
A Convex Formulation for Learning Scale-Free
Networks via Submodular Relaxation

Aaron J. Defazio
NICTA/Australian National University

Canberra, ACT, Australia
aaron.defazio@anu.edu.au

Tiberio S. Caetano
NICTA/ANU/University of Sydney

Canberra and Sydney, Australia
tiberio.caetano@nicta.com.au

Abstract

A key problem in statistics and machine learning is the determination of network
structure from data. We consider the case where the structure of the graph to be
reconstructed is known to be scale-free. We show that in such cases it is natural
to formulate structured sparsity inducing priors using submodular functions, and
we use their Lovász extension to obtain a convex relaxation. For tractable classes
such as Gaussian graphical models, this leads to a convex optimization problem
that can be efficiently solved. We show that our method results in an improvement
in the accuracy of reconstructed networks for synthetic data. We also show how
our prior encourages scale-free reconstructions on a bioinfomatics dataset.

Introduction

Structure learning for graphical models is a problem that arises in many contexts. In applied statis-
tics, undirected graphical models can be used as a tool for understanding the underlying conditional
independence relations between variables in a dataset. For example, in bioinfomatics Gaussian
graphical models are fitted to data resulting from micro-array experiments, where the fitted graph
can be interpreted as a gene expression network [9].

In the context of Gaussian models, the structure learning problem is known as covariance selec-
tion [8]. The most common approach is the application of sparsity inducing regularization to the
maximum likelihood objective. There is a significant body of literature, more than 30 papers by
our count, on various methods of optimizing the L1 regularized covariance selection objective alone
(see the recent review by Scheinberg and Ma [17]).

Recent research has seen the development of structured sparsity, where more complex prior knowl-
edge about a sparsity pattern can be encoded. Examples include group sparsity [22], where parame-
ters are linked so that they are regularized in groups. More complex sparsity patterns, such as region
shape constraints in the case of pixels in an image [13], or hierarchical constraints [12] have also
been explored.

In this paper, we study the problem of recovering the structure of a Gaussian graphical model under
the assumption that the graph recovered should be scale-free. Many real-world networks are known
a priori to be scale-free and therefore enforcing that knowledge through a prior seems a natural
idea. Recent work has offered an approach to deal with this problem which results in a non-convex
formulation [14]. Here we present a convex formulation. We show that scale-free networks can be
induced by enforcing submodular priors on the network’s degree distribution, and then using their
convex envelope (the Lovász extension) as a convex relaxation [2]. The resulting relaxed prior has an
interesting non-differentiable structure, which poses challenges to optimization. We outline a few
options for solving the optimisation problem via proximal operators [3], in particular an efficient
dual decomposition method. Experiments on both synthetic data produced by scale-free network
models and a real bioinformatics dataset suggest that the convex relaxation is not weak: we can
infer scale-free networks with similar or superior accuracy than in [14].

1

1 Combinatorial Objective

Consider an undirected graph with edge set E and node set V , where n is the number of nodes. We
denote the degree of node v as dE(v), and the complete graph with n nodes asKn. We are concerned
with placing priors on the degree distributions of graphs such as (V,E). By degree distribution, we
mean the bag of degrees {dE(v)|v ∈ V }.
A natural prior on degree distributions can be formed from the family of exponential random graphs
[21]. Exponential random graph (ERG) models assign a probability to each n node graph using an
exponential family model. The probability of each graph depends on a small set of sufficient statis-
tics, in our case we only consider the degree statistics. A ERG distribution with degree parametriza-
tion takes the form:

p(G = (V,E);h) ≈ 1

Z(h)
exp

[
−
∑
v∈V

h(dE(v))

]
, (1)

The degree weighting function h : Z+ → R encodes the preference for each particular degree. The
function Z is chosen so that the distribution is correctly normalized over n node graphs.

A number of choices for h are reasonable; A geometric series h(i) ∝ 1 − αi with α ∈ (0, 1) has
been proposed by Snijders et al. [20] and has been widely adopted. However for encouraging scale
free graphs we require a more rapidly increasing sequence. It is instructive to observe that, under
the strong assumption that each node’s degree is independent of the rest, h grows logarithmically.
To see this, take a scale free model with scale α; the joint distribution takes the form:

p(G = (V,E); ε, α) ≈ 1

Z(ε, α)

∏
v∈V

(dE(v) + ε)−α,

where ε > 0 is added to prevent infinite weights. Putting this into ERG form gives the weight
sequence h(i) = α log(i + ε). We will consider this and other functions h in Section 4. We intend
to perform maximum a posteriori (MAP) estimation of a graph structure using such a distribution as
a prior, so the object of our attention is the negative log-posterior, which we denote F :

F (E) =
∑
v∈V

h(dE(v)) + const. (2)

So far we have defined a function on edge sets only, however in practice we want to optimize over
a weighted graph, which is intractable when using discontinuous functions such as F . We now
consider the properties of h that lead to a convex relaxation of F .

2 Submodularity

A set function F : 2E → R on E is a non-decreasing submodular function if for all A ⊂ B ⊂ E
and x ∈ E\B the following conditions hold:

F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B) (submodularity)
and F (A) ≤ F (B). (non-decreasing)

The first condition can be interpreted as a diminishing returns condition; adding x to a setA increases
F (A) by more than adding it to a larger set B, if B contains A.

We now consider a set of conditions that can be placed on h so that F is submodular.

Proposition 1. Denote h as tractable if h is non-decreasing, concave and h(0) = 0. For tractable
h, F is a non-decreasing submodular function.

Proof. First note that the degree function is a set cardinality function, and hence modular. A concave
transformation of a modular function is submodular [1], and the sum of submodular functions is
submodular.

2

The concavity restriction we impose on h is the key ingredient that allows us to use submodularity
to enforce a prior for scale-free networks; any prior favouring long tailed degree distributions must
place a lower weight on new edges joining highly connected nodes than on those joining other nodes.
As far as we are aware, this is a novel way of mathematically modelling the ‘preferential attachment’
rule [4] that gives rise to scale-free networks: through non-decreasing submodular functions on the
degree distribution.

Let X denote a symmetric matrix of edge weights. A natural convex relaxation of F would be
the convex envelope of F (Supp(X)) under some restricted domain. For tractable h, we have by
construction that F satisfies the conditions of Proposition 1 in [2], so that the convex envelope
of F (Supp(X)) on the L∞ ball is precisely the Lovász extension evaluated on |X|. The Lovász
extension for our function is easy to determine as it is a sum of “functions of cardinality” which are
considered in [2]. Below is the result from [2] adapted to our problem.
Proposition 2. Let Xi,(j) be the weight of the jth edge connected to i, under a decreasing ordering
by absolute value (i.e |Xi,(0)| ≥ |Xi,(1)| ≥ ... ≥ |Xi,(n−1)|). The notation (i) maps from sorted
order to the natural ordering, with the diagonal not included. Then the convex envelope of F for
tractable h over the L∞ norm unit ball is:

Ω(X) =
n∑
i=0

n−1∑
k=0

(h(k + 1)− h(k)) |Xi,(k)|.

This function is piece-wise linear and convex.

The form of Ω is quite intuitive. It behaves like a L1 norm with an additional weight on each edge
that depends on how the edge ranks with respect to the other edges of its neighbouring nodes.

3 Optimization

We are interested in using Ω as a prior, for optimizations of the form
minimizeX f(X) = g(X) + αΩ(X),

for convex functions g and prior strength parameters α ∈ R+, over symmetric X . We will focus
on the simplest structure learning problem that occurs in graphical model training, that of Gaussian
models. In which case we have

g(X) = 〈X,C〉 − log detX,

where C is the observed covariance matrix of our data. The support of X will then be the set
of edges in the undirected graphical model together with the node precisions. This function is a
rescaling of the maximum likelihood objective. In order for the resulting X to define a normalizable
distribution, X must be restricted to the cone of positive definite matrices. This is not a problem
in practice as g(X) is infinite on the boundary of the PSD cone, and hence the constraint can be
handled by restricting optimization steps to the interior of the cone. In fact X can be shown to be
in a strictly smaller cone, X∗ � aI , for a derivable from C [15]. This restricted domain is useful
as g(X) has Lipschitz continuous gradients over X � aI but not over all positive definite matrices
[18].

There are a number of possible algorithms that can be applied for optimizing a convex non-
differentiable objective such as f . Bach [2] suggests two approaches to optimizing functions in-
volving submodular relaxation priors; a subgradient approach and a proximal approach.

Subgradient methods are the simplest class of methods for optimizing non-smooth convex functions.
They provide a good baseline for comparison with other methods. For our objective, a subgradient
is simple to evaluate at any point, due to the piecewise continuous nature of Ω(X). Unfortunately
(primal) subgradient methods for our problem will not return sparse solutions except in the limit of
convergence. They will instead give intermediate values that oscillate around their limiting values.

An alternative is the use of proximal methods [2]. Proximal methods exhibit superior convergence
in comparison to subgradient methods, and produce sparse solutions. Proximal methods rely on
solving a simpler optimization problem, known as the proximal operator at each iteration:

arg min
X

[
αΩ(X) +

1

2
‖X − Z‖22

]
,

3

where Z is a variable that varies at each iteration. For many problems of interest, the proximal
operator can be evaluated using a closed form solution. For non-decreasing submodular relaxations,
the proximal operator can be evaluated by solving a submodular minimization on a related (not
necessarily non-decreasing) submodular function [2].

Bach [2] considers several example problems where the proximal operator can be evaluated using
fast graph cut methods. For the class of functions we consider, graph-cut methods are not applicable.
Generic submodular minimization algorithms could be as slow as O(n12) for a n-vertex graph,
which is clearly impractical [11]. We will instead propose a dual decomposition method for solving
this proximal operator problem in Section 3.2.

For solving our optimisation problem, instead of using the standard proximal method (sometimes
known as ISTA), which involves a gradient step followed by the proximal operator, we propose to
use the alternating direction method of multipliers (ADMM), which has shown good results when
applied to the standard L1 regularized covariance selection problem [18]. Next we show how to
apply ADMM to our problem.

3.1 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM, Boyd et al. [6]) is one approach to opti-
mizing our objective that has a number of advantages over the basic proximal method. Let U be the
matrix of dual variables for the decoupled problem:

minimizeX g(X) + αΩ(Y),

s.t. X = Y.

Following the presentation of the algorithm in Boyd et al. [6], given the values Y (l) and U (l) from
iteration l, with U (0) = 0n and Y (0) = In the ADMM updates for iteration l + 1 are:

X(l+1) = arg min
X

[
〈X,C〉 − log detX +

ρ

2
||X − Y (l) + U (l)||22

]
Y (l+1) = arg min

Y

[
αΩ(Y) +

ρ

2
||X(l+1) − Y + U (l)||22

]
U (l+1) = U (l) +X(l+1) − Y (l+1),

where ρ > 0 is a fixed step-size parameter (we used ρ = 0.5). The advantage of this form is that
both the X and Y updates are a proximal operation. It turns out that the proximal operator for g (i.e.
the X(l+1) update) actually has a simple solution [18] that can be computed by taking an eigenvalue
decompositionQTΛQ = ρ(Y −U)−C, where Λ = diag(λ1, . . . , λn) and updating the eigenvalues
using the formula

λ′i :=
λi +

√
λ2i + 4ρ

2ρ

to give X = QTΛ′Q. The stopping criterion we used was ||X(l+1) − Y (l+1)|| < ε and
||Y (l+1) − Y (l)|| < ε. In practice the ADMM method is one of the fastest methods for L1 regular-
ized covariance selection. Scheinbert et al. [18] show that convergence is guaranteed if additional
cone restrictions are placed on the minimization with respect to X , and small enough step sizes are
used. For our degree prior regularizer, the difficultly is in computing the proximal operator for Ω, as
the rest of the algorithm is identical to that presented in Boyd et al. [6]. We now show how we solve
the problem of computing the proximal operator for Ω.

3.2 Proximal operator using dual decomposition

Here we describe the optimisation algorithm that we effectively use for computing the proximal
operator. The regularizer Ω has a quite complicated structure due to the interplay between the
terms involving the two end points for each edge. We can decouple these terms using the dual
decomposition technique, by writing the proximal operation for a given Z = Y − U as:

minimizeX =
α

ρ

n∑
i

n−1∑
k

(h(k + 1)− h(k))
∣∣Xi,(k)

∣∣+
1

2
||X − Z||22

s.t. X = XT .

4

The only difference so far is that we have made the symmetry constraint explicit. Taking the dual
gives a formulation where the upper and lower triangle are treated as separate variables. The dual
variable matrix V corresponds to the Lagrange multipliers of the symmetry constraint, which for
notational convenience we store in an anti-symmetric matrix. The dual decomposition method is
given in Algorithm 1.

Algorithm 1 Dual decomposition main
input: matrix Z, constants α, ρ
input: step-size 0 < η < 1
initialize: X = Z
initialize: V = 0n
repeat

for l = 0 until n− 1 do
Xl∗ = solveSubproblem(Zl∗, Vl∗) # Algorithm 2

end for
V = V + η(X −XT)

until ||X −XT || < 10−6

X = 1
2
(X +XT) # symmetrize

round: any |Xij | < 10−15 to 0
return X

We use the notationXi∗ to denote the ith row ofX . Since this is a dual method, the primal variables
X are not feasible (i.e. symmetric) until convergence. Essentially we have decomposed the original
problem, so that now we only need to solve the proximal operation for each node in isolation, namely
the subproblems:

∀i. X(l+1)
i∗ = arg min

x

α

ρ

n−1∑
k

(h(k + 1)− h(k))
∣∣x(k)∣∣+ ||x− Zi∗ + V

(l)
i∗ ||

2
2. (3)

Note that the dual variable has been integrated into the quadratic term by completing the square.
As the diagonal elements of X are not included in the sort ordering, they will be minimized by
Xii = Zii, for all i. Each subproblem is strongly convex as they consist of convex terms plus a
positive quadratic term. This implies that the dual problem is differentiable (as the subdifferential
contains only one subgradient), hence the V update is actually gradient ascent. Since a fixed step
size is used, and the dual is Lipschitz continuous, for sufficiently small step-size convergence is
guaranteed. In practice we used η = 0.9 for all our tests.

This dual decomposition subproblem can also be interpreted as just a step within the ADMM frame-
work. If applied in a standard way, only one dual variable update would be performed before another
expensive eigenvalue decomposition step. Since each iteration of the dual decomposition is much
faster than the eigenvalue decomposition, it makes more sense to treat it as a separate problem as
we propose here. It also ensures that the eigenvalue decomposition is only performed on symmetric
matrices.

Each subproblem in our decomposition is still a non-trivial problem. They do have a closed form
solution, involving a sort and several passes over the node’s edges, as described in Algorithm 2.

Proposition 3. Algorithm 2 solves the subproblem in equation 3.
Proof: See Appendix 1 in the supplementary material. The main subtlety is the grouping together
of elements induced at the non-differentiable points. If multiple edges connected to the same node
have the same absolute value, their subdifferential becomes the same, and they behave as a single
point whose weight is the average. To handle this grouping, we use a disjoint-set data-structure,
where each xj is either in a singleton set, or grouped in a set with other elements, whose absolute
value is the same.

4 Alternative degree priors

Under the restrictions on h detailed in Proposition 1, several other choices seem reasonable. The
scale free prior can be smoothed somewhat, by the addition of a linear term, giving

hε,β(i) = log(i+ ε) + βi,

5

Algorithm 2 Dual decomposition subproblem (solveSubproblem)
input: vectors z, v
initialize: Disjoint-set datastructure with set membership function γ
w = z − v # w gives the sort order
u = 0n
build: sorted-to-original position function µ under descending absolute value order of w, excluding the
diagonal
for k = 0 until n− 1 do
j = µ(k)
uj = |wj | − α

ρ
(h(k + 1)− h(k))

γ(j).value = uj
r = k
while r > 1 and γ(µ(r)).value ≥ γ(µ(r − 1)).value do

join: the sets containing µ(r) and µ(r − 1)
γ(µ(r)).value = 1

|γ(µ(r))|
∑
i∈γ(µ(r)) ui

set: r to the first element of γ(µ(r)) by the sort ordering
end while

end for
for i = 1 to N do
xi = γ(i).value
if xi < 0 then
xj = 0 # negative values imply shrinkage to 0

end if
if wi < 0 then
xj = −xj # Correct orthant

end if
end for
return x

where β controls the strength of the smoothing. A slower diminishing choice would be a square-root
function such as

hβ(i) = (i+ 1)
1
2 − 1 + βi.

This requires the linear term in order to correspond to a normalizable prior.

Ideally we would choose h so that the expected degree distribution under the ERG model matches
the particular form we wish to encourage. Finding such a h for a particular graph size and degree
distribution amounts to maximum likelihood parameter learning, which for ERG models is a hard
learning problem. The most common approach is to use sampling based inference. Approaches
based on Markov chain Monte Carlo techniques have been applied widely to ERG models [19] and
are therefore applicable to our model.

5 Related Work

The covariance selection problem has recently been addressed by Liu and Ihler [14] using
reweighted L1 regularization. They minimize the following objective:

f(X) = 〈X,C〉 − log detX + α
∑
v∈V

log (‖X¬v‖+ ε) + β
∑
v

|Xvv| .

The regularizer is split into an off diagonal term which is designed to encourage sparsity in the edge
parameters, and a more traditional diagonal term. Essentially they use ‖X¬v‖ as the continuous
counterpart of node v’s degree. The biggest difficulty with this objective is the log term, which
makes f highly non-convex. This can be contrasted to our approach, where we start with essentially
the same combinatorial prior, but we use an alternative, convex relaxation.

The reweighted L1 [7] aspect refers to the method of optimization applied. A double loop method is
used, in the same class as EM methods and difference of convex programming, where each L1 inner
problem gives a monotonically improving lower bound on the true solution.

6

0.00 0.05 0.10 0.15 0.20 0.25
False Positives

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

s

L1
Reweighted L1
Submodular log
Submodular root

0.00 0.05 0.10 0.15 0.20 0.25
False Positives

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

s

L1
Reweighted L1
Submodular log
Submodular root

Figure 1: ROC curves for BA model (left) and fixed degree distribution model (right)

Figure 2: Reconstruction of a gene association network using L1 (left), submodular relaxation (middle), and
reweighted L1 (right) methods

6 Experiments
Reconstruction of synthetic networks. We performed a comparison against the reweighted L1

method of Liu and Ihler [14], and a standard L1 regularized method, both implemented using
ADMM for optimization. Although Liu and Ihler [14] use the glasso [10] method for the inner
loop, ADMM will give identical results, and is usually faster [18]. Graphs with 60 nodes were gen-
erated using both the Barabasi-Albert model [4] and a predefined degree distribution model sampled
using the method from Bayati et al. [5] implemented in the NetworkX software package. Both meth-
ods generate scale-free graphs; the BA model exhibits a scale parameter of 3.0, whereas we fixed
the scale parameter at 2.0 for the other model. To define a valid Gaussian model, edge weights of
Xij = −0.2 were assigned, and the node weights were set at Xii = 0.5−

∑
i 6=j Xij so as to make

the resulting precision matrix diagonally dominant. The resulting Gaussian graphical model was
sampled 500 times. The covariance matrix of these samples was formed, then normalized to have
diagonal uniformly 1.0. We tested with the two h sequences described in section 4. The parame-
ters for the degree weight sequences were chosen by grid search on random instances separate from
those we tested on. The resulting ROC curves for the Hamming reconstruction loss are shown in
Figure 1. Results were averaged over 30 randomly generated graphs for each each figure.

We can see from the plots that our method with the square-root weighting presents results superior
to those from Liu and Ihler [14] for these datasets. This is encouraging particularly since our for-
mulation is convex while the one from Liu and Ihler [14] isn’t. Interestingly, the log based weights
give very similar but not identical results to the reweighting scheme which also uses a log term. The
only case where it gives inferior reconstructions is when it is forced to give a sparser reconstruction
than the original graph.

Reconstruction of a gene activation network. A common application of sparse covariance selec-
tion is the estimation of gene association networks from experimental data. A covariance matrix of
gene co-activations from a number of independent micro-array experiments is typically formed, on
which a number of methods, including sparse covariance selection, can be applied. Sparse estima-
tion is key for a consistent reconstruction due to the small number of experiments performed. Many
biological networks are conjectured to be scale-free, and additionally ERG modelling techniques are
known to produce good results on biological networks [16]. So we consider micro-array datasets a
natural test-bed for our method. We ran our method and the L1 reconstruction method on the first

7

500 genes from the GDS1429 dataset (http://www.ncbi.nlm.nih.gov/gds/1429), which contains 69
samples for 8565 genes. The parameters for both methods were tuned to produce a network with
near to 50 edges for visualization purposes. The major connected component for each is shown in
Figure 2.

While these networks are too small for valid statistical analysis of the degree distribution, the sub-
modular relaxation method produces a network with structure that is commonly seen in scale free
networks. The star subgraph centered around gene 60 is more clearly defined in the submodular
relaxation reconstruction, and the tight cluster of genes in the right is less clustered in the L1 re-
construction. The reweighted L1 method produced a quite different reconstruction, with greater
clustering.

0 20 40 60 80 100
Iteration

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

D
is

ta
n
ce

 f
ro

m
 s

o
lu

ti
o
n

Dual decomp

Subgradient

MNP

Figure 3: Comparison of proximal operators

Runtime comparison: different proximal opera-
tor methods. We performed a comparison against
two other methods for computing the proximal opera-
tor: subgradient descent and the minimum norm point
(MNP) algorithm. The MNP algorithm is a submodu-
lar minimization method that can be adapted for com-
puting the proximal operator [2]. We took the input pa-
rameters from the last invocation of the proximal oper-
ator in the BA test, at a prior strength of 0.7. We then
plotted the convergence rate of each of the methods,
shown in Figure 3. As the tests are on randomly gen-
erated graphs, we present only a representative exam-
ple. It is clear from this and similar tests that we per-
formed that the subgradient descent method converges
too slowly to be of practical applicability for this prob-
lem. Subgradient methods can be a good choice when
only a low accuracy solution is required; for convergence of ADMM the error in the proximal opera-
tor needs to be smaller than what can be obtained by the subgradient method. The MNP method also
converges slowly for this problem, however it achieves a low but usable accuracy quickly enough
that it could be used in practice. The dual decomposition method achieves a much better rate of
convergence, converging quickly enough to be of use even for strong accuracy requirements.

The time for individual iterations of each of the methods was 0.65ms for subgradient descent, 0.82ms
for dual decomposition and 15ms for the MNP method. The speed difference is small between a
subgradient iteration and a dual decomposition iteration as both are dominated by the cost of a sort
operation. The cost of a MNP iteration is dominated by two least squares solves, whose running
time in the worst case is proportional to the square of the current iteration number. Overall, it is
clear that our dual decomposition method is significantly more efficient.

Runtime comparison: submodular relaxation against other approaches. The running time of
the three methods we tested is highly dependent on implementation details, so the following speed
comparison should be taken as a rough guide. For a sparse reconstruction of a BA model graph with
100 vertices and 200 edges, the average running time per 10−4 error reconstruction over 10 random
graphs was 16 seconds for the reweighted L1 method and 5.0 seconds for the submodular relaxation
method. This accuracy level was chosen so that the active edge set for both methods had stabilized
between iterations. For comparison, the standard L1 method was significantly faster, taking only
0.72 seconds on average.

Conclusion
We have presented a new prior for graph reconstruction, which enforces the recovery of scale-free
networks. This prior falls within the growing class of structured sparsity methods. Unlike previous
approaches to regularizing the degree distribution, our proposed prior is convex, making training
tractable and convergence predictable. Our method can be directly applied in contexts where sparse
covariance selection is currently used, where it may improve the reconstruction quality.

Acknowledgements
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

8

References
[1] Francis Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical report,

INRIA, 2010.

[2] Francis Bach. Structured sparsity-inducing norms through submodular functions. NIPS, 2010.

[3] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with sparsity-
inducing penalties. Foundations and Trends in Machine Learning, 2012.

[4] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks. Science, 286:509–
512, 1999.

[5] Moshen Bayati, Jeong Han Kim, and Amin Saberi. A sequential algorithm for generating random graphs.
Algorithmica, 58, 2009.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 2011.

[7] Emmanuel J. Candes, Michael B. Wakin, and Stephen P. Boyd. Enhancing sparsity by reweighted l1
minimization. Journal of Fourier Analysis and Applications, 2008.

[8] A. P. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

[9] Adrian Dobra, Chris Hans, Beatrix Jones, Joseph R Nevins, and Mike West. Sparse graphical models for
exploring gene expression data. Journal of Multivariate Analysis, 2004.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 2007.

[11] Saruto Fujishige. Submodular Functions and Optimization. Elsevier, 2005.

[12] Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and Francis Bach. Proximal methods for sparse
hierarchical dictionary learning. ICML, 2010.

[13] Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse principal component anal-
ysis. AISTATS, 2010.

[14] Qiang Liu and Alexander Ihler. Learning scale free networks by reweighted l1 regularization. AISTATS,
2011.

[15] Zhaosong Lu. Smooth optimization approach for sparse covariance selection. SIAM J. Optim., 2009.

[16] Zachary M. Saul and Vladimir Filkov. Exploring biological network structure using exponential random
graph models. Bioinformatics, 2007.

[17] Katya Scheinberg and Shiqian Ma. Optimization for Machine Learning, chapter 17. optimization methods
for sparse inverse covariance selection. MIT Press, 2011.

[18] Katya Scheinbert, Shiqian Ma, and Donald Goldfarb. Sparse inverse covariance selection via alternating
linearization methods. In NIPS, 2010.

[19] T. Snijders. Markov chain monte carlo estimation of exponential random graph models. Journal of Social
Structure, 2002.

[20] Tom A.B. Snijders, Philippa E. Pattison, and Mark S. Handcock. New specifications for exponential
random graph models. Technical report, University of Washington, 2004.

[21] Alan Terry. Exponential random graphs. Master’s thesis, University of York, 2005.

[22] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society, 2007.

9

