, both use squared
exponential kernels. Hyperparameters were set as in the mGPfor the top-level GP. The total variance
was also matched with the GP taking this as noise and the hGP splitting between level 2 and noise.
In addition to better predictive performance, Fig.5(d) shows the mGP’s improved estimation off0.

7.2 MEG Analysis

We analyzed magnetoencephalography (MEG) recordings of neuronal activity collected from a hel-
met with gradiometers distributed over 102 locations around the head. The gradiometers measure
the spatial gradient of the magnetic activity in Teslas per meter (T/m) [9]. Since the firings of neu-
rons in the brain only induce a weak magnetic field outside of the skull, the signal-to-noise ratio of
the MEG data is very low and typically multiple recordings, or trials, of a given task are collected.
Our MEG data was recorded while a subject viewed 20 stimuli describing concrete nouns (both
the written noun and a representative line drawing), with 20interleaved trials per word. See the
Supplementary Material for further details on the data and our analyses presented herein.

Efficient sharing of information between the single trials is important for tasks such as word clas-
sification [7]. A key insight of [7] was the importance of capturing the time-varying correlations
between MEG sensors for performing classification. However, the formulation still necessitates a
mean model. [7] propose a 2-level hierarchical GP (hGP): a parent GP captures the common global
trajectory, as in the mGP, and each trial-specific GP is centered about the entire parent function1.
This formulation maintains global smoothness at the individual trial level. The mGP instead mod-
els the trial-specific variability with a multi-level tree of GPs defined as deviations from the parent
function over local partitions, allowing for abrupt changes relative to the smooth global trajectory.

For our analyses, we consider the words associated with the “building” and “tool” categories shown
in Fig. 7. Independently for each of the 10 words and 102 sensors, we trained a 5-level mGP
using 15 randomly selected trials as training data and the 5 remaining for testing. Each trial was
of lengthn = 340. We ran 3 independent MCMC chains for 3000 iterations with both global and
local tree searches. We discarded the first 1000 samples as burn-in and thinned by 10. The mGP
hyperparameters were set exactly as in the simulated study of Sec.7.1 for structure learning and
then optimized over a grid to maximize the marginal likelihood of the training data.

We compare the predictive performance of the mGP in terms of MSE of heldout segments relative to
a GP and hGP, each with similarly optimized hyperparameters. The predictive mean conditioned on
data up to the heldout time is straightforwardly derived from Eq. (12). For the mGP, the calculation is
averaged over the posterior samples ofA. Fig.6 displays the MSEs decomposed by cortical region.

1The model of [7] uses an hGP in a latent space. The mGP could be similarly deployed.
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Figure 6:Per-lobe comparison of mGP to (a) GP and (b) hGP: For various values ofτ , % decrease in predictive
MSE of heldouty∗

τ :τ+30 conditioned ony∗

1:τ−1 and 15 training sequences. (c) For a visual cortex sensor and
wordhammer, plots of test data, empirical mean (MLE), and hGP and mGP predictive mean for entire heldout
y
∗. (d) Boxplots of predictive log likelihood of heldouty∗ for the mGP and wavelet-based method of [15].
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visual (top-left), frontal (top-right), parietal
(bottom-left), and temporal (bottom-right).

The results clearly indicate that the mGP consistently bet-
ter captures the features of the data, and particularly for
sensors with large abrupt changes such as in the visual
cortex. The heldout trials for a visual cortex sensor are
displayed in Fig.6(c). Relative to the hGP, the mGP
much better tracks the early dip in activity right after the
visual stimulus onset (t = 0). The posterior distribu-
tion of inferred changepoints at level 1, also broken down
by cortical region, are displayed in Fig.7. As expected,
the visual cortex has the earliest changepoints. Similar
trends are seen in the parietal lobe that handles percep-
tion and sensory integration. The temporal lobe, which
is key in semantic processing, has changepoints occur-
ring later. These results concur with the findings of [23]:
semantic processing starts between 250 and 600 ms and
word length (a visual feature) is decoded most accurately
very near the standard 100ms response time (“n100”).

We also compare our predictive performance to that of the wavelet-based functional mixed model
(wfmm) of [15]. The wfmm has become a standard approach for functional data analysis since it
allows for spiky trajectories and efficient sharing of information between trials. One limitation, how-
ever, is the restriction to a regular grid of observations. The wfmm enables analysis in a multivariate
setting, but for a direct comparison we simply apply the wfmmto each word and sensor indepen-
dently. Fig.6(d) shows boxplots of the predictive heldout log likelihoodof the test trials under the
mGP and wfmm. The results are over 5 heldout trials, 102 sensors, and 10 words. In addition to the
easier interpretability of the mGP, the predictive performance also exceeds that of the wfmm.

8 Discussion
The mGP provides a flexible framework for characterizing thedependence structure of real data,
such as the examined MEG recordings, capturing certain features more accurately than previous
models. In particular, the mGP provides a hierarchical functional data analysis framework for mod-
eling (i) strong, locally smooth sharing of information, (ii) global long-range correlations, and (iii)
abrupt changes. The simplicity of the mGP formulation enables further theoretical analysis, for
example, combining posterior consistency results from changepoint analysis with those for GPs.
Although we focused on univariate time series analysis, ourformulation is amenable to multivari-
ate functional data analysis extensions: one can naturallyaccommodate hierarchical dependence
structures through partial sharing of parents in the tree, or possibly via mGP factor models.

There are many interesting questions relating to the proposed covariance function. Our fractal spec-
ification represents a particular choice to avoid over-parameterization, although alternatives could
be considered. For hyperparameter inference, we anticipate that joint sampling with the partition
would mix poorly, and consider it a topic for future exploration. Another interesting topic is to
explore proposals for more general tree structures. We believe that the proposed mGP represents a
powerful, broadly applicable new framework for non-stationary analyses, especially in a functional
data analysis setting, and sets the foundation for many interesting possible extensions.
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