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Abstract

Given α, ϵ, we study the time complexity required to improperly learn a halfs-
pace with misclassification error rate of at most (1 + α)L∗

γ + ϵ, where L∗
γ is the

optimal γ-margin error rate. For α = 1/γ, polynomial time and sample com-
plexity is achievable using the hinge-loss. For α = 0, Shalev-Shwartz et al.
[2011] showed that poly(1/γ) time is impossible, while learning is possible in
time exp(Õ(1/γ)). An immediate question, which this paper tackles, is what is
achievable if α ∈ (0, 1/γ). We derive positive results interpolating between the
polynomial time for α = 1/γ and the exponential time for α = 0. In particular,
we show that there are cases in which α = o(1/γ) but the problem is still solvable
in polynomial time. Our results naturally extend to the adversarial online learning
model and to the PAC learning with malicious noise model.

1 Introduction

Some of the most influential machine learning tools are based on the hypothesis class of halfspaces
with margin. Examples include the Perceptron [Rosenblatt, 1958], Support Vector Machines [Vap-
nik, 1998], and AdaBoost [Freund and Schapire, 1997]. In this paper we study the computational
complexity of learning halfspaces with margin.

A halfspace is a mapping h(x) = sign(⟨w, x⟩), where w, x ∈ X are taken from the unit ball of an
RKHS (e.g. Rn), and ⟨w, x⟩ is their inner-product. Relying on the kernel trick, our sole assumption
on X is that we are able to calculate efficiently the inner-product between any two instances (see
for example Schölkopf and Smola [2002], Cristianini and Shawe-Taylor [2004]). Given an example
(x, y) ∈ X × {±1} and a vector w, we say that w errs on (x, y) if y⟨w, x⟩ ≤ 0 and we say that w
makes a γ-margin error on (x, y) if y⟨w, x⟩ ≤ γ.

The error rate of a predictor h : X → {±1} is defined as L01(h) = P[h(x) ̸= y], where the
probability is over some unknown distribution over X×{±1}. The γ-margin error rate of a predictor
x 7→ ⟨w, x⟩ is defined as Lγ(w) = P[y⟨w, x⟩ ≤ γ]. A learning algorithm A receives an i.i.d.
training set S = (x1, y1), . . . , (xm, ym) and its goal is to return a predictor, A(S), whose error rate
is small. We study the runtime required to learn a predictor such that with high probability over the
choice of S, the error rate of the learnt predictor satisfies

L01(A(S)) ≤ (1 + α)L∗
γ + ϵ where L∗

γ = min
w:∥w∥=1

Lγ(w) . (1)

There are three parameters of interest: the margin parameter, γ, the multiplicative approximation
factor parameter, α, and the additive error parameter ϵ.

From the statistical perspective (i.e., if we allow exponential runtime), Equation (1) is achievable
with α = 0 by letting A be the algorithm which minimizes the number of margin errors over the
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training set subject to a norm constraint on w. The sample complexity of A is m = Ω̃( 1
γ2ϵ2 ). See

for example Cristianini and Shawe-Taylor [2004].

If the data is separable with margin (that is, L∗
γ = 0), then the aforementionedA can be implemented

in time poly(1/γ, 1/ϵ). However, the problem is much harder in the agnostic case, namely, when
L∗
γ > 0 and the distribution over examples can be arbitrary.

Ben-David and Simon [2000] showed that, no proper learning algorithm can satisfy Equation (1)
with α = 0 while running in time polynomial in both 1/γ and 1/ϵ. By “proper” we mean an algo-
rithm which returns a halfspace predictor. Shalev-Shwartz et al. [2011] extended this results to im-
proper learning—that is, whenA(S) should satisfy Equation (1) but is not required to be a halfspace.
They also derived an algorithm that satisfies Equation (1) and runs in time exp

(
C 1

γ log( 1
γ ϵ )
)

,
where C is a constant.

Most algorithms that are being used in practice minimize a convex surrogate loss. That is, in-
stead of minimizing the number of mistakes on the training set, the algorithms minimize L̂(w) =
1
m

∑m
i=1 ℓ(yi⟨w, xi⟩), where ℓ : R → R is a convex function that upper bounds the 0 − 1 loss.

For example, the Support Vector Machine (SVM) algorithm relies on the hinge loss. The advantage
of surrogate convex losses is that minimizing them can be performed in time poly(1/γ, 1/ϵ). It is
easy to verify that minimizing L̂(w) with respect to the hinge loss yields a predictor that satisfies
Equation (1) with α = 1

γ . Furthermore, Long and Servedio [2011], Ben-David et al. [2012] have

shown that any convex surrogate loss cannot guarantee Equation (1) if α < 1
2

(
1
γ − 1

)
.

Despite the centrality of this problem, not much is known on the runtime required to guarantee
Equation (1) with other values of α. In particular, a natural question is how the runtime changes
when enlarging α from 0 to 1

γ . Does it change gradually or perhaps there is a phase transition?

Our main contribution is an upper bound on the required runtime as a function of α. For any α be-
tween1 5 and 1

γ , let τ = 1
γ α . We show that the runtime required to guarantee Equation (1) is at most

exp (C τ min{τ, log(1/γ)}), where C is a universal constant (we ignore additional factors which
are polynomial in 1/γ, 1/ϵ—see a precise statement with the exact constants in Theorem 1). That
is, when we enlarge α, the runtime decreases gradually from being exponential to being polynomial.

Furthermore, we show that the algorithm which yields the aforementioned bound is a vanilla SVM
with a specific kernel. We also show how one can design specific kernels that will fit well certain
values of α while minimizing our upper bound on the sample and time complexity.

In Section 4 we extend our results to the more challenging learning settings of adversarial online
learning and PAC learning with malicious noise. For both cases, we obtain similar upper bounds
on the runtime as a function of α. The technique we use in the malicious noise case may be of
independent interest.

An interesting special case is when α = 1

γ
√

log(1/γ)
. In this case, τ =

√
log(1/γ) and hence the

runtime is still polynomial in 1/γ. This recovers a recent result of Long and Servedio [2011]. Their
technique is based on a smooth boosting algorithm applied on top of a weak learner which constructs
random halfspaces and takes their majority vote. Furthermore, Long and Servedio emphasize that
their algorithm is not based on convex optimization. They show that no convex surrogate can obtain
α = o(1/γ). As mentioned before, our technique is rather different as we do rely on the hinge
loss as a surrogate convex loss. There is no contradiction to Long and Servedio since we apply the
convex loss in the feature space induced by our kernel function. The negative result of Long and
Servedio holds only if the convex surrogate is applied on the original space.

1We did not analyze the case α < 5 because the runtime is already exponential in 1/γ even when α = 5.
Note, however, that our bound for α = 5 is slightly better than the bound of Shalev-Shwartz et al. [2011]
for α = 0 because our bound does not involve the parameter ϵ in the exponent while their bound depends on
exp(1/γ log(1/(ϵγ))).
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1.1 Additional related work

The problem of learning kernel-based halfspaces has been extensively studied before in the frame-
work of SVM [Vapnik, 1998, Cristianini and Shawe-Taylor, 2004, Schölkopf and Smola, 2002] and
the Perceptron [Freund and Schapire, 1999]. Most algorithms replace the 0-1 error function with a
convex surrogate. As mentioned previously, Ben-David et al. [2012] have shown that this approach
leads to approximation factor of at least 1

2

(
1
γ − 1

)
.

There has been several works attempting to obtain efficient algorithm for the case α = 0 under
certain distributional assumptions. For example, Kalai et al. [2005], Blais et al. [2008] have shown
that if the marginal data distribution over X is a product distribution, then it is possible to satisfy
Equation (1) with α = γ = 0, in time poly(n1/ϵ

4

). Klivans et al. [2009] derived similar results for
the case of malicious noise. Another distributional assumption is on the conditional probability of
the label given the instance. For example, Kalai and Sastry [2009] solves the problem in polynomial
time if there exists a vector w and a monotonically non-increasing function ϕ such that P(Y =
1|X = x) = ϕ(⟨w, x⟩).
Zhang [2004], Bartlett et al. [2006] also studied the relationship between surrogate convex loss
functions and the 0-1 loss function. They introduce the notion of well calibrated loss functions,
meaning that the excess risk of a predictor h (over the Bayes optimal) with respect to the 0-1 loss
can be bounded using the excess risk of the predictor with respect to the surrogate loss. It follows that
if the latter is close to zero than the former is also close to zero. However, as Ben-David et al. [2012]
show in detail, without making additional distributional assumptions the fact that a loss function is
well calibrated does not yield finite-sample or finite-time bounds.

In terms of techniques, our Theorem 1 can be seen as a generalization of the positive result given
in Shalev-Shwartz et al. [2011]. While Shalev-Shwartz et al. only studied the case α = 0, we are
interested in understanding the whole curve of runtime as a function of α. Similar to the analysis of
Shalev-Shwartz et al., we approximate the sigmoidal and erf transfer functions using polynomials.
However, we need to break symmetry in the definition of the exact transfer function to approximate.
The main technical observation is that the Lipschitz constant of the transfer functions we approx-
imate does not depend on α, and is roughly 1/γ no matter what α is. Instead, the change of the
transfer function when α is increasing is in higher order derivatives.

To the best of our knowledge, the only middle point on the curve that has been studied before is the
case α = 1

γ
√

log(1/γ)
, which was analyzed in Long and Servedio [2011]. Our work shows an upper

bound on the entire curve. Besides that, we also provide a recipe for constructing better kernels for
specific values of α.

2 Main Results

Our main result is an upper bound on the time and sample complexity for all values of α between
5 and 1/γ. The bounds we derive hold for a norm-constraint form of SVM with a specific kernel,
which we recall now. Given a training set S = (x1, y1), . . . , (xm, ym), and a feature mapping
ψ : X → X ′, where X ′ is the unit ball of some Hilbert space, consider the following learning rule:

argmin
v:∥v∥2≤B

m∑
i=1

max{0, 1− yi⟨v, ψ(xi)⟩} . (2)

Using the well known kernel-trick, if K(x, x′) implements the inner product ⟨ψ(x), ψ(x′)⟩, and
G is an m × m matrix with Gi,j = K(xi, xj), then we can write a solution of Equation (2) as
v =

∑
i aiψ(xi) where the vector a ∈ Rm is a solution of

argmin
a:aTGa≤B

m∑
i=1

max{0, 1− yi (Ga)i} . (3)

The above is a convex optimization problem in m variables and can be solved in time poly(m).
Given a solution a ∈ Rm, we define a classifier ha : X → {±1} to be

ha(x) = sign

(
m∑
i=1

aiK(xi, x)

)
. (4)
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The upper bounds we derive hold for the above kernel-based SVM with the kernel function

K(x, x′) =
1

1− 1
2 ⟨x, x′⟩

. (5)

We are now ready to state our main theorem.

Theorem 1 For any γ ∈ (0, 1/2) and α ≥ 5, let τ = 1
γ α and let

B = min

{
4α2

(
96τ2 + e18τ log(8τα2)+5

)
,

1

γ2

(
0.06 e4τ

2

+ 3
)}

= poly(1/γ) · emin{18τ log(8τα2) , 4τ2} .

Fix ϵ, δ ∈ (0, 1/2) and let m be a training set size that satisfies

m ≥ 16

ϵ2
max{2B, (1 + α)2 log(2/δ)} .

Let A be the algorithm which solves Equation (3) with the kernel function given in Equation (5),
and returns the predictor defined in Equation (4). Then, for any distribution, with probability of at
least 1− δ, the algorithm A satisfies Equation (1).

The proof of the theorem is given in the next section. As a direct corollary we obtain that there is an
efficient algorithm that achieves an approximation factor of α = o(1/γ):

Corollary 2 For any ϵ, δ, γ ∈ (0, 1), let α = 1/γ√
log(1/γ)

and let B = 0.06
γ6 + 3

γ2 . Then, with m,A

being as defined in Theorem 1, the algorithm A satisfies Equation (1).

As another corollary of Theorem 1 we obtain that for any constant c ∈ (0, 1), it is possible to satisfy
Equation (1) with α = c/γ in polynomial time. However, the dependence of the runtime on the
constant c is e4/c

2

. For example, for c = 1/2 we obtain the multiplicative factor e16 ≈ 8, 800, 000.
Our next contribution is to show that a more careful design of the kernel function can yield better
bounds.

Theorem 3 For any γ, α, let p be a polynomial of the form p(z) =
∑d

j=1 βjz
2j−1 (namely, p is

odd) that satisfies
max

z∈[−1,1]
|p(z)| ≤ α and min

z:|z|≥γ
|p(z)| ≥ 1 .

Let m be a training set size that satisfies

m ≥ 16

ϵ2
max{∥β∥21, 2 log(4/δ), (1 + α)2 log(2/δ)}

Let A be the algorithm which solves Equation (3) with the following kernel function

K(x, x′) =
d∑

j=1

|βj |(⟨x, x′⟩)2j−1 ,

and returns the predictor defined in Equation (4). Then, for any distribution, with probability of at
least 1− δ, the algorithm A satisfies Equation (1).

The above theorem provides us with a recipe for constructing good kernel functions: Given γ and α,
find a vector β with minimal ℓ1 norm such that the polynomial p(z) =

∑d
j=1 βjz

2j−1 satisfies the
conditions given in Theorem 3. For a fixed degree d, this can be written as the following optimization
problem:

min
β∈Rd

∥β∥1 s.t. ∀x ∈ [0, 1], p(z) ≤ α ∧ ∀z ∈ [γ, 1], p(z) ≥ 1 . (6)

Note that for any x, the expression p(x) is a linear function of β. Therefore, the above problem is
a linear program with an infinite number of constraints. Nevertheless, it can be solved efficiently
using the Ellipsoid algorithm. Indeed, for any β, we can find the extreme points of the polynomial
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it defines, and then determine whether β satisfies all the constraints or, if it doesn’t, we can find a
violated constraint.

To demonstrate how Theorem 3 can yield a better guarantee (in terms of the constants), we solved
Equation (6) for the simple case of d = 2. For this simple case, we can provide an analytic solution
to Equation (6), and based on this solution we obtain the following lemma whose proof is provided
in the appendix.

Lemma 4 Given γ < 2/3, consider the polynomial p(z) = β1z + β2z
3, where

β1 = 1
γ + γ

1+γ , β2 = − 1
γ(1+γ) .

Then, p satisfies the conditions of Theorem 3 with

α = 2
3
√
3γ

+ 2√
3
≤ 0.385 · 1

γ + 1.155 .

Furthermore, ∥β∥1 ≤ 2
γ + 1.

It is interesting to compare the guarantee given in the above lemma to the guarantee of using the
vanilla hinge-loss. For both cases the sample complexity is order of 1

γ2ϵ2 . For the vanilla hinge-
loss we obtain the approximation factor 1

γ while for the kernel given in Lemma 4 we obtain the
approximation factor of α ≤ 0.385 · 1

γ +1.155. Recall that Ben-David et al. [2012] have shown that
without utilizing kernels, no convex surrogate loss can guarantee an approximation factor smaller
than α < 1

2 (
1
γ − 1). The above discussion shows that applying the hinge-loss with a kernel function

can break this barrier without a significant increase in runtime2 or sample complexity.

3 Proofs

Given a scalar loss function ℓ : R → R, and a vector w, we denote by L(w) = E(x,y)∼D[ℓ(y⟨w, x⟩)]
the expected loss value of the predictions of w with respect to a distribution D over X × {±1}.
Given a training set S = (x1, y1), . . . , (xm, ym), we denote by L̂(w) = 1

m

∑m
i=1 ℓ(yi⟨w, xi⟩)

the empirical loss of w. We slightly overload our notation and also use L(w) to denote
E(x,y)∼D[ℓ(y⟨w,ψ(x)⟩)], when w is an element of an RKHS corresponding to the mapping ψ. We
define L̂(w) analogously.

We will make extensive use of the following loss functions: the zero-one loss, ℓ01(z) = 1[z ≤ 0], the
γ-zero-one loss, ℓγ(z) = 1[z ≤ γ], the hinge-loss, ℓh(z) = [1−z]+ = max{0, 1−z}, and the ramp-
loss, ℓramp(z) = min{1, ℓh(z)}. We will use L01(w), Lγ(w), Lh(w), and Lramp(w) to denote
the expectations with respect to the different loss functions. Similarly L̂01(w), L̂γ(w), L̂h(w), and
L̂ramp(w) are the empirical losses of w with respect to the different loss functions.

Recall that we output a vector v that solves Equation (3). This vector is in the RKHS corresponding
to the kernel given in Equation (5). Let Bx = maxx∈X K(x, x) ≤ 2. Since the ramp-loss upper
bounds the zero-one loss we have that L01(v) ≤ Lramp(v). The advantage of using the ramp loss is
that it is both a Lipschitz function and it is bounded by 1. Hence, standard Rademacher generaliza-
tion analysis (e.g. Bartlett and Mendelson [2002], Bousquet [2002]) yields that with probability of
at least 1− δ/2 over the choice of S we have:

Lramp(v) ≤ L̂ramp(v) + 2

√
BxB

m
+

√
2 ln(4/δ)

m︸ ︷︷ ︸
=ϵ1

. (7)

Since the ramp loss is upper bounded by the hinge-loss, we have shown the following inequalities,

L01(v) ≤ Lramp(v) ≤ L̂ramp(v) + ϵ1 ≤ L̂h(v) + ϵ1 . (8)

Next, we rely on the following claim adapted from [Shalev-Shwartz et al., 2011, Lemma 2.4]:
2It should be noted that solving SVM with kernels takes more time than solving a linear SVM. Hence, if

the original instance space is a low dimensional Euclidean space we loose polynomially in the time complexity.
However, when the original instance space is also an RKHS, and our kernel is composed on top of the original
kernel, the increase in the time complexity is not significant.
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Claim 5 Let p(z) =
∑∞

j=0 βjz
j be any polynomial that satisfies

∑∞
j=0 β

2
j 2

j ≤ B, and let w be
any vector in X . Then, there exists vw in the RKHS defined by the kernel given in Equation (5), such
that ∥vw∥2 ≤ B and for all x ∈ X , ⟨vw, ψ(x)⟩ = p(⟨w, x⟩).

For any polynomial p, let ℓp(z) = ℓh(p(z)), and let L̂p be defined analogously. If p is an odd
polynomial, we have that ℓp(y⟨w, x⟩) = [1 − yp(⟨w, x⟩)]+. By the definition of v as minimizing
L̂h(v) over ∥v∥2 ≤ B, it follows from the above claim that for any odd p that satisfies

∑∞
j=0 β

2
j 2

j ≤
B and for any w∗ ∈ X , we have that

L̂h(v) ≤ L̂h(vw∗) = L̂p(w
∗) .

Next, it is straightforward to verify that if p is an odd polynomial that satisfies:

max
z∈[−1,1]

|p(z)| ≤ α and min
z∈[γ,1]

p(z) ≥ 1 (9)

then, ℓp(z) ≤ (1 + α)ℓγ(z) for all z ∈ [−1, 1]. For such polynomials, we have that L̂p(w
∗) ≤

(1 + α)L̂γ(w
∗). Finally, by Hoeffding’s inequality, for any fixed w∗, if m > log(2/δ)

ϵ22
, then with

probability of at least 1− δ/2 over the choice of S we have that

L̂γ(w
∗) ≤ Lγ(w

∗) + ϵ2 .

So, overall, we have obtained that with probability of at least 1− δ,

L01(v) ≤ (1 + α)Lγ(w
∗) + (1 + α)ϵ2 + ϵ1 .

Choosing m large enough so that (1 + α)ϵ2 + ϵ1 ≤ ϵ, we obtain:

Corollary 6 Fix γ, ϵ, δ ∈ (0, 1) and α > 0. Let p be an odd polynomial such that
∑

j β
2
j 2

j ≤ B
and such that Equation (9) holds. Let m be a training set size that satisfies:

m ≥ 16

ϵ2
·max{2B, 2 log(4/δ), (1 + α)2 log(2/δ)} .

Then, with probability of at least 1−δ, the solution of Equation (3) satisfies, L01(v) ≤ (1+α)L∗
γ+ϵ.

The proof of Theorem 1 follows immediately from the above corollary together with the following
two lemmas, whose proofs are provided in the appendix.

Lemma 7 For any γ > 0 and α > 2, let τ = 1
αγ and let B = 1

γ2

(
0.06 e4τ

2

+ 3
)

. Then, there
exists a polynomial that satisfies the conditions of Corollary 6 with the parameters α, γ,B.

Lemma 8 For any γ ∈ (0, 1/2) and α ∈ [5, 1γ ], let τ = 1
αγ and let B =

4α2
(
96τ2 + exp

(
18τ log

(
8τα2

)
+ 5
))

. Then, there exists a polynomial that satisfies the con-
ditions of Corollary 6 with the parameters α, γ,B.

3.1 Proof of Theorem 3

The proof is similar to the proof of Theorem 1 except that we replace Claim 5 with the following:

Lemma 9 Let p(z) =
∑d

j=1 βjz
2j−1 be any polynomial, and let w be any vector in X . Then, there

exists vw in the RKHS defined by the kernel given in Theorem 3, such that ∥vw∥2 ≤ ∥β∥1 and for
all x ∈ X , ⟨vw, ψ(x)⟩ = p(⟨w, x⟩).

Proof We start with an explicit definition of the mapping ψ(x) corresponding to the kernel in the
theorem. The coordinates of ψ(x) are indexed by tuples (k1, . . . , kj) ∈ [n]j for j = 1, 3, . . . , 2d−1.
Coordinate (k1, . . . , kj) equals to

√
|βj |xk1

xk2
. . . xkj

. Next, for any w ∈ X , we define ex-
plicitly the vector vw for which ⟨vw, ψ(x)⟩ = p(⟨w, x⟩). Coordinate (k1, . . . kj) of vw equals to
sign(βj)

√
|βj |wk1wk2 . . . wkj . It is easy to verify that indeed ∥vw∥2 ≤ ∥β∥1 and for all x ∈ X ,

⟨vw, ψ(x)⟩ = p(⟨w, x⟩).
Since for any x ∈ X we also have that K(x, x) ≤ ∥β∥1, the proof of Theorem 3 follows using the
same arguments as in the proof of Theorem 1.
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4 Extension to other learning models

In this section we briefly describe how our results can be extended to adversarial online learning and
to PAC learning with malicious noise. We start with the online learning model.

4.1 Online learning

Online learning is performed in a sequence of consecutive rounds, where at round t the learner is
given an instance, xt ∈ X , and is required to predict its label. After predicting ŷt, the target label,
yt, is revealed. The goal of the learner is to make as few prediction mistakes as possible. See for
example Cesa-Bianchi and Lugosi [2006].

A classic online classification algorithm is the Perceptron [Rosenblatt, 1958]. The Perceptron main-
tains a vector wt and predicts according to ŷt = sign(⟨wt, xt⟩). Initially, w1 = 0, and at round t
the Perceptron updates the vector using the rule wt+1 = wt + 1[ŷt ̸= yt] ytxt. Freund and Schapire
[1999] observed that the Perceptron can also be implemented efficiently in an RKHS using a kernel
function.

Agmon [1954] and others have shown that if there exists w∗ such that for all t, yt⟨w∗, xt⟩ ≥ 1 and
∥xt∥2 ≤ Bx, then the Perceptron will make at most ∥w∗∥2Bx prediction mistakes. This bound
holds without making any additional distributional assumptions on the sequence of examples.

This mistake bound has been generalized to the noisy case (see for example Gentile [2003])
as follows. Given a sequence (x1, y1), . . . , (xm, ym), and a vector w∗, let Lh(w

∗) =
1
m

∑m
t=1 ℓh(yt⟨w∗, xt⟩), where ℓh is the hinge-loss. Then, the average number of prediction mis-

takes the Perceptron will make on this sequence is at most

1

m

m∑
t=1

1[ŷt ̸= yt] ≤ Lh(w
∗) +

√
Bx∥w∗∥2 Lh(w∗)

m
+
Bx∥w∗∥2

m
. (10)

Let Lγ(w
∗) = 1

m

∑m
t=1 1(yt⟨w∗, xt⟩ ≤ γ). Trivially, Equation (10) can yield a bound whose

leading term is
(
1 + 1

γ

)
Lγ(w

∗) (namely, it corresponds to α = 1
γ ). On the other hand, Ben-David

et al. [2009] have derived a mistake bound whose leading term depends on Lγ(w
∗) (namely, it

corresponds to α = 0), but the runtime of the algorithm is at least m1/γ2

. The main result of this
section is to derive a mistake bound for the Perceptron based on all values of α between 5 and 1/γ.

Theorem 10 For any γ ∈ (0, 1/2) and α ≥ 5, let τ = 1
γ α and let Bα,γ be the value of B as

defined in Theorem 1. Then, for any sequence (x1, y1), . . . , (xm, ym), if the Perceptron is run on
this sequence using the kernel function given in Equation (5), the average number of prediction
mistakes it will make is at most:

min
γ∈(0,1/2),α≥5,w∗∈X

(1 + α)Lγ(w
∗) +

√
2Bα,γ (1 + α)Lγ(w∗)

m
+

2Bα,γ

m

Proof [sketch] Equation (10) holds if we implement the Perceptron using the kernel function given
in Equation (5), for which Bx = 2. Furthermore, similarly to the proof of Theorem 1, for any
polynomial p that satisfies the conditions of Corollary 6 we have that there exists v∗ in the RKHS
corresponding to the kernel, with ∥v∗∥2 ≤ B and with Lh(v

∗) ≤ (1 + α)Lγ(w
∗). The theorem

follows.

4.2 PAC learning with malicious noise

In this model, introduced by Valiant [1985] and specified to the case of halfspaces with margin
by Servedio [2003], Long and Servedio [2011], there is an unknown distribution over instances
in X and there is an unknown target vector w∗ ∈ X such that |⟨w∗, x⟩| ≥ γ with probability 1.
The learner has an access to an example oracle. At each query to the oracle, with probability of
1 − η it samples a random example x ∈ X according to the unknown distribution over X , and
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returns (x, sign(⟨w∗, x⟩)). However, with probability η, the oracle returns an arbitrary element of
X × {±1}. The goal of the learner is to output a predictor that has L01(h) ≤ ϵ, with respect to the
“clean” distribution.

Auer and Cesa-Bianchi [1998] described a general conversion from online learning to the malicious
noise setting. Servedio [2003] used this conversion to derive a bound based on the Perceptron’s
mistake bound. In our case, we cannot rely on the conversion of Auer and Cesa-Bianchi [1998]
since it requires a proper learner, while the online learner described in the previous section is not
proper.

Instead, we propose the following simple algorithm. First, sample m examples. Then, solve kernel
SVM on the resulting noisy training set.

Theorem 11 Let γ ∈ (0, 1/4), δ ∈ (0, 1/2), and α > 5. Let B be as defined in Theorem 1.
Let m be a training set size that satisfies: m ≥ 64

ϵ2 · max
{
2B , (2 + α)2 log(1/δ)

}
. Then, with

probability of at least 1− 2δ, the output of kernel-SVM on the noisy training set, denoted h, satisfies
L01(h) ≤ (2 + α)η + ϵ/2. It follows that if η ≤ ϵ

2(2+α) then L01(h) ≤ ϵ.

Proof Let S̄ be a training set in which we replace the noisy examples with clean iid examples. Let
L̄ denotes the empirical loss over S̄ and L̂ denotes the empirical loss over S. As in the proof of
Theorem 1, we have that w.p. of at least 1 − δ, for any v in the RKHS corresponding to the kernel
that satisfies ∥v∥2 ≤ B we have that:

L01(v) ≤ L̄ramp(v) + 3ϵ/8 , (11)

by our assumption on m. Let η̂ be the fraction of noisy examples in S. Note that S̄ and S differ in
at most mη̂ elements. Therefore, for any v,

L̄ramp(v) ≤ L̂ramp(v) + η̂ . (12)

Now, let v be the minimizer of L̂h, letw∗ be the target vector in the original space (i.e., the one which
achieves correct predictions with margin γ on clean examples), and let vw∗ be its corresponding
element in the RKHS (see Claim 5). We have

L̂ramp(v) ≤ L̂h(v) ≤ L̂h(vw∗) = L̂p(w
∗) ≤ (1 + α)L̂γ(w

∗) ≤ (1 + α)η̂ . (13)

In the above, the first inequality is since the ramp loss is upper bounded by the hinge loss, the second
inequality is by the definition of v, the third equality is by Claim 5, the fourth inequality is by the
properties of p, and the last inequality follows from the definition of η̂. Combining the above yields,

L01(v) ≤ (2 + α)η̂ + 3ϵ/8 .

Finally, using Hoefding’s inequality, we know that for the definition of m, with probability of at
least 1 − δ we have that η̂ ≤ η + ϵ

8(2+α) . Applying the union bound and combining the above we
conclude that with probability of at least 1− 2δ, L01(v) ≤ (2 + α)η + ϵ/2.

5 Summary and Open Problems

We have derived upper bounds on the time and sample complexities as a function of the approxima-
tion factor. We further provided a recipe for designing kernel functions with a small time and sample
complexity for any given value of approximation factor and margin. Our results are applicable to
agnostic PAC Learning, online learning, and PAC learning with malicious noise.

An immediate open question is whether our results can be improved. If not, can computationally
hardness results be formally established. Another open question is whether the upper bounds we
have derived for an improper learner can be also derived for a proper learner.
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