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Abstract

We develop and analyze stochastic optimization algorithmsfor problems in which
the expected loss is strongly convex, and the optimum is (approximately) sparse.
Previous approaches are able to exploit only one of these twostructures, yielding
a O(d/T ) convergence rate for strongly convex objectives ind dimensions and
O(

√
s(log d)/T ) convergence rate when the optimum iss-sparse. Our algorithm

is based on successively solving a series ofℓ1-regularized optimization problems
using Nesterov’s dual averaging algorithm. We establish that the error of our solu-
tion afterT iterations is at mostO(s(log d)/T ), with natural extensions to approx-
imate sparsity. Our results apply to locally Lipschitz losses including the logistic,
exponential, hinge and least-squares losses. By recourse to statistical minimax
results, we show that our convergence rates are optimal up toconstants. The ef-
fectiveness of our approach is also confirmed in numerical simulations where we
compare to several baselines on a least-squares regressionproblem.

1 Introduction

Stochastic optimization algorithms have many desirable features for large-scale machine learning,
and have been studied intensively in the last few years (e.g., [18, 4, 8, 22]). The empirical efficiency
of these methods is backed with strong theoretical guarantees on their convergence rates, which
depend on various structural properties of the objective function. More precisely, for an objective
function that is strongly convex, stochastic gradient descent enjoys a convergence rate ranging from
O(1/T ), when features vectors are extremely sparse, toO(d/T ), when feature vectors are dense [9,
14, 10]. This strong convexity condition is satisfied for many common machine learning problems,
including boosting, least squares regression, SVMs and generalized linear models among others.

A complementary condition is that of (approximate) sparsity in the optimal solution. Sparse models
have proven useful in many applications (see e.g., [6, 5] andreferences therein), and many statistical
procedures seek to exploit such sparsity. It has been shown [15, 19] that when the optimal solutionθ∗

is s-sparse, appropriate versions of the mirror descent algorithm converge at a rateO(s
√

(log d)/T ).
Srebro et al. [20] exploit the smoothness of common loss functions, and obtain improved rates of
the formO(η

√
(s log d)/T ), whereη is the noise variance. While the

√
log d scaling makes these

methods attractive in high dimensions, their scaling with respect to the iterationsT is relatively
slow—namely,O(1/

√
T ) as opposed toO(1/T ) for strongly convex problems.

Many optimization problems encountered in practice exhibit both features: the objective function is
strongly convex, and the optimum is (approximately) sparse. This fact leads to the natural question:
is it possible to design algorithms for stochastic optimization that enjoy the best features of both
types of structure? More specifically, an algorithm should have aO(1/T ) convergence rate, as well
as a logarithmic dependence on dimension. The main contribution of this paper is to answer this
question in the affirmative, and to analyze a new algorithm that has convergence rateO((s log d)/T )
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for a strongly convex problem with ans-sparse optimum ind dimensions. This rate is unimprovable
(up to constants) in our setting, meaning that no algorithm can converge at a substantially faster rate.
Our analysis also yields optimal rates when the optimum is only approximately sparse.

The algorithm proposed in this paper builds off recent work on multi-step methods for strongly
convex problems [11, 10, 12], but involves some new ingredients so as to obtain optimal rates for
statistical problems with sparse optima. In particular, weform a sequence of objective functions
by decreasing the amount of regularization as the optimization algorithm proceeds which is quite
natural from a statistical viewpoint. Each step of our algorithm can be computed efficiently, with a
closed form update rule in many common examples. In summary,the outcome of our development
is anoptimal one-passalgorithm for many structured statistical problems in highdimensions, and
with computational complexity linear in the sample size. Numerical simulations confirm our theo-
retical predictions regarding the convergence rate of the algorithm, and also establish its superiority
compared to regularized dual averaging [22] and stochasticgradient descent algorithms. They also
confirm that a direct application of the multi-step method ofJuditsky and Nesterov [11] is inferior
to our algorithm, meaning that our gradual decrease of regularization is quite critical. More details
on our results and their proofs can be found in the full-length version of this paper [2].

2 Problem set-up and algorithm description

Given a subsetΩ ⊆ R
d and a random variableZ taking values in a spaceZ, we consider an

optimization problem of the form

θ∗ ∈ argmin
θ∈Ω

E[L(θ;Z)], (1)

whereL : Ω × Z → R is a given loss function. As is standard in stochastic optimization, we do
not have direct access to theexpected loss functionL(θ) := E[L(θ;Z)], nor to its subgradients.
Rather, for a given query pointθ ∈ Ω, we observe astochastic subgradient, meaning a random
vectorg(θ) ∈ R

d such thatE[g(θ)] ∈ ∂L(θ). The goal of this paper is to design algorithms that are
suitable for solving the problem (1) when the optimumθ∗ is (approximately) sparse.

Algorithm description: In order to solve a sparse version of the problem (1), our strategy is to
consider a sequence of regularized problems of the form

min
θ∈Ω′

{
L(θ) + λ‖θ‖1

}
. (2)

Our algorithm involves a sequence ofKT different epochs, where the regularization parameterλ > 0
and the constraint setΩ′ ⊂ Ω change from epoch to epoch. The epochs are specified by:

• a sequence of natural numbers{Ti}KT

i=1, whereTi specifies the length of theith epoch,

• a sequence of positive regularization weights{λi}KT

i=1, and

• a sequence of positive radii{Ri}KT

i=1 andd-dimensional vectors{yi}KT

i=1, which specify the con-
straint set,Ω(Ri) :=

{
θ ∈ Ω | ‖θ − yi‖p ≤ Ri

}
, that is used throughout theith epoch.

We initialize the algorithm in the first epoch withy1 = 0, and with any radiusR1 that is an up-
per bound on‖θ∗‖1. The norm‖ · ‖p used in defining the constraint setΩ(Ri) is specified by
p = 2 log d/(2 log d− 1), a choice that will be clarified momentarily.

The goal of theith epoch is to updateyi 7→ yi+1, in such a way that we are guaranteed that
‖yi+1 − θ∗‖21 ≤ R2

i+1 for eachi = 1, 2, . . .. We choose the radii such thatR2
i+1 = R2

i /2, so
that upon termination,‖yKT

− θ∗‖21 ≤ R2
1/2

KT−1. In order to updateyi 7→ yi+1, we runTi rounds
of the stochastic dual averaging algorithm [17] (henceforth DA) on the regularized objective

min
θ∈Ω(Ri)

{
L(θ) + λi‖θ‖1

}
. (3)

The DA method generates two sequences of vectors{µt}Ti

t=0 and{θt}Ti

t=0 initialized asµ0 = 0

andθ0 = yi, using a sequence of step sizes{αt}Ti

t=0. At iterationt = 0, 1, . . . , Ti, we letgt be a
stochastic subgradient ofL atθt, and we letνt be any element of the subdifferential of theℓ1-norm
‖ · ‖1 atθt. The DA update at timet maps(µt, θt) 7→ (µt+1, θt+1) via the recursions

µt+1 = µt + gt + λiν
t, and θt+1 = arg min

θ∈Ω(Ri)

{
αt+1〈µt+1, θ〉+ ψyi,Ri

(θ)
}
, (4)
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where the prox functionψ is specified below (5). The pseudocode describing the overall procedure
is given in Algorithm 1. In the stochastic dual averaging updates (4), we use the prox function

ψyi,Ri
(θ) =

1

2R2
i (p− 1)

‖θ − yi‖2p, where p =
2 log d

2 log d− 1
. (5)

This particular choice of the prox-function and the specificvalue ofp ensure that the functionψ
is strongly convex with respect to theℓ1-norm, and has been previously used for sparse stochastic
optimization (see e.g. [15, 19, 7]). In most of our examples,Ω = R

d and owing to our choice of the
prox-function and the feasible set in the update (4), we can computeθt+1 fromµt+1 in closed form.
Some algebra yields that the update (4) withΩ = R

d is equivalent to

θt+1 = yi +
R2

iα
t+1

(p− 1)(1 + ξ)

|µt+1|(q−1)sign(µt+1)

‖µt+1‖(q−2)
q

, where ξ = max

{
0,
αt+1‖µt+1‖qRi

p− 1
− 1

}
.

Here|µt+1|(q−1) refers to elementwise operations andq = p/(p− 1) is the conjugate exponent to
p. We observe that our update (4) computes a subgradient of theℓ1-norm rather than computing an
exact prox-mapping as in some previous methods [16, 7, 22]. Computing such a prox-mapping for
yi 6= 0 requiresO(d2) computation, which is why we adopt the update (4) with a complexityO(d).

Algorithm 1 Regularization Annealed epoch Dual AveRaging (RADAR)

Require: Epoch length schedule{Ti}KT

i=1, initial radiusR1, step-size multiplierα, prox-function
ψ, initial prox-centery1, regularization parametersλi.
for Epochi = 1, 2, . . . ,KT do

Initialize µ0 = 0 andθ0 = yi.
for Iterationt = 0, 1, . . . , Ti − 1 do

Update(µt, θt) 7→ (µt+1, θt+1) according to rule (4) with step sizeαt = α/
√
t.

end for
Setyi+1 =

∑Ti
t=1 θt

Ti
.

UpdateR2
i+1 = R2

i /2.
end for
Return yKT+1

Conditions: Having defined our algorithm, we now discuss the conditions on the objective func-
tionL(θ) and stochastic gradients that underlie our analysis.

Assumption 1(Locally Lipschitz). For eachR > 0, there is a constantG = G(R) such that

|L(θ) − L(θ̃)| ≤ G ‖θ − θ̃‖1 (6)

for all pairsθ, θ̃ ∈ Ω such that‖θ − θ∗‖1 ≤ R and‖θ̃ − θ∗‖1 ≤ R.

We note that it suffices to have‖∇L(θ)‖∞ ≤ G(R) for the above condition. As mentioned, our
goal is to obtain fast rates for objectives satisfying a local strong convexity condition, defined below.

Assumption 2 (Local strong convexity (LSC)). The functionL : Ω → R satisfies aR-local form
of strong convexity (LSC) if there is a non-negative constant γ = γ(R) such that

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+ γ

2
‖θ − θ̃‖22 ∀θ, θ̃ ∈ Ω with ‖θ‖1 ≤ R and‖θ̃‖1 ≤ R. (7)

Some of our results regarding stochastic optimization froma finite sample will use a weaker form of
the assumption, called local RSC, exploited in our recent work on statistics and optimization [1, 13].
Our final assumption is a tail condition on the error in stochastic gradients:e(θ) := g(θ)− E[g(θ)].

Assumption 3(Sub-Gaussian stochastic gradients). There is a constantσ = σ(R) such that

E
[
exp(‖e(θ)‖2∞/σ2)

]
≤ exp(1) for all θ such that‖θ − θ∗‖1 ≤ R. (8)

Clearly, this condition holds whenever the error vectore(θ) has bounded components. More gener-
ally, the bound (8) holds whenever each component of the error vector has sub-Gaussian tails.
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Some illustrative examples: We now describe some examples that satisfy the above conditions to
illustrate how the various parameters of interest might be obtained in different scenarios.
Example 1 (Classification under Lipschitz losses). In binary classification, the samples consist of
pairsz = (x, y) ∈ R

d × {−1, 1}. Common choices for the loss functionL(θ; z) are the hinge loss
max(0, 1−y〈θ, x〉) or the logistic losslog(1+exp(−y〈θ, x〉). Given a distributionP overZ (either
the population or the empirical distribution), a common strategy is to draw(xt, yt) ∼ P at iteration
t and usegt = ∇L(θ; (xt, yt)). We now illustrate how our conditions are satisfied in this setting.

• Locally Lipschitz:Both the above examples actually satisfy a stronger global Lipschitz condition
since we have the boundG ≤ ‖∇L(θ)‖∞ ≤ E‖x‖∞. Often, the data satisfies the normalization
‖x‖∞ ≤ B, in which case we getG ≤ B. More generally, tail conditions on the marginal
distribution of each coordinate ofx ensureG = O(

√
log d)) is valid with high probability.

• LSC: When the expectation in the objective (1) is under the population distribution, the above
examples satisfy LSC. Here we focus on the example of the logistic loss, where we define the link
functionψ(α) = exp(α)/(1+exp(α))2. We also defineΣ = E[xxT ] to be the covariance matrix
and letσmin(Σ) denote its minimum singular value. Then a second-order Taylor expansion yields

L(θ̃)− L(θ) − 〈∇L(θ), θ̃ − θ〉 = ψ(〈θ̃, x〉)
2

‖Σ1/2(θ − θ̃)‖22 ≥ ψ(BR)σmin(Σ)

2
‖θ − θ̃‖22,

whereθ̃ = aθ + (1− a)θ̃ for somea ∈ (0, 1). Henceγ ≥ ψ(BR)σmin(Σ) in this example.
• Sub-Gaussian gradients:Assuming the boundE‖x‖∞ ≤ B, this condition is easily verified. A

simple calculation yieldsσ = 2B, since

‖e(θ)‖∞ = ‖∇L(θ; (x, y)) −∇L(θ)‖∞ ≤ ‖∇L(θ; (x, y))‖∞ + ‖∇L(θ)‖∞ ≤ 2B.

Example 2 (Least-squares regression). In the regression setup, we are given samples of the form
z = (x, y) ∈ R

d × R. The loss function of interest isL(θ; (x, y)) = (y − 〈θ, x〉)2/2. To illustrate
the conditions more clearly, we assume that our samples are generated asy = 〈x, θ∗〉 + w, where
w ∼ N (0, η2) andExxT = Σ so thatEL(θ; (x, y)) = ‖Σ1/2(θ − θ∗)‖22/2.

• Locally Lipschitz: For this example, the Lipschitz parameterG(R) depends on the boundR.
If we defineρ(Σ) = maxiΣii to be the largest variance of a coordinate ofx, then a direct
calculation yields the boundG(R) ≤ ρ(Σ)R.

• LSC:Again we focus on the case where the expectation is taken under the population distribu-
tion, where we haveγ = σmin(Σ).

• Sub-Gaussian gradients:Once again we assume that‖x‖∞ ≤ B. It can be shown with some
work that Assumption 3 is satisfied withσ2(R) = 8ρ(Σ)2R2 + 4B4R2 + 10B2η2.

3 Main results and their consequences

In this section we state our main results, regarding the convergence of Algorithm 1. We focus on
the cases where Assumptions 1 and 3 hold over the entire setΩ, and RSC holds uniformly for
all ‖θ‖1 ≤ R1; key examples being the hinge and logistic losses from Example 1. Extensions to
examples such as least-squares loss, which are not Lipschitz on all ofΩ require a more delicate
treatment and these results as well the proofs of our resultscan be found in the long version [2].

Formally, we assume thatG(R) ≡ G andσ(R) ≡ σ in Assumptions 1 and 3. We also useγ to
denoteγ(R1) in Assumption 2. For a constantω > 0 governing the error probability in our results,
we also defineω2

i = ω2 + 24 log i at epochi. Our results assume that we run Algorithm 1 with

Ti ≥ c1

[
s2

γ2R2
i

(
(G2 + σ2) log d+ ω2

i σ
2
)
+ log d

]
, (9)

wherec1 is a universal constant. For a total ofT iterations in Algorithm 1, we state our results for
the parameter̂θT = y(KT+1) whereKT is the last epoch completed inT iterations.

3.1 Main theorem and some remarks

We start with our main result which shows an overall convergence rate ofO(1/T ) afterT iterations.
ThisO(1/T ) convergence is analogous to earlier work on multi-step methods for strongly convex
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objectives [11, 12, 10]. For each subsetS ⊆ {1, 2, . . . , d} of cardinalitys, we define

ε2(θ∗;S) := ‖θ∗Sc‖21/s. (10)

This quantity captures the degree of sparsity in the optimumθ∗; for instance,ε2(θ∗;S) = 0 if and
only if θ∗ is supported onS. Given the probability parameterω > 0, we also define the shorthand

κT = log2

[
γ2R2

1T

s2((G2 + σ2) log d+ ω2σ2)

]
log d. (11)

Theorem 1. Suppose the expected lossL satisfies Assumptions 1— 3 with parametersG(R) ≡ G,
γ andσ(R) ≡ σ, and we perform updates (4) with epoch lengths (9) and parameters

λ2i =
Riγ

s
√
Ti

√
(G2 + σ2) log d+ ω2

i σ
2 and α(t) = 5Ri

√
log d

(G2 + λ2i + σ2)t
. (12)

Then for any subsetS ⊆ {1, . . . , d} of cardinalitys and anyT ≥ 2κT , there is a universal constant
c0 such that with probability at least1− 6 exp(−ω2/12) we have

‖θ̂T − θ∗‖22 ≤ c3

[
s

γ2T
((G2 + σ2) log d+ σ2(ω2 + log

κT
log d

)) + ε2(θ∗;S)

]
. (13)

Consequently, the theorem predicts a convergence rate ofO(1/γ2T )which is the best possible under
our assumptions. Under the setup of Example 1, the error bound of Theorem 1 further simplifies to

‖θ̂T − θ∗‖22 = O
(
sB2

γ2T
(log d+ ω2) + ε2(θ∗;S)

)
. (14)

We note that for an approximately sparseθ∗, Theorem 1 guarantees convergence only to a toler-
anceε2(θ∗;S) due to the error terms arising out of the approximate sparsity. Overall, the theorem
provides a family of upper bounds, one for each choice ofS. The best bound can be obtained by
optimizing this choice, trading off the competing contributions ofs and‖θ∗Sc‖1.
At this point, we can compare the result of Theorem 1 to some ofthe previous work. One approach
to minimize the objective (1) is to perform stochastic gradient descent on the objective, which has a

convergence rate ofO((G̃2 + σ̃2)/(γ2T )) [10, 14], where‖∇L(θ)‖2 ≤ G̃ andE exp
(

‖e(θ)‖2
2

σ̃2

)
≤

exp(1). In the setup of Example 1,̃G2 = Bd and similarly forσ̃; giving an exponentially worse
scaling in the dimensiond. An alternative is to perform mirror descent [15, 19] or regularized dual
averaging [22] using the same prox-function as Algorithm 1 but without breaking it up into epochs.
As mentioned in the introduction, this single-step method fails to exploit the strong convexity of our
problem and obtains inferior convergence rates ofO(s

√
log d/T ) [19, 22, 7].

A proposal closer to our approach is to minimize the regularized objective (3), but with a fixed
value ofλ instead of the decreasing schedule ofλi used in Theorem 1. This amounts to using the
method of Juditsky and Nesterov [11] on the regularized problem, and by using the proof techniques
developed in this paper, it can be shown that settingλ = σ

√
log d/T leads to an overall convergence

rate ofÕ
(

sB2

γ2T (log d+ ω2)
)

, which exhibits the same scaling as Theorem 1. However, withthis

fixed setting ofλ, the initial epochs tend to be much longer than needed for halving the error. Indeed,
our setting ofλi is based on minimizing the upper bound at each epoch, and leads to an improved
performance in our numerical simulations. The benefits of slowly decreasing the regularization in
the context of deterministic optimization were also noted in the recent work of Xiao and Zhang [23].

3.2 Some illustrative corollaries

We now present some consequences of Theorem 1 by making specific assumptions regarding the
sparsity ofθ∗. The simplest situation is whenθ∗ is supported on some subsetS of sizes. More
generally, Theorem 1 also applies to the case when the optimum θ∗ is only approximately sparse.
One natural form of approximate sparsity is to assume thatθ∗ ∈ Bq(Rq) for 0 < q ≤ 1, where

Bq(Rq) :=

{
θ ∈ R

d |
d∑

i=1

|θi|q ≤ Rq

}
.
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For 0 < q ≤ 1, membership in the setBq(Rq) enforces a decay rate on the components of the
vectorθ. We now present a corollary of Theorem 1 under such an approximate sparsity condition.
To facilitate comparison with minimax lower bounds, we setω2 = δ log d in the corollaries.

Corollary 1. Under the conditions of Theorem 1, for allT > 2κT with probability at least1 −
6 exp(−δ log d/12), there is a universal constantc0 such that

‖θ̂T − θ∗‖22 ≤





c0

[
G2+σ2(1+δ)

γ2

s log d
T + sσ2

γ2T log κT

log d

]
θ∗ is s-sparse,

c0Rq

[{
(G2+σ2(1+δ)) log d

γ2T

} 2−q

2

+
(

σ2

γ2T

) 2−q

2 log
κT
log d

((1+δ) log d)
q
2

]
θ∗ ∈ Bq(Rq).

The first part of the corollary follows directly from Theorem1 by noting thatε2(θ∗;S) = 0 under
our assumptions. Note that asq ranges over the interval[0, 1], reflecting the degree of sparsity, the
convergence rate ranges from from̃O(1/T ) (for q = 0 corresponding to exact sparsity) tõO(1/

√
T )

(for q = 1). This is a rather interesting trade-off, showing in a precise sense how convergence rates
vary quantitatively as a function of the underlying sparsity.

It is useful to note that the results on recovery for generalized linear models presented here exactly
match those that have been developed in the statistics literature [13, 21], which are optimal under our
assumptions on the design vectors. Concretely, ignoring factors ofO(logT ), we get a parameter̂θT
having error at mostO(s log d/(γ2T ) with an error probability decyaing to zero withd. Moreover,
in doing so our algorithm only goes over at mostT data samples, as each stochastic gradient can be
evaluated with one fresh data sample drawn from the underlying distribution. Since the statistical
minimax lower bounds [13, 21] demonstrate that this is the smallest possible error that any method
can attain fromT samples, our method is statistically optimal in the scalingof the estimation error
with the number of samples. We also observe that it is easy to instead set the error probability to
δ = ω2 logT , if an error probability decaying withT is desired, incurring at most additionallogT
factors in the error bound. Finally, we also remark that our techniques extend to handle examples
such as the least-squares loss that are not uniformly Lipschitz. The details of this extension are
deferred to the long version of this paper [2].

Stochastic optimization over finite pools: A common setting for the application of stochastic op-
timization methods in machine learning is when one has a finite pool of examples, say{Z1, . . . , Zn},
and the objective (1) takes the form

θ∗ = argmin
θ∈Ω

1

n

n∑

i=1

L(θ;Zi) (15)

In this setting, a stochastic gradientg(θ) can be obtained by drawing a sampleZj at randomwith
replacementfrom the pool{Z1, . . . , Zn}, and returning the gradient∇L(θ;Zj).

In high-dimensional problems whered≫ n, the sample loss is not strongly convex. However, it has
been shown by many researchers [3, 13, 1] that under suitableconditions, this objective does satisfy
restricted forms of the LSC assumption, allowing us to appeal to a generalized form of Theorem 1.
We will present this corollary only for settings whereθ∗ is exactly sparse and also specialize to the
logistic loss,L(θ; (x, y)) = log(1 + exp(−y〈θ, x〉)) to illustrate the key aspects of the result. We
recall the definition of the link functionψ(α) = exp(α)/(1 + exp(α))2. We will state the result
for sub-Gaussian data design with parameters(Σ, η2x), meaning that theE[xixTi ] = Σ and〈u, xi〉 is
ηx-sub-Gaussian for any unit norm vectoru ∈ R

d.

Corollary 2. Consider the finite-pool loss(15), based onn i.i.d. samples from a sub-Gaussian
design with parameters(Σ, η2x). Suppose that Assumptions 1-3 are satisfied and the optimumθ∗

of (15) is s-sparse. Then there are universal constants(c0, c1, c2, c3) such that for allT ≥ 2κT and
n ≥ c3

log d
σ2
min

(Σ)
max(σ2

min(Σ), η
4
x), we have

‖θ̂T − θ∗‖22 ≤ c0
σ2
min(Σ)

s log d

T

{ 1

ψ2(2BR1)

{
B2(1 + δ)

}}
+ c0

sσ2

σ2
min(Σ)ψ

2(2BR1)T
log

κT
log d

.

with probability at least1− 2 exp(−c1nmin(σ2
min(Σ)/η

4
x, 1))− 6 exp(−δ log d/12).
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We observe that the bound only holds when the number of samplesn in the objective (15) is large
enough, which is necessary for the restricted form of the LSCcondition to hold with non-trivial
parameters in the finite sample setting.

A modified method with constant epoch lengths: Algorithm 1 as described is efficient and sim-
ple to implement. However, the convergence results critically rely on the epoch lengthTi to be
set appropriately in a doubling manner. This could be problematic in practice, where it might be
tricky to know when an epoch should be terminated. FollowingJuditsky and Nesterov [11], we
next demonstrate how a variant of our algorithm with constant epoch lengths enjoys similar rates of
convergence. The key challenge here is that unlike the previous set-up [11], our objective function
changes at each epoch which leads to significant technical difficulties. At a very coarse level, if
we have a total budget ofT iterations, then this version of our algorithm allows us to set the epoch
lengths toO(log T ), and guarantees convergence rates that areO((log T )/T ).

Theorem 2. Suppose the expected loss satisfies Assumptions 1- 3 with parametersG, γ, andσ
resp. LetS be any subset of{1, . . . , d} of cardinalitys. Suppose we run Algorithm 1 for a total of
T iterations with epoch lengthTi ≡ T log d/κT and with parameters as in Equation 12. Assuming
that this setting ensuresTi = O(log d), for any setS, with probability at least1− 3 exp(ω2/12)

‖θ̂T − θ∗‖22 = O
(
s
(G2 + σ2) log d+ (ω2 + log(κ/ log d))σ2

T

log d

κ

)
.

The theorem shows that up to logarithmic factors inT , setting the epoch lengths optimally is not
critical. A similar result can also be proved for the case of least-squares regression.

4 Simulations

In this section we will present numerical simulations that back our theoretical convergence results.
We focus on least-squares regression, discussed in Example2. Specifically, we generate samples
(xt, yt) with each coordinate ofxt distributed as Unif[−B,B] andyt = 〈θ∗, xt〉+ wt. We pickθ∗

to bes-sparse vector withs = ⌈log d⌉, andwt ∼ N (0, η2) with η2 = 0.5. Given an iterateθt, we
generate a stochastic gradient of the expected loss (1) at(xt, yt). For theℓ1-norm, we pick the sign
vector ofθt, with 0 for any component that is zero, a member of theℓ1-sub-differential.

Our first set of results evaluate Algorithm 1 against other stochastic optimization baselines assuming
a complete knowledge of problem parameters. Specifically, we epochi is terminated once
‖yi+1 − θ∗‖2p ≤ ‖yi − θ∗‖2p/2. This ensures thatθ∗ remains feasible throughout, and tests the per-
formance of Algorithm 1 in the most favorable scenario. We compare the algorithm against two
baselines. The first baseline is the regularized dual averaging (RDA) algorithm [22], applied to the
regularized objective (3) withλ = 4η

√
log d/T , which is the statistically optimal regularization pa-

rameter withT samples. We use the same prox-functionψ(θ) =
‖θ‖2

p

2(p−1) , so that the theory for RDA

predicts a convergence rate ofO(s
√

log d/T ) [22]. Our second baseline is the stochastic gradient
(SGD) algorithm which exploits the strong convexity but notthe sparsity of the problem (1). Since
the squared loss is not uniformly Lipschitz, we impose an additional constraint‖θ‖1 ≤ R1, without
which the algorithm does not converge. The results of this comparison are shown in Figure 1(a),
where we present the error‖θt − θ∗‖22 averaged over 5 random trials. We observe that RADAR
comprehensively outperforms both the baselines, confirming the predictions of our theory.

The second set of results focuses on evaluating algorithms better tailored for our assumptions. Our
first baseline here is the approach that we described in our remarks following Theorem 1. In this
approach we use the same multi-step strategy as Algorithm 1 but keepλ fixed. We refer to this as
Epoch Dual Averaging (henceforth EDA), and again employλ = 4η

√
log d/T with this strategy.

Our epochs are again determined by halving of the squaredℓp-error measured relative toθ∗.

Finally, we also evaluate the version of our algorithm with constant epoch lengths that we analyzed in
Theorem 2 (henceforth RADAR-CONST), using epochs of lengthlog(T ). As shown in Figure 1(b),
the RADAR-CONST has relatively large error during the initial epochs, before converging quite
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rapidly, a phenomenon consistent with our theory.1 Even though the RADAR-CONST method does
not use the knowledge ofθ∗ to set epochs, all three methods exhibit the same eventual convergence
rates, with RADAR (set with optimal epoch lengths) performing the best, as expected. Although
RADAR-CONST is very slow in initial iterations, its convergence rate remains competitive with
EDA (even though EDAdoesexploit knowledge ofθ∗), but is worse than RADAR as expected.

Overall, our experiments demonstrate that RADAR and RADAR-CONST have practical perfor-
mance consistent with our theoretical predictions. Although optimal epoch length setting is not
too critical for our approach, better data-dependent empirical rules for determining epoch lengths
remains an interesting question for future research. The relatively poorer performance of EDA
demonstrates the importance of our decreasing regularization schedule.
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Figure 1. A comparison of RADAR with other stochastic optimization algorithms ford = 40000 and
s = ⌈log d⌉. The left plot compares RADAR with the RDA and SGD algorithms, neither of which
exploits both the sparsity and the strong convexity structures simultaneously. The right one compares
RADAR with the EDA and RADAR-CONST algorithms, all of which exploit the problem structure
but with varying degrees of effectiveness. We plot‖θt− θ

∗‖22 averaged over 5 random trials versus the
number of iterations.

5 Discussion

In this paper we present an algorithm that is able to take advantage of the strong convexity and spar-
sity conditions that are satsified by many common problems inmachine learning. Our algorithm
is simple and efficient to implement, and for ad-dimensional objective with ans-sparse optima, it
achieves the minimax-optimal convergence rateO(s log d/T ). We also demonstrate optimal con-
vergence rates for problems that have weakly sparse optima,with implications for problems such as
sparse linear regression and sparse logistic regression. While we focus our attention exclusively on
sparse vector recovery due to space constraints, the ideas naturally extend to other structures such as
group sparse vectors and low-rank matrices. It would be interesting to study similar developments
for other algorithms such as mirror descent or Nesterov’s accelerated gradient methods, leading to
multi-step variants of those methods with optimal convergence rates in our setting.
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1 To clarify, the epoch lengths in RADAR-CONST are set large enough to guarantee that we can attain an overall error bound ofO(1/T ),

meaning that the initial epochs for RADAR-CONST are much longer than for RADAR. Thus, after roughly 500 iterations, RADAR-CONST

has done only 2 epochs and operates with a crude constraint set Ω(R1/4). During epochi, the step size scales proportionally toRi/
√
t,

wheret is the iteration number within the epoch; hence the relatively large initial steps in an epoch can take us to a bad solutioneven when

we start with a good solutionyi whenRi is large. AsRi decreases further with more epochs, this effect is mitigated and the error of

RADAR-CONST does rapidly decrease like our theory predicts.
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