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Abstract

We develop and analyze stochastic optimization algorittamgroblems in which
the expected loss is strongly convex, and the optimum isréeqapately) sparse.
Previous approaches are able to exploit only one of thesstiwotures, yielding
a O(d/T) convergence rate for strongly convex objectives! idimensions and
O(y/s(logd)/T) convergence rate when the optimungisparse. Our algorithm
is based on successively solving a serieé;afegularized optimization problems
using Nesterov’s dual averaging algorithm. We establiahttie error of our solu-
tion afterT iterations is at mosP(s(log d) /T"), with natural extensions to approx-
imate sparsity. Our results apply to locally Lipschitz les#ncluding the logistic,
exponential, hinge and least-squares losses. By recours@atistical minimax
results, we show that our convergence rates are optimal apristants. The ef-
fectiveness of our approach is also confirmed in numericalisitions where we
compare to several baselines on a least-squares regrpessimam.

1 Introduction

Stochastic optimization algorithms have many desirakdéufes for large-scale machine learning,
and have been studied intensively in the last few years, (&&[4,[8/22]). The empirical efficiency
of these methods is backed with strong theoretical guagarde their convergence rates, which
depend on various structural properties of the objectimetion. More precisely, for an objective
function that is strongly convex, stochastic gradient dasenjoys a convergence rate ranging from
O(1/T), when features vectors are extremely sparsé)(i¢/ 1), when feature vectors are denise [9,
[14,[10]. This strong convexity condition is satisfied for maommon machine learning problems,
including boosting, least squares regression, SVMs andrgéred linear models among others.

A complementary condition is that of (approximate) sparisitthe optimal solution. Sparse models
have proven useful in many applications (see €.¢.][6, 5tefedences therein), and many statistical
procedures seek to exploit such sparsity. It has been stidwa$] that when the optimal solutiér

is s-sparse, appropriate versions of the mirror descent dlgniconverge at a raté(s+/(logd)/T).
Srebro et al.[[20] exploit the smoothness of common losstions, and obtain improved rates of
the formO(n+/(slogd)/T), wheren is the noise variance. While thglog d scaling makes these
methods attractive in high dimensions, their scaling wéhpect to the iterations' is relatively

slow—namely©(1/+/T) as opposed t@(1/T) for strongly convex problems.

Many optimization problems encountered in practice extibih features: the objective function is
strongly convex, and the optimum is (approximately) spafégs fact leads to the natural question:
is it possible to design algorithms for stochastic optiricathat enjoy the best features of both
types of structure? More specifically, an algorithm showadehaO(1/T") convergence rate, as well

as a logarithmic dependence on dimension. The main cotitiibof this paper is to answer this

question in the affirmative, and to analyze a new algorithemhias convergence rat¥ (s log d)/T)



for a strongly convex problem with ansparse optimum id dimensions. This rate is unimprovable
(up to constants) in our setting, meaning that no algorithmaonverge at a substantially faster rate.
Our analysis also yields optimal rates when the optimum g approximately sparse.

The algorithm proposed in this paper builds off recent wonknaulti-step methods for strongly
convex problems [11,°10, 12], but involves some new ingm&diso as to obtain optimal rates for
statistical problems with sparse optima. In particular,fomen a sequence of objective functions
by decreasing the amount of regularization as the optimizatigorithm proceeds which is quite
natural from a statistical viewpoint. Each step of our ailfpon can be computed efficiently, with a
closed form update rule in many common examples. In sumrttagygutcome of our development
is anoptimal one-passalgorithm for many structured statistical problems in hijimensions, and
with computational complexity linear in the sample size.niduical simulations confirm our theo-
retical predictions regarding the convergence rate of lfpardhm, and also establish its superiority
compared to regularized dual averagingl [22] and stochgsdidient descent algorithms. They also
confirm that a direct application of the multi-step methodaditsky and Nesteroy [11] is inferior
to our algorithm, meaning that our gradual decrease of aealtion is quite critical. More details
on our results and their proofs can be found in the full-langtrsion of this papel[2].

2 Problem set-up and algorithm description

Given a subsef2 C R? and a random variablg taking values in a spacg, we consider an
optimization problem of the form

0" € argrerélgE[ﬁ(H;Z)], 1)

wherel : Q x Z — R is a given loss function. As is standard in stochastic ottion, we do
not have direct access to tle@pected loss functiof(f) := E[L(0; Z)], nor to its subgradients.
Rather, for a given query poirtt € €2, we observe &tochastic subgradientneaning a random
vectorg() € R? such thatE[g(6)] € 9L(#). The goal of this paper is to design algorithms that are
suitable for solving the problerfil(1) when the optimatris (approximately) sparse.

Algorithm description:  In order to solve a sparse version of the probleim (1), outesfyais to
consider a sequence of regularized problems of the form

min {£(6) + 0]} 2

Our algorithm involves a sequenceléf- different epochs, where the regularization parameter(
and the constraint s€t’ C Q) change from epoch to epoch. The epochs are specified by:

e a sequence of natural numefEL}Z |, whereT;; specifies the length of thé" epoch,
e a sequence of positive regularization welg{ﬂ&§}Z 1, and

e asequence of posmve radiR; } 1 andd-dimensional vector$yl}l 1, which specify the con-
straint setQ)(R;) := {0 € Q | |6 — ysz < R, }, thatis used throughout th& epoch.

We initialize the algonthm in the first epoch with = 0, and with any radiug?, that is an up-
per bound on|#*||;. The norm|| - ||, used in defining the constraint s€(R;) is specified by
p=2logd/(2logd — 1), a choice that will be clarified momentarily.

The goal of thei** epoch is to updatg; — ;1, in such a way that we are guaranteed that
lyis1 — 0*|3 < R?,, for eachi = 1,2,.... We choose the radii such th&, , = R?/2, so
that upon terminatiory ., — 0*||? < R?/2X7=1 In order to updatg; — v 1, we runT; rounds
of the stochastic dual averaging algoritr-[17] (hencéf®d) on the regularized objective
L(0) + X |01} 3

eenél%){ )+ Aille] 1} (3)
The DA method generates two sequences of vediaf$/:, and {6'}]", initialized asu® = 0
and6” = y;, using a sequence of step siZes' }/*. Atiterationt = 0,1,...,T;, we letg' be a
stochastic subgradient éfat¢?, and we let/! be any element of the subdifferential of thenorm
| - |l1 até’. The DA update at timemaps(u!, 8%) — (u!™1, 0+1) via the recursions

t

Pt =t 4 gt + A, and 0 = arg  min {a" T 0) + by, v, (0)), (4



where the prox functiony is specified below{5). The pseudocode describing the dym@tedure
is given in Algorith{1. In the stochastic dual averaging afgd [(#), we use the prox function

1 2logd
Vi (0) = 2R} (p—1) " 2logd —1° ©®)
This particular choice of the prox-function and the specifitue ofp ensure that the function
is strongly convex with respect to tlfe-norm, and has been previously used for sparse stochastic
optimization (see e.g. [15. 19, 7]). In most of our examples; R¢ and owing to our choice of the
prox-function and the feasible set in the update (4), we camputed*+! from p'*! in closed form.
Some algebra yields that the updafe (4) with= R? is equivalent to

16— yill2, where p

R2qt+1 |ttt (@ Dsign(pt+?)
P-DA+E

Here|u!*+1| (4= refers to elementwise operations ane- p/(p — 1) is the conjugate exponent to
p. We observe that our updafé (4) computes a subgradient éf therm rather than computing an
exact prox-mapping as in some previous methbds[16,]7, 2&h@iting such a prox-mapping for
y; # 0 requiresO(d?) computation, which is why we adopt the updéde (4) with a caxipf O(d).

6‘t+1 =y +

t+1 t+1 R,
, Where ¢ = max{o, i T VL 1}.

p—1

Algorithm 1 Regularization Annealed epoch Dual AveRaging (RADAR)

Require: Epoch length schedul{ﬂ“i}fiﬁ, initial radius Ry, step-size multipliery, prox-function
1), initial prox-centeny, regularization parametess.
for Epochi =1,2,..., Ky do
Initialize ° = 0 andg® = y;.
for Iterationt = 0,1,...,7; — 1 do
Update(p?, 6%) — (ut+!,0+1) according to rule[{4) with step sizé = o/v/%.
end for .
Setqurl = Zt,r;:e
UpdateR? ; = R?/2.
end for
Return yx, 11

Conditions: Having defined our algorithm, we now discuss the conditianthe objective func-
tion £(¢) and stochastic gradients that underlie our analysis.

Assumption 1(Locally Lipschitz) For eachR > 0, there is a constaiif = G(R) such that
L£(6) = L(6)| < G 16 = bl|x (6)
for all pairsd, § € Q such that|§ — *||; < Rand||§ — 6*||; < R.

We note that it suffices to havygv£(6)||.. < G(R) for the above condition. As mentioned, our
goal is to obtain fast rates for objectives satisfying allst@ng convexity condition, defined below.

Assumption 2 (Local strong convexity (LSC))The function’ : Q — R satisfies ak-local form
of strong convexity (LSC) if there is a non-negative constas v(R) such that

L(6) > L(O) + (VL(H), 6 — 0) + %He — 02 6,6 € @ with ||0]]; < Rand||f]; < R. (7)

Some of our results regarding stochastic optimization fadimite sample will use a weaker form of
the assumption, called local RSC, exploited in our recemkwa statistics and optimizationl[1,113].
Our final assumption is a tail condition on the error in statitagradientse(6) := g(6) — E[g(0)].

Assumption 3(Sub-Gaussian stochastic gradienfBhere is a constamt = o(R) such that
E[exp(|le()]|%,/o*)] < exp(1) forall § such that|d — 6%, < R. (8)

Clearly, this condition holds whenever the error veet@) has bounded components. More gener-
ally, the bound[(B) holds whenever each component of the eeior has sub-Gaussian tails.



Some illustrative examples: We now describe some examples that satisfy the above conslit
illustrate how the various parameters of interest mightlitaioed in different scenarios.

Example 1 (Classification under Lipschitz lossedn binary classification, the samples consist of
pairsz = (z,y) € R% x {—1,1}. Common choices for the loss functiditd; ~) are the hinge loss
max(0,1—y(f, z)) or the logistic los$og(1 + exp(—y(6, z)). Given a distributior? over Z (either
the population or the empirical distribution), a commomrtggy is to drawz;, y;) ~ P at iteration

t and usg)t = VL(6; (x1,y:)). We now illustrate how our conditions are satisfied in thisirsg.

e Locally Lipschitz:Both the above examples actually satisfy a stronger gloipaidhitz condition
since we have the bour@® < ||[VL(0)||» < E|z|~- Often, the data satisfies the normalization
[z]lc < B, in which case we ge¥ < B. More generally, tail conditions on the marginal
distribution of each coordinate efensurez = O(+/log d)) is valid with high probability.

e LSC:When the expectation in the objectiVé (1) is under the pdjmralistribution, the above
examples satisfy LSC. Here we focus on the example of thetiogbss, where we define the link
functiony (o) = exp(a)/(1+exp(a))?. We also defin& = E[zz”] to be the covariance matrix
and leto,in (2) denote its minimum singular value. Then a second-ordeicFaypansion yields

PY(BR)Omin(X)
2
wheref = af + (1 — a)d for somea € (0,1). Hencey > 1)(BR)owin (X) in this example.

e Sub-Gaussian gradientgissuming the bountl||x||., < B, this condition is easily verified. A
simple calculation yields = 2B, since

L(6) — L£(8) — (VL(9),

™

0y = 0D e g3 > 16— a3,

le(@)]loo = IVL(O; (z,y)) = VLO) oo < VLO; (2,9)) oo + [[VLO) |0 < 2B.
Example 2 (Least-squares regressiornh the regression setup, we are given samples of the form
z = (z,y) € R? x R. The loss function of interest i8(0; (z,y)) = (y — (6, z))?/2. To illustrate
the conditions more clearly, we assume that our samplesesrergted ag = (z, 6*) + w, where
w ~ N(0,1?) andEzz” = ¥ so thatEL(0; (z,y)) = [|[XY/2(0 — 6%)||2/2.

e Locally Lipschitz: For this example, the Lipschitz paramet(R) depends on the bound.
If we definep(X) = max; X;; to be the largest variance of a coordinatexpfthen a direct
calculation yields the boun@d(R) < p(X)R.

e LSC:Again we focus on the case where the expectation is takerr tinel@opulation distribu-
tion, where we have = 0, (2).

e Sub-Gaussian gradient®©nce again we assume tHat||. < B. It can be shown with some
work that Assumptiofl3 is satisfied with? (R) = 8p(X)2R? + 4B*R? + 10B%2.

3 Main results and their consequences

In this section we state our main results, regarding the emance of Algorithni]l. We focus on
the cases where Assumptidis 1 amd 3 hold over the entir@,sahd RSC holds uniformly for
all |0|l1 < Ri; key examples being the hinge and logistic losses from Exaifip Extensions to
examples such as least-squares loss, which are not Lipsahiéll of Q2 require a more delicate
treatment and these results as well the proofs of our resarft®e found in the long versidnl [2].

Formally, we assume th&t(R) = G ando(R) = o in Assumptiongl and] 3. We also useo
denotey(R;) in Assumptior 2. For a constamnt> 0 governing the error probability in our results,
we also definey? = w? + 24 logi at epochi. Our results assume that we run Algorithin 1 with
2

S
R}
wherec; is a universal constant. For a total Bfiterations in Algorithni L, we state our results for
the parametefir = yk,.+1) whereKr is the last epoch completed hiterations.

T; > ¢ (G* + 02)logd—|—wi202) +logd| , 9)

3.1 Main theorem and some remarks

We start with our main result which shows an overall conveeogeate ofD(1/T') afterT iterations.
This O(1/T) convergence is analogous to earlier work on multi-step outtior strongly convex



objectives[[11, 12, 10]. For each subset {1,2,...,d} of cardinalitys, we define
(0% 8) = |05 [11/s. (10)

This quantity captures the degree of sparsity in the optirdtinfor instanceg?(0*; S) = 0 if and
only if 6* is supported orb. Given the probability parameter> 0, we also define the shorthand

2 p2
VRIT

=1 log d. 11

AT = 1082 L?((G2 + 02)10gd+w202)} ©8 (11)

Theorem 1. Suppose the expected lo§satisfies Assumptions 15 3 with parametéisk) = G,
~v ando(R) = o, and we perform updates| (4) with epoch lengffis (9) and paeme

Ry log d

A2 s\/z_;-\/(G +ot)logd +uto? and a(t) =5 ey (12)
Then for any subsef C {1,...,d} of cardinalitys and anyT" > 2k, there is a universal constant

co such that with probability at least— 6 exp(—w?/12) we have

K

S

VQT((GQ +0?)logd + o*(w? + log

1Br — %3 < s [ 4 >>+62<e*;s>} )

logd

Consequently, the theorem predicts a convergence r&élgfy>7") which is the best possible under
our assumptions. Under the setup of Exaniple 1, the errorcdbofifheoreni L further simplifies to
sB?

Or — 6|2 =0
16— 0713 =0 (227

We note that for an approximately sparse Theoreni]l guarantees convergence only to a toler-
ances2(0*; S) due to the error terms arising out of the approximate sparSiverall, the theorem
provides a family of upper bounds, one for each choicé.0fThe best bound can be obtained by
optimizing this choice, trading off the competing conttibas of s and||0%.||1.

(logd 4+ w?) +2(6%; S)) . (14)

At this point, we can compare the result of Theofém 1 to sonteeoprevious work. One approach
to minimize the objectivd (1) is to perform stochastic geadidescent on the objective, which has a

convergence rate @((G* + 5°)/(yT)) [10,[12], wherg| VL(6)]|» < G andE exp (_”6@3”5) <

exp(1). In the setup of Examplel 1;2 = Bd and similarly forg; giving an exponentially worse
scaling in the dimensiod. An alternative is to perform mirror descent [15] 19] or riegized duall

averaging[[2R] using the same prox-function as Algorifinufivkithout breaking it up into epochs.
As mentioned in the introduction, this single-step methail$ to exploit the strong convexity of our

problem and obtains inferior convergence rate®¢f /log d/T') [19,[22[7].

A proposal closer to our approach is to minimize the regedatiobjective[(B), but with a fixed
value of \ instead of the decreasing schedule\pfused in Theorer]1. This amounts to using the
method of Juditsky and Nesterdv[11] on the regularized lgraband by using the proof techniques

developed in this paper, it can be shown that settirg o\ /log d/T leads to an overall convergence
rate of O (%(logd + wz)), which exhibits the same scaling as Theofém 1. However, thith

fixed setting of\, the initial epochs tend to be much longer than needed feirigathe error. Indeed,
our setting of); is based on minimizing the upper bound at each epoch, and teaah improved
performance in our numerical simulations. The benefits @i/l decreasing the regularization in
the context of deterministic optimization were also notethie recent work of Xiao and Zharig [23].

3.2 Some illustrative corollaries

We now present some consequences of The@iem 1 by makindis@ssiumptions regarding the
sparsity ofd*. The simplest situation is whefii is supported on some subsebf sizes. More
generally, Theorerl 1 also applies to the case when the ogtifiius only approximately sparse.
One natural form of approximate sparsity is to assumegthat B, (R,) for 0 < ¢ < 1, where

d
By(R,) == {9 eRY | Y 167 < Rq} .

i=1



For0 < ¢ < 1, membership in the s&,(R,) enforces a decay rate on the components of the
vectord. We now present a corollary of Theor&in 1 under such an appatei sparsity condition.
To facilitate comparison with minimax lower bounds, wesét= § log d in the corollaries.

Corollary 1. Under the conditions of Theordm 1, for &ll > 27 with probability at leastl —
6 exp(—dlogd/12), there is a universal constan$ such that

G*+0%(1+3) slogd
Co[ 72( ) Tg

16 — 073 < . 20 e
(G"+0o=(149)) logd 2 0_2 2 log logd *
coR, [{—7 e T () T ety logd)%} 0" € By(R,).

L } 0* is s-sparse

The first part of the corollary follows directly from Theor&iby noting that?(6*; S) = 0 under
our assumptions. Note that asanges over the intervil), 1], reflecting the degree of sparsity, the

convergence rate ranges from fra@il /7)) (for ¢ = 0 corresponding to exact sparsity)@{1/v/T)
(for ¢ = 1). This is a rather interesting trade-off, showing in a pgecdense how convergence rates
vary quantitatively as a function of the underlying sparsit

It is useful to note that the results on recovery for geneealiinear models presented here exactly
match those that have been developed in the statisticatliter[ 13| 211], which are optimal under our

assumptions on the design vectors. Concretely, ignorictgifa of O(log T'), we get a parametéir
havmg error at most(slog d/(v2T) with an error probability decyaing to zero with Moreover,

in doing so our algorithm only goes over at méstlata samples, as each stochastic gradient can be
evaluated with one fresh data sample drawn from the undherigistribution. Since the statistical
minimax lower bounds 13, 21] demonstrate that this is thallst possible error that any method
can attain fromi” samples, our method is statistically optimal in the scatifithe estimation error
with the number of samples. We also observe that it is easystead set the error probability to
§ = w?log T, if an error probability decaying witfi’ is desired, incurring at most additioriak 7
factors in the error bound. Finally, we also remark that eghhiques extend to handle examples
such as the least-squares loss that are not uniformly Lifasciihe details of this extension are
deferred to the long version of this paper [2].

Stochastic optimization over finite pools: A common setting for the application of stochastic op-
timization methods in machine learning is when one has &fpabl of examples, s&y1, ..., Z,},
and the objectivd (1) takes the form

0* —arggg852592 (15)

In this setting, a stochastic gradigy{t/) can be obtained by drawing a samgle at randomwith
replacemenfrom the pooK Z1, ..., Z,, }, and returning the gradieM . (6; Z;).

In high-dimensional problems whedles> n, the sample loss is not strongly convex. However, it has
been shown by many researchéis [3,/13, 1] that under suitabliitions, this objective does satisfy
restricted forms of the LSC assumption, allowing us to apfmea generalized form of Theoremh 1.
We will present this corollary only for settings whefeis exactly sparse and also specialize to the
logistic loss,L(0; (z,y)) = log(1 + exp(—y(f,x))) to illustrate the key aspects of the result. We
recall the definition of the link function(a) = exp( )/(1 + exp(a))?. We will state the result
for sub-Gaussian data design with paramet&rs)?), meaning that th&[z;z] = ¥ and(u, z;) is
n.-sub-Gaussian for any unit norm vectoe R<.

Corollary 2. Consider the finite-pool los§l8), based on: i.i.d. samples from a sub-Gaussian
design with parameterg:, 2). Suppose that Assumptidi§]1-3 are satisfied and the optiffium
of (I8)is s-sparse. Then there are universal constaats i, c2, c3) such that for alll” > 2«1 and

22d_max(o2, (2),7%), we have

E) min

n>C3 =
80'2 RT

—~ logd 1
9 _9* 2 < Co S 1
167 — 67113 < — (%) ¢?@BR)T ®logd’

2. (%) T {¢2(2BR1)

{B*(1+ 6)}} + co =

with probability at leastl — 2 exp(—cinmin(c2;,(X)/n2,1)) — 6 exp(—dlogd/12).



We observe that the bound only holds when the number of samgtethe objective[(Ib) is large
enough, which is necessary for the restricted form of the Ic8@dition to hold with non-trivial
parameters in the finite sample setting.

A modified method with constant epoch lengths: Algorithm[1l as described is efficient and sim-
ple to implement. However, the convergence results cligicaly on the epoch lengthl; to be
set appropriately in a doubling manner. This could be probléc in practice, where it might be
tricky to know when an epoch should be terminated. Followlagitsky and NesteroV [11], we
next demonstrate how a variant of our algorithm with corntstaoch lengths enjoys similar rates of
convergence. The key challenge here is that unlike the gue\det-up[11], our objective function
changes at each epoch which leads to significant techniffedudties. At a very coarse level, if
we have a total budget @f iterations, then this version of our algorithm allows usé¢bthe epoch
lengths toO(log T'), and guarantees convergence rates thaOd(eg T)/T).

Theorem 2. Suppose the expected loss satisfies Assumplibh$ 1- 3 withmgdersG, v, ando
resp. LetS be any subset oft, ..., d} of cardinalitys. Suppose we run Algorithfd 1 for a total of
T iterations with epoch length; = 7' log d/~xr and with parameters as in Equatfod 12. Assuming
that this setting ensurés = O(log d), for any setS, with probability at least — 3 exp(w?/12)

R 2, 2 2 2
Br — 0*|2 = O <s (G* +0%)logd + (o; +log(x/logd))o 1o§d> .

The theorem shows that up to logarithmic factorginsetting the epoch lengths optimally is not
critical. A similar result can also be proved for the casesaft-squares regression.

4 Simulations

In this section we will present numerical simulations thatlbour theoretical convergence results.
We focus on least-squares regression, discussed in Ex&nBeecifically, we generate samples
(z¢,y¢) with each coordinate of, distributed as Unji- B, B] andy, = (0*, z;) + w;. We pick6*

to bes-sparse vector witk = [log d], andw; ~ N(0,7n?) with n? = 0.5. Given an iterat@’, we
generate a stochastic gradient of the expectedlldss () af;). For the/;-norm, we pick the sign
vector of¢?, with 0 for any component that is zero, a member of thesub-differential.

Our first set of results evaluate Algoritiith 1 against otheclsastic optimization baselines assuming
a complete knowledge of problem parameters. Specificalyepoch is terminated once
[yir1 — 07|12 < |ly: — 0*||?/2. This ensures that* remains feasible throughout, and tests the per-
formance of Algorithnil in the most favorable scenario. Wenpare the algorithm against two
baselines. The first baseline is the regularized dual aireggRDA) algorithm [22], applied to the
regularized objectivé{3) with = 4n/log d/T, which is the statistically optimal regularization pa-
2
rameter withl" samples. We use the same prox-functigfi) = zl(lﬁli)* so that the theory for RDA
predicts a convergence rate ©f s\/log d/T') [22]. Our second baseline is the stochastic gradient
(SGD) algorithm which exploits the strong convexity but tie sparsity of the problerhl(1). Since
the squared loss is not uniformly Lipschitz, we impose aritamithl constrainf|d|; < R;, without
which the algorithm does not converge. The results of thimgarison are shown in Figuke 1(a),
where we present the erry¢* — 0*||3 averaged over 5 random trials. We observe that RADAR
comprehensively outperforms both the baselines, confgrthia predictions of our theory.

The second set of results focuses on evaluating algorithettsriiailored for our assumptions. Our
first baseline here is the approach that we described in ouankes following Theoreril1. In this
approach we use the same multi-step strategy as Algofithat kdep) fixed. We refer to this as
Epoch Dual Averaging (henceforth EDA), and again employ: 41n+/log d/T with this strategy.
Our epochs are again determined by halving of the squaredror measured relative t.

Finally, we also evaluate the version of our algorithm witinstant epoch lengths that we analyzed in
Theoreni? (henceforth RADAR-CONST), using epochs of letgti7"). As shown in Figurgl1(b),
the RADAR-CONST has relatively large error during the mlitepochs, before converging quite



rapidly, a phenomenon consistent with our thébBren though the RADAR-CONST method does
not use the knowledge of to set epochs, all three methods exhibit the same eventonetogence
rates, with RADAR (set with optimal epoch lengths) perfanmihe best, as expected. Although
RADAR-CONST is very slow in initial iterations, its convesgce rate remains competitive with
EDA (even though EDAloesexploit knowledge ob*), but is worse than RADAR as expected.

Overall, our experiments demonstrate that RADAR and RADZBNST have practical perfor-
mance consistent with our theoretical predictions. Altlowptimal epoch length setting is not
too critical for our approach, better data-dependent dogbirules for determining epoch lengths
remains an interesting question for future research. Tlegively poorer performance of EDA
demonstrates the importance of our decreasing regulanizsthedule.

Error vs. iterations Error vs. iterations

16— 6713

i 4 rations 4
Iterations Iterations % 10

@) (b)
Figure 1. A comparison of RADAR with other stochastic optimizatioga@iithms ford = 40000 and
s = [logd]. The left plot compares RADAR with the RDA and SGD algorithmsither of which
exploits both the sparsity and the strong convexity stmestsimultaneously. The right one compares
RADAR with the EDA and RADAR-CONST algorithms, all of whickx@loit the problem structure
but with varying degrees of effectiveness. We fjlét — 6% ||3 averaged over 5 random trials versus the
number of iterations.

5 Discussion

In this paper we present an algorithm that is able to takerstdga of the strong convexity and spar-
sity conditions that are satsified by many common problemsachine learning. Our algorithm
is simple and efficient to implement, and forlaimensional objective with ag-sparse optima, it
achieves the minimax-optimal convergence @i log d/T). We also demonstrate optimal con-
vergence rates for problems that have weakly sparse opiitheimplications for problems such as
sparse linear regression and sparse logistic regressibite We focus our attention exclusively on
sparse vector recovery due to space constraints, the idéaslty extend to other structures such as
group sparse vectors and low-rank matrices. It would beestiang to study similar developments
for other algorithms such as mirror descent or Nestero\Cglacated gradient methods, leading to
multi-step variants of those methods with optimal convaogerates in our setting.
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11 clarify, the epoch lengths in RADAR-CONST are set largetgrh to guarantee that we can attain an overall error bou{(af/7),
meaning that the initial epochs for RADAR-CONST are muctgkemthan for RADAR. Thus, after roughly 500 iterations, RARAZONST
has done only 2 epochs and operates with a crude constraifit($2 /4). During epochi, the step size scales proportionally By /+/%,
wheret is the iteration number within the epoch; hence the relbtilage initial steps in an epoch can take us to a bad solwi@m when
we start with a good solutiog; when R; is large. AsR; decreases further with more epochs, this effect is mitiyated the error of
RADAR-CONST does rapidly decrease like our theory predicts
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