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Abstract

Diversified rankings a fundamental task in machine learning. It is broadly iappl
cable in many real world problems, e.g., information rettleteam assembling,
product search, etc. In this paper, we consider a genetiogaethere we aim
to diversify the top-k ranking list based on arbitrary relevance function and
an arbitrary similarity function among all the examples. We formulatastan
optimization problem and show that in general it is NP-hditden, we show that
for a large volume of the parameter space, the proposedtaaidéanction enjoys
the diminishing returns property, which enables us to desigcalable, greedy
algorithm to find the(1 — 1/¢) near-optimalsolution. Experimental results on
real data sets demonstrate the effectiveness of the propdgarithm.

1 Introduction

Many real applications can be reduced to a ranking probleflétfaditional ranking tasks mainly
focus onrelevanceit has been widely recognized ttdiversityis another highly desirable property.
It is not only a key factor to address the uncertainty and guibyji in an information need, but also
an effective way to cover the different aspects of the infation need [14]. Take team assembling
as an example. Given a task which typically requires a sekiti§,swe want to form a team of
experts to perform that task. On one hand, each team membeldshave someelevantskills.
On the other hand, the whole team should somehowlibersified so that we can cover all the
required skills for the task and different team members camefit from each other’s diversified,
complementary knowledge and social capital. More recesdgarech discovers that diversity plays
a positive role in improving employees’ performance withig organizations as well as their job
retention rate in face of lay-off [21]; in improving the humaentric sensing results [15, 17]; in the
decision of joining a new social media site (e.g., Faceb@) etc.

To date, many diversified ranking algorithms have been pepo Early works mainly focus on
text data [5, 23] where the goal is to improve the coveragsub-)topics in the retrieval result. In
recently years, more attention has been paid to resultgfieation in web search [2, 20]. For ex-
ample, if a query bears multiple meanings (such as the keg {jagyuar’, which could refer to either
cars or cats), we would like to have each meaning (e.g., aas'cats’ in the example of ‘jaguar’)
covered by a subset of the top ranked web pages. Anothertiteerd is to diversify PageRank-type
of algorithms for graph data [24, 11, 16]. It is worth poimgfiout that almost all the existing diver-
sified ranking algorithms hinge on tispecificchoice of the relevance function and/or the similarity
function. For example, in [2] and [20], both the relevancedtion and the similarity function im-
plicitly depend on the categories/subtopics associatddtive query and the documents; in [16], the



relevance function is obtained via personalized PageR&hkifd the similarity is measured based
on the so-called ‘Google matrix’; etc.

In this paper, we shift the problem to a more generic settimyask: given amrbitrary relevance
function wrt an implicit or explicit query, and arbitrary similarity function among all the available
examples, how can we diversify the resulting top-k rankist?l We address this problem from
the optimization viewpoint. First, we propose an objecfinection that admitany non-negative
relevance function andny non-negative, symmetric similarity function. It natuyatlaptures both
the relevance with regard to the query and the diversity efrinking list, with a regularization
parameter that balances between them. Then, we show thigt suth an optimization problem
is NP-hard in general, for a large volume of the parametecespine objective function exhibits
the diminishing returns property, including submoduyalitonotonicity, etc. Finally, we propose a
scalable, greedy algorithm to firmdovably near-optimasolution.

The rest of the paper is organized as follows. We presentmtimation formulation for diversified
ranking in Section 2, followed by the analysis of its hardnasd properties. Section 3 presents our
greedy algorithm for solving the optimization problem. Tgeformance of the proposed algorithm
is evaluated in Section 4. In Section 5, we briefly review #lated work. Finally, we conclude the
paper in Section 6.

2 The Optimization Formulation

In this section, we present the optimization formulationdiversified ranking. We start by intro-
ducing the notation, and then present the objective funcfmlowed by the analysis regarding its
hardness and properties.

2.1 Notation

In this paper: we use normal lower-case letters to denotersoar functions, bold-face lower-case
letters to denote vectors, bold-face upper-case lettetsriote matrices, and calligraphic upper-case

letters to denote sets. To be specific, for aXeif n example x1, 2, ..., z,}, let S denote the
n x n similarity matrix, which is both symmetric and non-negatiun other wordsS; ; = S;;
andS;; > 0, whereS, ; is the element of in the™ row and thej" column ¢,j = 1,...,n).

For any ranking function(-), which returns the non-negative relevance score for eaample
in X with respect to an implicit or explicit query, our goal is tadia subsef” of k examples,
which are relevant to the query and diversified among theraseHere the positive integéris the
budget of the ranking list size, and the ranking function generates an x 1 vectorr, whosei™
elementr; = r(x;). When we describe the objective function as well as the egaptimization
algorithm, it is convenient to introduce the followingx 1 reference vectog = S - r. Intuitively,
its i'!" elementg; measures the importance®f. To be specific, itz; is similar to many examples
(highS;; (j =1,2,....,)) that are relevant to the query (high(j = 1,2, ...), it is more important
than the examples whose neighbors are not relevant. Forp&aifnz; is close to the center of a
big cluster relevant to the query, the valuegfs large.

2.2 Objective Function

With the above notation, our goal is to find a subgeof & examples which are both relevant to
the query and diversified among themselves. To this end, weoge the following optimization
problem.

arg r%wik 9(7T)=w Z%Ti - Z 7S iT; )
ITl= ieT ijeT

wherew is a positive regularization parameter that defines thestidtibetween the two terms, and
T consists of the indices of tHeexamples that will be returned in the ranking list.

Intuitively, in the goodness function@), the first term measures the weighted overall relevance
of 7 with respect to the query, ang is the weight forz;. It favors relevant examples from big
clusters. In other words, if two examples are equally reiet@the query, one from a big cluster and
the other isolated, by using the weighted relevance, weeptieé former. The second term measures



the similarity among the examples withjiii That is, it penalizes the selection of multiple relevant
examples that are very similar to each other. By includimgtérm in the objective function, we seek
a set of examples which are relevant to the query, but alsingdigr to each other. For example, in
the human-centric sensing [15, 17], due to the homophilpaiad networks, reports of two friends
are likely correlated so that they are a lesser corrobaratfeevents than reports of two socially
unrelated witnesses.

2.3 The Hardness of Equation (1)

In the optimization problem in Equation (1), we want to findubset7 of £ examples that collec-
tively maximize the goodness functio(ffh). Unfortunately, by the following theorem, itis NP-hard
to find the optimal solution.

Theorem 2.1. The optimization problem in Equatidf) is NP-hard.

Proof. We will prove this from the reduction of the DensésSubgraph ([2S) problem, which is
known to be NP-hard [7].

To be specific, given an undirected gra@t, £) with the connectivity matri¥, whereV is the
set of vertices, anél is the set of edged¥ is a|V| x |V| symmetric matrix with elements being 0 or
1. Let|€| be the total number of the edges in the graph. Th& problem is defined in Equation (2).

Q = arg max Z d (2)
1,j€EQ
Define anothefV| x |V| matrix W as: W, ; = 1 — W, ;. Itis easy to see thgl, ;.o Wi ; =
k? — Zi,jeQ W, ;. Therefore, Equation (2) is equivalent to
= arg min W, 3
Q g min, > Wi, 3)

1,j€EQ

Furthermore, notice th@%‘zl W, ; = |V]? — |€| = constant. LeT” = V' \ Q, then Equation (3)
is equivalent to

arg‘xgﬁjc Z Wi+ Z Wi+ Z Wi

i€Q,J€T 1€T,jEQ €T ,jeT
= arg max 2 E Wi+ E Wi, (4)
|IT=IV|-k . - =
1€Q,jET i,jeT

Next, we will show that Equation (4) can be viewed as an ireaof the optimization problem in
Equation (1) with the following setting: let the similaritynction S be W, the ranking function
be1,y1, the budget b¢)| — k, and the regularization parameteibe 2. Under such settings, the
objective function in Equation (1) becomes

o7) = 2 qri— Yy TiWir;

€T i,JET
v B

= 2 Z Zriwijrj - Z riW,,r; (dfn.of q)
€T j=1 i,jET

= 2 Z Z rWijr; + Z r;W,;r;  (symmetry of W)
i€QJET ijeT

= 2 Z Z Wi + Z W, (dfn. of r) (5)
i€QjeT 4JE€T

which is equivalent to the objective function in Equatioi (Bhis completes the proof. O



2.4 Diminish Returns Property of g(7)

Given that Equation (1) is NP-hard in general, we seek fomoaably near-optimasolution instead
in the next section. Here, let us first answer the followinggiion: under what condition (e.g., in
which range of the regularization parametey is it possible to find such a near-optimal solution
for Equation (1)?

To this end, we present the so-called diminishing returep@rty of the goodness functiorig)
defined in Equation (1), which is summarized in the followthgorem. By Theorem 2.2, if we
add more examples into an existing top-k ranking list, thedyess of the overall ranking list is
non-decreasing (P2). However, the marginal benefit of agadditional examples into the ranking
list decreases wrt the size of the existing ranking list (P1)

Theorem 2.2. Diminish Returns Property of 7). The goodness functior{fy) defined in Equa-
tion (1) has the following properties:

(P1) submodularity. For anyw > 0, the objective function(@") is submodular wrf;

(P2) monotonicity. For anyw > 2, The objective function(§") is monotonically non-
decreasing wrfr".

Proof. We first prove (P1). For any; C 72 and any given example ¢ 75, we have

WTiUm)—g(T1) = (w > qri— Y, rSir)—(wY qri— Y 1S,

1€T1Ux i,j€TiUx i€Th 4,J€T1
= WqiTg — (Z TiSi,:z:Tm + Z rmsm,jrj + rmsm,mrm)
€T J€T
2
= WQyTey — Sz als — 27y Z Sz T (6)
J€TL

Similarly, we have ¢75 U z) — 9(72) = wq,Ts — Sx.xT2 — 272 > jers ST
Therefore, we have
OTiua) —g(T) — (Q(T2Ux) —9(T2)) = 2ra 3 Sayr;— 27 Y Sayr;

J€T2 Jj€
= 2y Y Sa;r; >0 (@)
J€T\Th

which completes the proof of (P1).
Next, we prove (P2). Given arffi N 72 = ®, where® is the empty set, withw > 2, we have

g('TQ U ,Tl) — 9(75) = w Z q;,"; — ( Z riSiyjrj + Z ’l"iSi_’j’I’j + Z ’l"iSi_’j’I’j)

€Ty i€T1,j€T2 1€T2,5€T1 i,j€T1
n
= wy Ty Syri— 2 Y riSiyri+ Y riSiry)
i€y j=1 i€T1,5€T2 i,j€T
n
> 2 Z T Z Siyj’l"j — 2( Z ’I’iSi_’j’I’j + Z ’I’iSi_’j’I’j)
€Ty j=1 i€T1,j€T2 ©,j€T
n
= 2) (D Simi— Y, Siymy)
i€Th J=1 JET1UT2
= 2 Z T; Z Si_’j’l’j Z 0 (8)
€T j¢TiUT2
which completes the proof of (P2). O



3 The Optimization Algorithm

In this section, we present our algoritt®nDeR for solving Equation (1), and analyze its perfor-
mance with respect to its near-optimality and complexity.

3.1 Algorithm Description

Based on the diminishing returns property of the goodnesstiion g 7"), we propose the following
greedy algorithm to find a diversified top-k ranking list. ItgAl, after we calculate the reference
vectorq (Step 1) and initialize the ranking list (Step 2), we try to expand the ranking ligt
one-by-one (Step 4-8). At each iteration, we add one mormpleawith the highest scorg into
the current ranking lis7” (Step 5). Each time we expand the current ranking list, weatgthe
score vectos based on the newly added examplStep 7). Notice that in Alg. 1,6’ means the
element-wise multiplication, and dié§) returns am x 1 vector with the corresponding elements
being the diagonal elements in the similarity matix

Algorithm 1 GenDeR

Input: The similarity matrixS,, «,,, the relevance vectat, «1, the weightw > 2, and the budget
k;

Output: A subset7 of k£ nodes.

1: Compute the reference vecigrq = Sr;

2: Initialize 7" as an empty set;

3: Initialize the score vectos = w x (@ r) — diag(S) @ r @ r;
4: for iter=1:kdo

5. Findi = argmax(s;lj = 1,...,n;5 ¢ T);

6: AdditoT;

7:  Update the score vecter<— s — 2r;S.; @ r

8: end for

9

. Return the subsét as the ranking list (earlier selected examples ranked highe

3.2 Algorithm Analysis

The accuracy of the propos€&#tnDeR is summarized in Lemma 3.1, which says that for a large
volume of the parameter space (i#.> 2), GenDeRleads to g1 — 1/e) near-optimal solution.

Lemma 3.1. Near-Optimality of GenDeR. Let 7 be the subset found §enDeR, | 7| = &, and
T = argmaxz_,9(7). We have that@") > (1 — 1/e)g(7 ™), wheree is the base of the natural
logarithm.

Proof. The key of the proof is to verify that for any example ¢ T, s; = (T U x;) — 9(7),
wheres is the score vector we calculate in Step 3 or update in Stepd/Jais the initial empty
ranking list or the current ranking list in Step 6. The renmagrpart of the proof directly follows the
diminishing returns property of the goodness function ireditem 2.2, together with the fact that
g(®) = 0[12]. We omit the detailed proof for brevity. O

The complexity of the proposeéenDeR is summarized in Lemma 3.2. Notice that the quadratic
term in the time complexity comes from the matrix-vector tiplication in Step 1 (i.e.g = S7);

and the quadratic term in the space complexity is the codiore she similarity matrixS. If the
similarity matrix S is sparse, say we have non-zero elements it¥, we can reduce the time
complexity toO(m + nk); and reduce the space complexity@om + n + k).

Lemma 3.2. Complexity ofGenDeR. The time complexity denDeRis O(n? + nk); the space
complexity ofcenDeRis O(n? + k).

Proof. Omitted for Brevity. O



4 Experimental Results

We compare the proposé&dnDeR with several most recent diversified ranking algorithmslud-
ing DivRank based on reinforced random walks [11] (refetoeds ‘DR’), GCD via resistive graph
centers [6] (referred to as ‘GCD’) and manifold ranking wstbp points [25] (referred to as ‘MF’).
As all these methods aim to improve the diversity of PageRgp& of algorithms, we also present
the results by PageRank [13] itself as the baseline. We usedal data sets, including an IMDB
actor professional network and an academic citation datdrsgl1, 6], the authors provide detailed
experimental comparisons with some earlier methods (24).,23, 5], etc) on the same data sets.
We omit the results by these methods for clarity.

4.1 Results on Actor Professional Network

The actor professional network is constructed from therheteMovie Database (IMDB) where

the nodes are the actors/actresses and the edges are thersofithe co-stared movies between two
actors/actresses. For the input$&ehDeR, we use the adjacency matrix of the co-stared network as
the similarity functionS; and the ranking results by ‘DR’ as the relevance vegtoGiven a top-k
ranking list, we use the density of the induced subgrap$i bf thek nodes as the reverse measure
of the diversity (lower density means higher diversity). 8o measure the diversity of the ranking
list by the so-called ‘country coverage’ as well as ‘movie@age’ (higher coverage means higher
diversity), which are defined in [24]. Notice that for a goog diversified ranking list, it often
requires the balance between the diversity and the releviararder to fulfill the user’s information
need. Therefore, we also present the relevance score (reddsuPageRank) captured by the entire
top-k ranking list. In this application, such a relevancereameasures the overall prestige of the
actors/actresses in the ranking list. Overall, we have Batiors/actresses, 23,460 edges, 1,027
movies and 47 countries.

The results are presented in Fig. 1. First, let us com@arde R with the baseline method ‘PageR-
ank’. From Fig. 1(d), we can see that deenDeR s as good as ‘PageRank’ in terms of capturing
the relevance of the entire top-k ranking list (notice ttet two curves almost overlap with each
other). On the other han@enDeR outperforms ‘PageRank’ in terms of the diversity by all the
three measures (Fig. 1(a-c)). SinGenDeR uses the ranking results by ‘DR’ as its input, ‘DR’
can be viewed as another baseline method. The two metholdsmesimilarly in terms of density
(Fig. 1(c)). Regarding all the remaining measures, @anDeR is always better than ‘DR’. For
example, wherk > 300, GenDeR returns both higher ‘country-coverage’ (Fig. 1(a)) andheig
‘movie-coverage’ (Fig. 1(b)). In the entire range of the petk (Fig. 1(d)), ourGenDeR captures
higher relevance scores than ‘DR’, indicating the actetstgses in our ranking list might be more
prestigious than those by ‘DR’. Based on these results, welade that ouGenDeR indeed im-
proves ‘DR’ in terms of both diversity and relevance. The tramnpetitive method is ‘MF’. We
can see thaBenDeR and ‘MF’ perform similarly in terms of both density (Fig. 3j@and ‘movie
coverage’ (Fig. 1(b)). In terms of ‘country coverage’ (Figa)), ‘MF’ performs slightly better than
our GenDeRwhen300 < k& < 400; and for the other values @f, the two methods mix with each
other. However, in terms of relevance (Fig. 1(d)), @nDeRis much better than ‘MF’. Therefore,
we conclude that ‘MF’ performs comparably with or slightlgtter than ouGenDeR in terms of
diversity, at the cost of sacrificing the relevance of theremtainking list. As for ‘GCD’, although

it leads to the lowest density, it performs poorly in term&alancing between the diversity and the
relevance (Fig. 1(d)), as well as the coverage of couniriegies (Fig. 1(a-b)).

4.2 Results on Academic Citation Networks

This data set is from ACL Anthology Netwoik It consists of a paper citation network and a re-
searcher citation network. Here, the nodes are papers eangd®rs; and the edges indicate the
citation relationship. Overall, we have 11,609 papers ah@@ edges in the paper citation net-
work; 9,641 researchers and 229,719 edges in the reseaitdt@n network. For the inputs of
GenDeR, we use the symmetrized adjacency matrix as the similawitgtion.S; and the ranking
results by ‘DR’ as the relevance vectarWe use the same measure as in [11] (referred to as ‘cover-
age’), which is the total number of unique papers/reseasdthat cite the top-k papers/researchersin
the ranking list. As pointed out in [11], the ‘coverage’ miginovide a better measure of the overall
quality of the top-k ranking list than those traditional reeees (e.g., h-index) as they ignore the di-
versity of the ranking list. The results are presented in Ei§Ve can see that the proposgzhDeR

http://www.imdb.com/
2http://www.aclweb.org/anthology-new/
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5 Related Work

Carbonell et al [5] are among the first to study diversifiecknag in the context of text retrieval and
summarization. To this end, they propose to use the MaxinzabMal Relevance (MMR) criterion
to reduce redundancy while maintaining query relevancélwis a linear combination of relevance
and novelty. In [23], Zhai et al address this problem fromfeedent perspective by explicitly model-
ing the subtopics associated with a query, and proposirgnagwork to evaluate subtopic retrieval.
Recently, researchers leverage external informatiorcesuo help with diversified ranking. For ex-
ample, in [2], Agrawal et al maximize the probability thaethverage user finds at least one useful



result within the top ranked results with the help of a taxoga@vailable through Open Directory

Project (ODP); in [4], Capannini et al mine the query log talfspecializations of a given query,

and use the search results of the specializations to helpatgahe set of top ranked documents;
in [20], Welch et al model the expected number of hits basethemumber of relevant documents
a user will visit, user intent in terms of the probability tlisution over subtopics, and document
categorization, which are obtained from the query logs,dMat or Wikipedia.

With the prevalence of graph data, such as social netwotkhpdpaper citation networks, actor
professional networks, etc, researchers have startedidy #te problem of diversified ranking in
the presence of relationships among the examples. Fomiestan [24], Zhu et al propose the
GRASSHOPPER algorithm by constructing random walks onrtpetigraph, and iteratively turning
the ranked nodes into absorbing states. In [11], Mei et gd@se the DivRank algorithm based on
a reinforced random walk defined on the input graph, whicloraatically balances the prestige
and the diversity among the top ranked nodes due to the facatliacent nodes compete for their
ranking scores. In [16], Tong et al propose a scalable alyarto find the near-optimal solution to
diversify the top-k ranking list for PageRank. Due to therasyetry in their formulation, it remains
unclear if the optimization problem in [16] is NP-hard. On igher level, the method in [16]
can be roughly viewed as an instantiation of our proposehditation with the specific choices
in the optimization problem (e.g, the relevance functitwe, $imilarity function, the regularization
parameter, etc). In [25], Zhu et al leverage the stoppingtsdn the manifold ranking algorithms
to diversify the results. All these works aim to diversifietresults of onespecifictype of ranking
function (i.e., PageRank and its variants).

Learning to rank [10, 1, 3] and metric learning [19, 22, 9] &deen two very active areas in the
recent years. Most of these methods require some additioioaimation (e.g., label, partial order-
ing, etc) for training. They are often tailored for other poses (e.g., improving the F-score in the
ranking task, improving the classification accuracy in mééarning, etc) without the consideration
of diversity. Nonetheless, thanks to the generality of aumiulation, the learned ranking functions
and metric functions from most of these works can be natuealmitted into our optimization ob-
jective function. In other words, our formulation bring®thossibility to take advantage of these
existing research results in the diversified ranking sgttin

Remarks.While generality is one of the major contributions of thigppa we do not disregard the
value of the domain-specific knowledge. The generality af method is orthogonal to domain-
specific knowledge. For example, such knowledge can be tedléc the (learnt) ranking function
and/or the (learnt) similarity function, which can in tuerge as the input of our method.

6 Conclusion

In this paper, we study the problem of diversified rankinge Kby feature of our formulation lies
in its generality it admitsany non-negative relevance function aady non-negative, symmetric
similarity function as input, and outputs a top-k rankirgg that enjoys both relevance and diversity.
Furthermore, we identify the regularization parametecspeghere our problem can be solved near-
optimally; and we analyze theardnesof the problem, th@ptimalityas well as theomplexityof

the proposed algorithm. Finally, we conduct experiments@reral real data sets to demonstrate
the effectiveness of this algorithm. Future work includeterding our formulation to the on-line,
dynamic setting.
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