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Abstract

This paper describes gradient methods based on a scaled aometine Grassmann
manifold for low-rank matrix completion. The proposed noeth significantly
improve canonical gradient methods, especially on illéitoned matrices, while
maintaining established global convegence and exact eegguarantees. A con-
nection between a form of subspace iteration for matrix detigm and the scaled
gradient descent procedure is also established. The pdmushjugate gradient
method based on the scaled gradient outperforms sevesdingxalgorithms for
matrix completion and is competitive with recently propbseethods.

1 Introduction

Let A € R™*" be a ranks matrix, wherer < m,n. The matrix completion problem is to re-
constructA given a subset of entries of. This problem has attracted much attention recently
[8, 14, 13, 18, 21] because of its broad applications, enge¢commender systems, structure from
motion, and multitask learning (see e.g. [19, 9, 2]).

1.1 Related work

Let @ = {(i,7)|A;; is observedl. We definePy(A) € R™*™ to be the projection ofA onto the
observed entrie§): Po(A);; = A;; if (4,5) € Q and Po(A);; = 0 otherwise. If the rank is
unknown and there is no noise, the problem can be formulated a

Minimize rank(X) subject toPo(X) = Pq(A4). @)

Rank minimization is NP-hard and so work has been done teesmlgonvex relaxation of it by

approximating the rank by the nuclear norm. Under some tiomgi the solution of the relaxed
problem can be shown to be the exact solution of the rank niaiion problem with overwhelming

probability [8, 18]. Usually, algorithms to minimize the ¢clear norm iteratively use the Singular
Value Decomposition (SVD), specifically the singular vatlwesholding operator [7, 15, 17], which
makes them expensive.

If the rank is known, we can formulate the matrix completioolgpem as follows:
Find matrix X to minimize||Po(X) — Pqo(A)||r subject to rankX) = r. 2

Keshavan et al. [14] have proved that exact recovery can taéngldl with high probability by solv-
ing a non-convex optimization problem. A number of algarithbased on non-convex formulation
use the framework of optimization on matrix manifolds [12, B]. Keshavan et al. [14] propose
a steepest descent procedure on the product of Grassmairifioldgnf r-dimensional subspaces.
Vandereycken [22] discusses a conjugate gradient algooththe Riemann manifold of rankma-
trices. Boumal and Absil [6] consider a trust region methodiee Grassmann manifold. Although



they do not solve an optimization problem on the matrix madifWei et al. [23] perform a low rank
matrix factorization based on a successive over-relaxétvation. Also, Srebro and Jaakkola [21]
discuss SVD-EM, one of the early fixed-rank methods usingdated singular value decomposition
iteratively. Dai et al. [10] recently propose an interegtapproach that does not use the Frobenius
norm of the residual as the objective function but insteabs ube consistency between the current
estimate of the column space (or row space) and the obsentgese Guaranteed performance for
this method has been established for rank-1 matrices.

In this paper, we will focus on the case when the rarn& known and solve problem (2). In fact,
even when the rank is unknown, the sparse matrix which csnsibserved entries can give us a
very good approximation of the rank based on its singulactspm [14]. Also, a few values of the
rank can be used and the best one is selected. Moreoverntiigasi spectrum is revealed during
the iterations, so many fixed rank methods can also be adapfied the rank of the matrix.

1.2 Our contribution

OptSpace [14] is an efficient algorithm for low-rank matroagpletion with global convergence and
exact recovery guarantees. We propose using a non-cahor@tiéc on the Grassmann manifold to
improve OptSpace while maintaining its appealing propsertirhe non-canonical metric introduces
a scaling factor to the gradient of the objective functioriaihcan be interpreted as an adaptive
preconditioner for the matrix completion problem. The geatidescent procedure using the scaled
gradient is related to a form of subspace iteration for matampletion. Each iteration of the
subspace iteration is inexpensive and the procedure ageseery rapidly. The connection between
the two methods leads to some improvements and to efficigaieimentations for both of them.

Throughout the paperdq, will be a shorthand forP,(A) and gfU) is the @ factor in the QR
factorization ofU which gives an orthonormal basis for sgén). Also, Pg(.) denotes the projection
onto the negation af.

2 Subspaceiteration for incomplete matrices

We begin with a form of subspace iteration for matrix completepicted in Algorithm 1. If the

Algorithm 1 SUBSPACEITERATION FOR INCOMPLETE MATRICES

Input: Matrix Ag, 2, and the rank.
Output: Left and right dominant subspacEsandV and associated singular values.

1: [Up, Xo, Vo] = svd(Aq, ), So = Xo; /I Initialize U, V and X

2 for 1 =0,1,2,..do

3 Xiv1 = Po(U:S;VE) + AQ // Obtain new estimate of

4: UL+1 X1 Vi; V;+1 + Ui /I Update subspaces

5: Uiyl = qf( Uit1); Vigr = qf(Vigr) /I Re-orthogonalize bases

6: Sit1 = UZ+1XZ+1VZ+1 /I Compute neviy for next estimate oft
7: if conditionthen

8: /I DiagonalizeS to obtain current estimate of singular vectors and values

9: [Ru,Xit1, Rv] = svd(Sit1); Uis1 = U1 Ru; Vigr = Vigi Ry Sigr = Sig1.
10: end if
11: end for

matrix A is fully observedU andV can be randomly initialized, line 3 is not needed and in lines
4 and 6 we usel instead ofX,;; to update the subspaces. In this case, we have the clasgizal t
sided subspace iteration for singular value decompositiores 6-9 correspond to a Rayleigh-Ritz
projection to obtain current approximations of singulactees and singular values. It is known that
if the initial columns ofU andV" are not orthogonal to any of the finsteft and right singular vectors
of A respectively, the algorithm converges to the dominantatess ofd [20, Theorem 5.1].

Back to the case when the mattikis not fully observed, the basic idea of Algorithm 1 is to use
an approximation off in each iteration to update the subspaesndl” and then from the new
andV, we can obtain a better approximation4for the next iteration. Line 3 is to compute a new
estimate ofA by replacmg all entries of/;S;V;I" at the known positions by the true valuesAn

The update in line 6 is to get the nedy, ; based on recently computed subspaces. Diagonalizing



Si+1 (lines 7-10) is optional for matrix completion. This steyides current approximations
of the singular values which could be useful for several psgs such as in regularization or for
convergence test. This comes with very little additionarbread, sincé, ., is a smalk x r matrix.
Each iteration of Algorithm 1 can be seen as an approximati@m iteration of SVD-EM where a
few matrix multiplications are used to upddfeandV instead of using a truncated SVD to compute
the dominant subspaces &f. ;. Recall that computing an SVD, e.g. by a Lanczos type prasedu
requires several, possibly a large number of, matrix mlidagions of this type.

We now discuss efficient implementations of Algorithm 1 anetlifications to speed-up its conver-
gence. First, the explicit computation &f; . ; in line 3 is not needed. LeX; = U;S; V. Then
Xip1 = PoU;S;VE) + Ag = X; + E;, whereE; = Po(A — Xi) is a sparse matrix of errors at
known entries which can be computed efficiently by explgitime structure ok ;. Assume that each

S; is not singular (the non-singularity 6f will be discussed in Section 4). Then if we post-multiply
the update ot/ in line 4 by S; *, the subspace remains the same, and the update becomes:

U1 = XinaViS; ' = (Xi + E)ViS; ' = Ui + EiV;S; 3)

The update ofl” can also be efficiently implemented. Here, we make a sligahgh, namely
Vie1 = XiTHUl- (U; instead ofU,, 1). We observe that the convergence speed remains roughly the
same (whem is fully observed, the algorithm is a slower version of swuspiteration where the
convergence rate is halved). With this change, we can danwgdate td” that is similar to (3),

Vig1 = Vi + EFUS; T, 4

We will point out in Section 3 that the updating termsV;S; ' and ET U, S; " are related to the
gradients of a matrix completion objective function on the€mann manifold. As a result, to
improve the convergence speed, we can add an adaptive at¢ptsi the process, as follows:

Uis1 = Ui +EV;S; ' and Vg =V + ,E] U;S; T

This is equivalent to using; + t; E; as the estimate ofl in each iteration. The step size can be
computed using a heuristic adapted from [23]. Initialys set to some initial valug, (o = 1 in
our experiments). If the errdfF; || decreases compared to the previous stép,ncreased by a
factora. Conversely, if the error increases, indicating that tleg & too big¢ is reset ta = ¢g.

The matrixS;,; can be computed efficiently by exploiting low-rank struetiand the sparsity.
Sit1 = (UgrlUi)Si(‘/;Tm+1) + tiU£1Ei‘/z’+l 5)

There are also other ways to obtdin ; oncel;., andV;,, are determined to improve the current
approximation ofd . For example we can solve the following quadratic progra#j:[1

Si+1 = argming || Po(A — Ui SV |17 (6)

We summarize the discussion in Algorithm 2. A sufficientlyadinerror | E;||» can be used as a

Algorithm 2 GENERIC SUBSPACEITERATION FOR INCOMPLETE MATRICES

Input: Matrix Ag, 2, and number-.

Output: Left and right dominant subspacEsandV and associated singular values.
1: Initialize orthonormal matrice8, € R™*" andV, € R"*".
2: for1=0,1,2,..do

3: ComputeFE; and appropriate step sizg

4: Ui = U + ,E;V;S; and Vi =V + 4, ETUS; T

5: Orthonormalizd/; ;1 andV;

6 Find S; 11 such thatPo (U; 41541 V;L) is close toAg, (e.g. via (5), (6)).

7: end for

stoppping criterion. Algorithm 1 can be shown to be equivate LMaFit algorithm proposed in
[23]. The authors in [23] also obtain results on local cogeece of LMaFit. We will pursue a
different approach here. The updates (3) and (4) are reoeinif the gradient descent steps for
minimizing matrix completion error on the Grassmann mddifbat is introduced in [14] and the
next section discusses the connection to optimization eGitassmann manifold.



3 Optimization on the Grassmann manifold

In this section, we show that using a non-canonical Riemaatriecnon the Grassmann manifold,
the gradient of the same objective function in [14] is of ariaimilar to (3) and (4). Based on this,
improvements to the gradient descent algorithms can be madexact recovery results similar
to those of [14] can be maintained. The readers are refeorg tL1] for details on optimization
frameworks on matrix manifolds.

3.1 Gradientson the Grassmann manifold for matrix completion problem

LetG(m, r) be the Grassmann manifold in which each point corresporalstbspace of dimension
r in R™. One of the results of [14], is that under a few assumptiomb¢taddressed in Section 4),
one can obtain with high probability the exact matdxXy minimizing a regularized version of the
function F: G(m,r) x G(n,r) — R defined below.

FU, V)= min F(U,S,V), @)

SeRrxr

where F(U, S, V) = (1/2)||Po(A — USVT)|2, U € R™** andV € R"** are orthonormal
matrices. Here, we abuse the notation by denoting/tandV” both orthonormal matrices as well
as the points on the Grassmann manifold which they span. tNaté’ only depends on the sub-
spaces spanned by matridésand V. The functionF' (U, V) can be easily evaluated by solving
the quadratic minimization problem in the form of (6). df{m, r) is endowed with the canonical
inner product{ W, W'y = Tr(WTW’), whereW andW’ are tangent vectors &f(m,r) atU (i.e.
W, W’ € R™ " such thatV U = 0 andW'TU = 0) and similarly forG(n,r), the gradients of
F(U, V) on the product manifold are:

gradFy (U, V) = (I -UUNPo(USVT — A) VST (8)
gradFy (U, V) = (I—-VVT)Po(USVT — A)TUS. 9)

In the above formula ,I UUT) and(I-VVT) are the projections of the derivatives (USVT —

AWV ST andPo(USV TUS onto the tangent space of the manifold@t1"). Notice that the
derivative terms are very S|m|Iar to the updates in (3) andTH4e difference is in the scaling factors
where grad; and grad?, useS” and.S while those in Algorithm 2 us¢—! andS—7.

Assume thab is a diagonal matrix which can always be obtained by rotdtiremd}” appropriately.
F(U, V) would change more rapidly when the columndbandV corresponding to larger entries
of S are changed. The rate of changefofvould be approximately proportional 187, when the
i-th columns ofU andV are changed, or in other words? gives us an approximate second order
information of £ at the current pointl, V'). This suggests that the level settoEhould be similar to
an “ellipse” with the shorter axes corresponding to thedakglues ofS. It is therefore compelling
to use a scaled metric on the Grassmann manifold.

Consider the inner produ¢tV, W’)p, = Tr(DWTW’), whereD € R™*" is a symmetric positive
definite matrix. We will derive the partial gradients Bfon the Grassmann manifold endowed with
this scaled inner product. According to [11], gfadis the tangent vector @ (m, ) atU such that

Tr (FEW) = <(gradFU)Ta W>D7 (10)

for all tangent vector$V at U, whereFy; is the partial derivative of” with respect taJ/. Recall
that the tangent vectors &t are thoséV’s such thatW”U = 0. The solution of (10) with the
constraints thatV 7 U = 0 and(gradf;)TU = 0 gives us the gradient based on the scaled metric,
which we will denote by gradry; and gragdFy.

grad Fy (U, V) = (I-UUNFyD ' =(I-UUT)P(USVT — A)VSD™'.  (11)
grad iy (U, V) = (I-VVDOEFyD ' =T -VVHPyUSVT — A)TUSD™t. (12)
Notice the additional scaling appearing in these scaled gradients. Now if we Dise- S? (still
with the assumption that is diagonal) as suggested by the arguments above on thexappte

shape of the level set df, we will have gradFy; (U, V) = (I — UUT)Po(USVT — A)V St and
grad, Fy (U, V) = (I — VVT)Po(USVT — A)TUS~! (note thatS depends o/ andV).



If S'is not diagonalized, we useS” andS7 S to derive gradFy; and gragFy respectively, and the
scalings appear exactly as in (3) and (4).

grad Fy (U, V) = (I-UU")Po(USVT — A)V St (13)
grad iy (U, V) = (I-VVDPoUSVT — A)Tus—T (14)

This scaling can be interpreted as an adaptive preconmtiiagtep similar to those that are popular
in the scientific computing literature [4]. As will be showmaur experiments, this scaled gradient
direction outperforms canonical gradient directions ey for ill-conditioned matrices.

The optimization framework on matrix manifolds allows tdide several elements of the manifold
in a flexible way. Here, we use the scaled-metric to obtain@gtescent direction, while other
operations on the manifold can be based on the canonicalcmdtich has simple and efficient
computational forms. The next two sections describe algms using scaled-gradients.

3.2 Gradient descent algorithms on the Grassmann manifold

Gradient descent algorithms on matrix manifolds are basdtdi@update

whereW; is the gradient-related search directionis the step size an&(U) is a retraction on the
manifold which defines a projection &f onto the manifold [1]. We us&(U) = span(U) as the
retraction on the Grassmann manifold where gjganis represented by /), which is the factor
in the QR factorization of/. Optimization on the product of two Grassmann manifoldslzadone
by treating each component as a coordinate component.

The step size can be computed in several ways, e.g., by a simple backiigokethod to find the
point satisfying the Armijo condition [3]. Algorithm 3 is asutline of our gradient descent method
for matrix completion. We let gra;d?“) = grad, Fy (U;, V;) and gragF‘(}) = grad, Fy (U;,V;). In

line 5, the exactS;; which realizesF'(U;.1,V;+1) can be computed according to (6). A direct
method to solve (6) cost®(|Q2|r*). Alternatively, S;,; can be computed approximately and we
found that (5) is fast@((|2] + m + n)r?)) and gives the same convergence speed. If (5) fails
to yield good enough progress, we can always switch back)tari@ computeS; ., exactly. The
subspace iteration and LMaFit can be seen as relaxed versfdhis gradient descent procedure.
The next section goes further and described the conjugatkent iteration.

Algorithm 3 GRADIENT DESCENT WITH SCALEDGRADIENT ON THE GRASSMANN MANIFOLD.
Input: Matrix Aq, 2, and number-.
Output: U andV which minimizeF' (U, V'), andS which realizesF'(U, V).

1: Initialize orthonormal matrice&, andV}.

2: for +=0,1,2,...do

3: Compute gragF((j) and gragF‘(}) according to (13) and (14).

4: Find an appropriate step sizeand compute

(Uis1,Vigr) = (Af(U; — tigradsF[(]i))a af(V; — tigradsF\(/i)))
5: ComputeS; ., according to (6) (exact) or (5) (approximate).
6: end for

3.3 Conjugate gradient method on the Grassmann manifold

In this section, we describe the conjugate gradient (CGhatkbn the Grassmann manifold based
on the scaled gradients to solve the matrix completion prabiThe main additional ingredient we

need is vector transport which is used to transport the @dchedirection to the current point on the

manifold. The transported search direction is then contbimi¢h the scaled gradient at the current
point, e.g. by Polak-Ribiere formula (see [11]), to derire hew search direction. After this, a line

search procedure is performed to find the appropriate steging this search direction.

Vector transport can be defined using the Riemann connegtiaich in turn is defined based on the
Riemann metric [1]. As mentioned at the end of Section 3.1willeuse the canonical metric to



derive vector transport when considering the natural g@abtnanifold structure of the Grassmann
manifold. The tangentV” at U will be transported td/ + W asTy . w (W') whereTy (W') =
(I —UUT)W'. Algorithm 4 is a sketch of the resulting conjugate gradjgocedure.

Algorithm 4 CONJUGATE GRADIENT WITH SCALEDGRADIENT ON THE GRASSMANN MANIFOLD.
Input: Matrix Aq, 2, and number-.
Output: U andV which minimizeF' (U, V'), andS which realizesF'(U, V).

1: Initialize orthonormal matrice&, andVj.

2: Compute(ny, &) = (grad F}", grad 7).

3: for =0,1,2,..do

4: Compute a step sizg and computéU; 11, Viv1) = (qf(U; + tim:), af(V; + 6:€;))

5: Computes; 1 (Polak-Ribiere) and set

(Nig1,&i41) = (—gradng) + Biv1Tu,,, (0i), —gradsF( Dy Bir1Tv, . (&)
6: ComputeS; ., according to (6) or (5).
7: end for

4 Convergence and exact recovery of scaled-gradient descent methods

Let A = U,%, V. be the singular value decomposition4f whereU, € R™*", V, € R™*" and
¥, € R"™*". Let us also denote = (U, V) a point onG(m,r) x G(n,r). Clearly,z. = (U, Vi)

is a minimum of . Assume thatd is incoherent [14];A has bounded entries and the minimum
singular value ofA is bounded away from 0. Let(A) be the condition number of. It is shown
that, if the number of observed entries is of or@dmax{x(A)?nlogn, x(A)°n}) then, with high
probability, ' is well approximated by a parabola andis the unique stationary point df in a
sufficiently small neighborhood of, ([14, Lemma 6.4&6.5]). From these observations, given an
initial point that is sufficiently close te,, a gradient descent procedure Bn(with an additional
regularization term to keep the intermediate points incehig converges te, and exact recovery
is obtained. The singular value decomposition of a trimmegion of the observerd matrik, can
give us the initial point that ensures convergence. Theamsaate referred to [14] for details.

From [14], letG(U, V) = ¥, G (18710 4 yor 6y (W10, whereGh () = 0if « < 1
andG; (z) = e(==1)% _ 1 otherwiseCj,,. | is a constant dependlng on the incoherence assumptions.
We consider the regularized version Bf F'(U,V) = F(U,V) + pG(U, V), wherep is chosen
appropriately so tha’ andV’ remain incoherent during the execution of the algorithm.céle see
that z, is also the minimum of". We will now show that the scaled-gradientstofire well-defined

during the iterations and they are indeed descent directbf’ and only vanish at,. As a result,
the scaled-gradient-based methods can inherit all theecgewce results in [14].

First, S must be non-singular during the iterations for the scaledtignts to be well-defined. As a
corollary of Lemma 6.4 in [14], the extreme singular valuéamy intermediateS are bounded by
extreme singular values?,;, andco?,,. of X.: 0pae < 207, aNdo,in > 3 The second
inequality implies thats is well-conditioned during the iterations.

2 Omin-

The scaled-gradient is the descent directionFbls a direct result from the fact that it is in-
deed the gradient of” based on a non-canonical metric. Moreover, by Lemma 6.5 4j, [1
|lgradF'(2)||? > Cne*(or,;,)*d(2, 2.)? for some constant', where||.|| and d., .) are the canonical

min

norm and distance on the Grassmann manifold respectivasedon this, a similar lower bound of
|lgrad, F|| can be derived. Leb; = SST andD, = ST'S be the scaling matrices. Then,

lgrad, F'(2)||* = [lgradf (=) Dy |3 + llgradey (2) Dy |17
> 0 s (lgradiy (2)[17 + |gradiy (2)]|3)
> (207,45) " llgradi(z)|®
> (207, ,.) 20N (0r,:,) (2, 2)? = C(07,:,) (207, 00) ~2ne?d(z, 2,) 2.

Therefore, the scaled gradients only vanish.avhich means the scaled-gradient descent procedure
must converge ta.., which is the exact solution [3].



5 Experimentsand results

The proposed algorithms were implemented in Matlab withesomex-routines to perform matrix
multiplications with sparse masks. For synthesis data, evesider two cases: (fully random
low-rank matrices A = randr(m,r) = randr(r,n) (in Matlab notations) whose singular values
tend to be roughly the same; (&ndom low-rank matrices with chosen singular vallgdetting

U = gf(randr(m,r)), V = gf(randr(n,r)) and A = USVT whereS is a diagonal matrix with
chosen singular values. The initializations of all metharsbased on the SVD ofj,.

First, we illustrate the improvement of scaled gradiener @anonical gradients for steepest descent
and conjugate gradient methods %90 x 5000 matrices with rank 5 (Figure 1). Note that Canon-
Grass-Steep is OptSpace with our implementation. In thpggment,S; is obtained exactly using
(6). The time needed for each iteration is roughly the samalfanethods so we only present the
results in terms of iteration counts. We can see that there@me small improvements for the fully
random case (Figure 1a) since the singular values are rptighlsame. The improvement is more
substantial for matrices with larger condition numberg(ifeé 1b).

5000x5000 — Rank 5 — 1.0% observed entries 5000x5000 - Rank 5 — 1.0% observed entries
Singular values [4774, 4914, 4979, 5055, 5146] Singular values [1000, 2000, 3000, 4000, 5000]

55~
—— Scaled-Grass-Steep
—6— Scaled-Grass-CG

RMSE (log-scale)
RMSE (log-scale)

L L L L L L L L L _ L L L L L L L A )
10 20 30 40 50 60 70 80 90 20 40 60 80 100 120 140 160 180 200
Iteration count Iteration count

(a) (b)
Figure 1: Log-RMSE for fully random matrix (a) and random ratvith chosen spectrum (b).

Now, we compare the relaxed version of the scaled conjugatiient which uses (5) to compuse
(ScGrass-CG) to LMaFit [23], Riemann-CG [22], RTRMC2 [aju&t region method with second
order information), SVP [12] and GROUSE [5] (Figure 2). Thesethods are also implemented in
Matlab with mex-routines similar to ours except for GROUSEiah is entirely in Matlab (Indeed
GROUSE does not use sparse matrix multiplication as othénads do). The subspace iteration
method and the relaxed version of scaled steepest descwsatrge similarly to LMaFit, so we omit
them in the graph. Note that each iteration of GROUSE in tlaglgicorresponds to one pass over
the matrix. It does not have exactly the same meaning as erai@n of other methods and is
much slower with its current implementation. We use the k&g sizes that we found for SVP
and GROUSE. In terms of iteration counts, we can see thah&fully random case (upper row),
RTRMC2 is the best while ScGrass-CG and Riemann-CG conveeg®nably fast. However, each
iteraton of RTRMC2 is slower so in terms of time, ScGrass-@@ Riemann-CG are the fastest in
our experiments. When the condition number of the matrixghéi, ScGrass-CG converges fastest
both in terms of iteration counts and execution time.

Finally, we test the algorithms on Jester-1 and MovieLebBKLdatasets which are assumed to
be low-rank matrices with noise (SVP and GROUSE are notddséeause their step sizes need
to be appropriately chosen). Similarly to previous work; tiee Jester dataset we randomly se-
lect 4000 users and randomly withhold 2 ratings for each fmetesting. For the MovieLens
dataset, we use the common dataset prepared by [16], and5K&éfor training and 50% for
testing. We run 100 different randomizations of Jester ahdabhdomizations of MovieLens and
average the results. We stop all methods early, when thegehahRMSE is less thah0—*, to
avoid overfitting. All methods stop well before one minuté.eTNormalized Mean Absolute Errors
(NMAES) [13] are reported in Table 1. ScGrass-CG is the edascaled CG method and ScGrass-
CG-Reg is the exact scaled CG method using a spectral-regailan version ofF’ proposed in
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Figure 2: Log-RMSE. Upper row is fully random, lower row i:mdiom with chosen singular values.

Rank ScGrass-CG ScGrass-CG-Reg LMaFit Riemann-CG RTRMC2

5 0.1588 0.1588 0.1588 0.1591 0.1588
7 0.1584 0.1584 0.1581 0.1584 0.1583
5 0.1808 0.1758 0.1828 0.1781 0.1884
7 0.1832 0.1787 0.1836  0.1817 0.2298

Table 1: NMAE on Jester dataset (first 2 rows) and MovieLef®K1ONMAEs for a random guesser
are 0.33 on Jester and 0.37 on MovieLens 100K.

[13]: F(U,V) = ming(1/2)(||Po(USVT — A)| + A||S||%). All methods perform similarly and
demonstrate overfitting whein = 7 for MovieLens. We observe that ScGrass-CG-Reg suffers the
least from overfitting thanks to its regularization. Thi®wis the importance of regularization for
noisy matrices and motivates future work in this direction.

6 Conlusion and future work

The gradients obtained from a scaled metric on the Grassmmeamifold can result in improved
convergence of gradient methods on matrix manifolds forrim&ompletion while maintaining
good global convergence and exact recovery guaranteesaVgeetablished a connection between
scaled gradient methods and subspace iteration methodatoixraompletion. The relaxed versions
of the proposed gradient methods, adapted from the sub#eaaton, are faster than previously
discussed algorithms, sometimes much faster dependingeoconditionining of the data matrix.
In the future, we will investigate if these relaxed versiaghieve similar performance guarantees.
We are also interested in exploring ways to regularize thexeel versions to deal with noisy data.
The convergence condition of OptSpace depends(eh)® and weakening this dependency for the
proposed algorithms is also an interesting future directio
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