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Abstract

Multiple-output regression models require estimatingtipld parameters, one for
each output. Structural regularization is usually emplbteimprove parameter
estimation in such models. In this paper, we present a nhedtiptput regression
model that leverages the covariance structure of the latetel parameters as
well as theconditional covariance structure of the observed outputs. This is in
contrast with existing methods that usually take into aotanly one of these
structures. More importantly, unlike some of the other xismethods, none of
these structures need be knowpriori in our model, and aréearned from the
data. Several previously proposed structural regulaozdtased multiple-output
regression models turn out to be special cases of our modekdver, in addition
to being a rich model for multiple-output regression, oudelacan also be used in
estimating the graphical model structure of a set of vagimfinultivariate outputs)
conditioned on another set of variables (inputs). Experimental resatdoth
synthetic and real datasets demonstrate the effectivefess method.

1 Introduction

Multivariate response prediction, also known as multiplgput regression [3] when the responses
are real-valued vectors, is an important problem in machéaening and statistics. The goal in
multiple-output regression is to learn a model for predgti > 1 real-valued responses (the
output) from D predictors or features (the input), given a training datasesisting of N input-
output pairs. Multiple-output prediction is also an instamf the problem of multitask learning [5,
10] where predicting each output is a task and all the tasisestme same input data. Multiple-
output regression problems are encountered frequentlyriows application domains. For example,
in computational biology [11], we often want to predict treng-expression levels of multiple genes
based on a set of single nucleotide polymorphisms (SNPgcanometrics [17], we often want to
predict the stock prices in the future using relevant magoAaomic variables and stock prices in the
past as inputs; in geostatistics, we are often interestgritly predicting the concentration levels
of different heavy metal pollutants [9]; and so on.

One distinguishing aspect of multiple-output regressothat the outputs are often related to each
other via some underlying (and oftarpriori unknown) structure. A part of this can be captured by
the imposing a relatedness structure among the regressidiiceents (e.g., the weight vectors in a
linear regression model) of all the outputs. We refer to ét@tedness structure among the regression
coefficients asask structure. However, there can still be some structure left in the otstthat is not
explained by the regression coefficients alone. This carubdala limited expressive power of our
chosen hypothesis class (e.g., linear predictors corexidarthis paper). The residual structure that
is left out when conditioned on inputs will be referred taatput structure here. This can be also be
seen as the covariance structure in the output noise. leisfibre desirable tamultaneously learn
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and leveragéooth the output structure and the task structure in multiplgpoutegression models
for improved parameter estimation and prediction accuracy

Although some of the existing multiple-output regressiardels have attempted to incorporate such
structures [17, 11, 13], most of these models are resteidtithe sense that (1) they usually exploit
only one of the two structures (output structoreask structure, but not both), and (2) they assume
availability of prior information about such structuresiolih may not always be available. For
example, Multivariate Regression with Covariance Estiomafl7] (MRCE) is a recently proposed
method whichlearns the output structure (in form of the covariance matrix forretated noise
across multiple outputs) along with the regression coefiits (i.e., the weight vector) for predicting
each output. However MRCE does not explicitly model thetietships among the regression
coefficients of the multiple tasks and therefore fails tooaet for the task structure. More recently,
[14] proposed an extension of the MRCE model by allowing Weigy the individual entries of
the regression coefficients and the entries of the outpuei&®) covariance matrix, but otherwise
this model has essentially the same properties as MRCE. grotirer works, Graph-guided Fused
Lasso [11] (GFlasso) incorporates task structure to sorgeedeby assuming that the regression
coefficients of all the outputs have similar sparsity patier This amounts to assuming that all
the outputs share almost same set of relevant features.udovigFlasso assumes that output graph
structure is known which is rarely true in practice. Someothethods such as[13] take into account
the task structure by imposing structural sparsity on theassion coefficients of the multiple tasks
but again assume that output structure is knaapriori and/or is of a specific form. In [22], the
authors proposed a multitask learning model by explicitydeling the task structures as the task
covariance matrix but this model does not take into accdwmbtitput structure which is important
in multiple-output regression problems.

In this paper, we present a multiple-output regression mthe allows leveraging both output
structure and task structure without assumingagmiori knowledge of either. In our model, both
output structure and task structure k@ ned from the data, along with the regression coefficients
for each task. Specifically, we model the output structureguthe (inverse) covariance matrix of
the correlated noise across the multiple outputs, and #kestaucture using the (inverse) covariance
matrix of the regression coefficients of the multiple tas&gp learned in the model. By explicitly
modeling and learning the output structure and task strectwur model also addresses the limi-
tations of the existing models that typically assume cersgiecific type of output structures (e.g.,
tree [13]) or task structures (e.g., shared sparsity [1h]particular, a model with task relatedness
structure based on shared sparsity on the task weight gettay not be appropriate in many real
applications where all the features are important for mtézh and the true task structure is at a
more higher level (e.g., weight vectors for some tasks argeclto each other compared to others).
Apart from providing a flexible way of learning multiple-quitt regression, our model can also be
used for the problem of conditional inverse covariancenestion of the (multivariate) outputs that
depend on another set of inputs variables, an importantigmothat has been gaining significant
attention recently [23, 15, 20, 4, 7, 6].

2 Multiple-Output Regression

In multiple-output regression, each input is associatath wivector of responses and the goal is
the learn the input-output relationship given some tragjriata consisting of input-output pairs.
Formally, given anV x D input matrixX = [x;,...,xy] and anN x K output matrixY =
[y1,---,yn~] |, the goal in multiple-output regression is to learn the fiomal relationship between
the inputsx,, € R” and the outputy,, € R¥. For a linear regression model, we write:

Vo =W'x, +b+e, Yn=1,...,N Q)

HereW = [wy,...,wg| denotes théD x K matrix wherew;, denotes the regression coefficient
of the k-th output,b = [by,...,bx]" € R¥ is a vector of bias terms for th& outputs, and
€n = l€n1,. .-, enr] " € RE is avector consisting of the noise for each of fi@utputs. The noise
is typically assumed to be Gaussian with a zero mean and natated across th& outputs.

Standard parameter estimation for Equation 1 involves miaiing the (penalized) log-likelihood of
the model, or equivalently minimizing the (regularizedddunction over the training data:

arg %%Igtr((Y —XW —1b")(Y = XW —1b")T) + AR(W) 2



wheretr(.) denotes matrix tracd,an N x 1 vector of all 1s and?(W) the regularizer on the weight
matrix W consisting of the regression weight vectors of all the otstpEor a choice oRR(W) =
tr(W T W) (the £5-squared norm, equivalent to assuming independent, zessmiGaussian priors
on the weight vectors), solving Equation 2 amounts to sglvihindependent regression problems
and this solution ignores any correlations among the ostpuamong the weight vectors.

3 Multiple-Output Regression with Output and Task Structures

To take into account bottonditional output covariance and the covariance among the weight vec-
torsW = [wy,...,wg]|, we assume a full covariance matiX of size K x K on the output
noise distribution to captumnditional output covariance, and a structured prior distributionten t
weight vector matrixW that induces structural regularization ¥f. We place the following prior
distribution onW

K
p(W) oc ] Nor (w0, Ip) MN i (W|0p i, Ip @ X) 3)
k=1

where MN py x (M, A @ B) denotes the matrix-variate normal distribution witthi € RP*¥
being its meanA € RP*P its row-covariance matrix anBB € RX*X its column-covariance
matrix. Herew denotes the Kronecker product. In this prior distributitwe\or (w|0,Ip) factors
regularize the weight vectossy, individually, and theMN by x (W|0px x, Ip ® 3) term couples
the K weight vectors, allowing them to share statistical strengt

To derive our objective function, we start by writing dowre tlikelihood of the model, for a set of
N i.i.d. observations:

N N
[1 p(ynlxn, W,b) = ] Nor(y,|W "x, + b, Q) 4)
n=1

n=1

In the above, a diagon& would imply that theK outputs are altonditionally independent of
each other. In this paper, we assume a$ullvhich will allow us to capture the conditional output
correlations.

Combining the prior oW and the likelihood, we can write down the posterior distiitu of W:
WX, Y, b,2%) o p(W)[[,L, p(ynlxn, W,b)
= [T, Nor(wi]0,1p) MN pxx (W|0pxr,Ip ® 2) T[N, Nor(y,[WTx, +b,Q)

n=1
Taking the log of the above and simplifying the resultingregsion, we can then write the negative
log-posterior ofW as (ignoring the constants):

tr((Y = XW —1b")Q 1 (Y —=XW —1b ")) + Nlog |Q| + tr(WW )
+tr(WE'W ) + Dlog %]

where1 denotes aV x 1 vector of all 1s. Note that in the term(WX~'WT), the inverse
covariance matrix= ! plays the role of coupling pairs of weight vectors, and tfeee controls
the amount of sharing between any pair of tasks. The taskriamez matrixX as well as the
conditional output covariance matifX will be learned from the data. For reasons that will become
apparent later, we parameterize our model in terms difrifeese covariance matriceQ ~! andx !
instead of covariance matrices. With this parameterinatite negative log-posterior becomes:

tr((Y =XW —1b " )Q 1 (Y = XW —1b") ") — Nlog|Q 7} + tr(WW )

5
+tr(WETWT) — Dlog =7 ©)

The objective function in Equation 5 naturally imposes fpresidefinite constraints on the inverse
covariance matrice§2~! and X~!. In addition, we will impose sparsity constraints (via &n
penalty) onQ ! andX~!. Sparsity on these parameters is appealing in this corextvb rea-
sons: (1) Sparsity leads to improved robust estimates [[L&6f ' and X!, and (2) Sparsity
supports the notion that the output correlations and tHedaselations tend to be sparse [21, 4, 8]



— not all pairs of outputs are related (given the inputs ahemoutputs), and likewise not all task
pairs (and therefore the corresponding weight vectorsyedated. Finally, we will also introduce
regularization hyperparameters to control the trade-efiieen data-fit and model complexity. Pa-
rameter estimation in the model involvesnimizing the negative log-posterior which is equivalent
to minimizing the (regularized) loss function. The minimion problem is given as
argmin  tr((Y —=XW —1b")Q 1 (Y = XW —1b")") - Nlog|Q 7} + Atr(WW )
W.,b,x-1,0-1

A tr(WETTW ) — Dlog [Z7Y 4+ Ao Q71 4+ 3|27 11

(6)
wherel||A[|; denotes the sum of absolute values of the mairibNote that by replacing the regular-
izertr(WW T) with a sparsity inducing regularizer on the individual weigectorsw, ..., wg,

one can also learn Lasso-like sparsity [19] in the regressieights. In this exposition, however,
we consider, regularization on the regression weights and letti®% < ~''W ) term capture the
similarity between the weights of two tasks by learning tektinverse covariance matx—!. The
above cost function is not jointly convex in the variablesisundividually convex in each variable
when others are fixed. We adopt an alternating optimizati@tegy that was empirically observed
to converge in all our experiments. More details are pravitethe experiments section. Finally,
although it is not the main goal of this paper, since our mguaelides an estimate of the inverse
covariance structur® —! of the outputs conditioned on the inputs, it can also be usethé more
general problem of estimating the conditional inverse gawnae [23, 15, 20, 4, 7] of a set of vari-
ablesy = {y1,...,yx} conditioned on another set of variables= {z1,...,zp}, givenpaired
samples of the form(x1,y1),. .., (Xn,yn)}-

3.1 Special Cases

In this section, we show that our model subsumes/genesadm@e previously proposed models for
multiple-output regression. Some of these include:

e Multivariate Regression with Covariance Estimation (MRCE-/;): With the task in-
verse covariance matriX—! = I, and the bias term set to zero, our model results in
the /s regularized weights variant of the MRCE model [17] which \eble equivalent to
minimizing the following objective:

argv\I/nsiqu tr(Y = XW)Q 1Y - XW) ")+ A tr(WW ) — Nlog | Q71+ X || Q7|1
e Multitask Relationship Learning for Regression (MTRL): With the output inverse co-
variance matriX2—! = I and the sparsity constraint &i~! dropped, our model results

in the regression version of the multitask relationshipiesy model proposed in [22].
Specifically, the corresponding objective function wouéd b

arg min tr(Y=XW)(Y=XW) ) 4Atr(WW )4, tr(WE W ) —Dlog =7

In [22], the —log |X~!| term is dropped since the authors solve their cost functicerims of:
and this term is concave B. A constraint oftr(X) = 1 was introduced in its place to restrict the
complexity of the model. We keep theg | - | constraint in our cost function since we parameterize
our model in terms oE~!, and— log || is convex inx !,

3.2 Optimization

We take an alternating optimization approach to solve thémipation problem given by Equa-
tion 6. Each sub-problem in the alternating optimizatigpstis convex. The matric@ and(? are
initialized toI in the beginning. The bias vectbris initialized to4 Y " 1.

Optimization w.r.t. W whenQ~!, X! and b are fixed:

GivenQ~!, X1 b, the matrixW consisting of the regression weight vectors of all the tasks
be obtained by solving the following optimization problem:

arg min tr((Y —XW — 1bNHQ N (Y -XW—-1b") )4 A tr(WW )+ tr(WE W) (7)
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The estimatéW is given by solving the following system of linear equationst. W’
(' X'X) + (MZ7+Mgk) @Ip)]vedW) =vedX' (Y —1b")Q7!)  (8)

It is easy to see that witkk and 3 set to identity, the model becomes equivalent to solvitg
regularized independent linear regression problems.

Optimization w.r.t. b whenQ~!, X~! and W are fixed:

GivenQ2~1, 3~ 'W, the bias vectob for all the K outputs can be obtained by solving the follow-
ing optimization problem:

arg min tr((Y — XW — 1N (Y -XW-1b")T) 9)

The estimatd is given byb = L > (Y - XW)T1
Optimization w.r.t. X~! whenQ~!, W and b are fixed:

GivenQ2~!, W, b, the task inverse covariance mat¥ix ! can be estimated by solving the following
optimization problem:

arg 121:11111 Mtr(WETTWT) — Dlog |27 + M) |= 7Y (10)

It is easy to see that the above is an instance of the stanuante covariance estimation problem
with sample covarianc%WTW, and can be solve using standard tools for inverse covarianc
estimation. We use the graphical Lasso procedure [8] tedbtuation 10 to estimag—!:

sl = gLasch%WTW,)\g) (12)

If we assume= ! to benon-sparse, we can drop thé,; penalty ons—! from Equation 10. However,
the solution ta~~! will not be defined (wher > D) or will overfit (when K is of the same order
asD). To avoid this, we add a regularizer of the fodmr(X 1) to Equation 10. This can be seen as
imposing a matrix variate Gaussian prior Bt !/2 with both row and column covariance matrices
equal toI to make the solution well defined. In the previous case ofsgi&r ', the solution was
well defined because of the sparsity priorn'. The optimization problem foE ! is then given
as

arg min \y tr(WE'W ') — Dlog |Z7!| + A tr (7). (12)

—1
Equation 12 admits a closed form solution which is giver(@%) . For the non-sparse

> ! case, we keep the paramefesame as the hyperparameter for the ter(fWWT) in Equa-
tion 6.

Optimization w.r.t. Q~! whenX~', W and b are fixed:

GivenX !, W, b, the task inverse covariance matf¥x ! can be estimated by solving the following
optimization problem:

arggylltr((Y —XW -1b")Q 1Y - XW —1b") ") — Nlog |Q7| + X |27y (13)

It is again easy to see that the above problem is an instartbe standard inverse covariance esti-
mation problem with sample covariangg Y —XW —1b ")’ (Y ~XW —1b "), and can be solved
using standard tools for inverse covariance estimationu¥éethe graphical Lasso procedure [8] to
solve Equation 10 to estima®':

7! = glassg (Y — XW —eb”) (¥ - XW —cb”), \y) (14)

4 Experiments

In this section, we evaluate our model by comparing it withesal relevant baselines on both syn-
thetic and real-world datasets. Our main set of results anmuwltiple-output regression problems
on which we report mean-squared errors averaged acroseallitputs. However, since our model
also provides an estimate of thenditional inverse covariance structufg—! of the outputs, in Sec-
tion 4.3 we provide experimental results on the structucevery task as well. We compare our
method with following baselines:



e Independent regressions (RLS)This baseline learns regularized least squares (RLS) re-
gression model for each output, without assuming any strecmong the weight vectors
or among the outputs. This corresponds to our model Witk I andQ2 = Ix. The
weight vector of each individual problem/g regularized with a hyperparameter

e Curds and Whey (C&W): The predictor in Curds and Whey [3] takes the fo¥W.,, =
W,.sUAU~, where W, denotes the regularized least squares predictor, the oglum
of matrix U are the projection directions for the respon3éobtained from canonical
correlation analysis (CCA) aX andY, andU~ denotes Moore-Penrose pseudoinverse of
U. The diagonal matrix contains the shrinkage factors for each CCA projectiorctiva.

e Multi-task Relationship Learning (MTRL): This method leverages task relationships
by assuming a matrix-variate prior on the weight maWik[22]. We chose this baseline
because of its flexibility in modeling the task relationghlyy “discovering” how the weight
vectors are related (vix—!), rather than assuming a specific structure on them such as
shared sparsity [16], low-rank assumption [2], etc. HowéI&RL in the multiple-output
regression setting cannot take into account the outputtsinel It is therefor a special case
of our model if we assume the output inverse covariance mgtri'! = I. The MTRL
approach proposed in [22] does not have sparse penal®ydn We experimented with
both sparse and non-sparse variants of MTRL and report titer lof the two results here.

e Multivariate Regression with Covariance Estimation (MRCE-(5): This baseline is the
{5 regularized variant of the MRCE model [17]. MRCE leveragegpat structure by
assuming a full noise covariance in multiple-output regi@sand learning it along with the
weight matrixW from the data. MRCE however cannot take into account thediaskture
because it cannot capture the relationships among the oslwhW. It is therefore a
special case of our model if we assume the task inverse emearimatrixxz—! = I. We
do not compare with the origind| regularized MRCE [17] to ensure a fair comparison by
keeping all the models non-sparse in weight vectors.

In the experiments, we refer to our model MROTS (M ultiple-outputRegression withOutput

and Task Structures). We experiment with two variants of our proposaatlel, onewithout a
sparsity inducing penalty on the task coupling mafix' (calledMROTS-I), and the othewith

the sparse penalty cB—! (called MROTS-II ). The hyperparameters are selected using four-fold
cross-validation. Both MTRL and MRCE; have two hyperparameters each and these are selected
by searching on a two-dimensional grid. For the proposedainaith non-spars& !, we fix the
hyperparametek in Equations 6 and 12 as001 for all the experiments. This is used to ensure

that the task inverse covariance matrix estinfte exists and is robust when number of response
variablesK is of the same order or larger than the input dimendibnThe other two parameters
A1 and )\, are selected using cross-validation. For sp&seé case, we use the same values\of
and )\, that were selected for non-sparse case, and only the thiaginggier)\s is selected by cross-
validation. This procedure avoids a potentially expens&arch over a three dimensional grid. The
hyperparametek in Equation 6 is again fixed @t001.

4.1 Synthetic data

We describe the process for synthetic data generation Ik@rst, we generate a random positive
definite matrixX~! which will act as the task inverse covariance matrix. Nexnatrix V of size

D x K is generated with each entry sampled from a zero meai @hdvariance normal distribution.
We compute the square-roftof ¥ (= SS, whereS is also a symmetric positive definite matrix),
andsS is used to generate the final weight matt#k asW = VS. Itis clear that for &V generated

in this fashion, we will haveZ?[WTW]| = SS = X. This process generatd¥ such that its
columns (and therefore the weight vectors for differenpatg) are correlated. A bias vectorof
sizeK is generated randomly from a zero mean unit variance norisiilgition. Then we generate
a sparse random positive definite ma®ix ! that acts as the conditional inverse covariance matrix
on output noise making the outputs correlated (given thetg)p Next, input samples are generated
i.i.d. from a normal distribution and the corresponding tiwatiate output variables are generated
asy; = Wx; +b+e;, Vi=1,2,..., N, whereg, is the correlated noise vector randomly sampled
from a zero mean normal distribution with covariance mafix

We generate three sets of synthetic data using the abovegsréc gauge the effectiveness of the
proposed model under varying circumstances:Ifi)= 20, K = 10 and non-spars&—*, (ii)



[ Method | Synthdata || Synthdata II] Synth data Ill] Paper I| Paper Il | Gene datal

RLS 37.29 3.22 3.94 1.08 1.04 1.92
C&W 37.14 21.88 7.06 1.08 1.08 151
MTRL 34.45 3.12 3.86 1.07 1.03 1.24

MRCE-(, 29.84 3.08 3.92 1.36 1.03 1.55
MROTS-I 26.65 2.61 3.75 0.90 1.03 1.18
MROTS-II 25.90 2.60 3.55 0.90 1.03 1.20

Table 1:Prediction error (MSE) on synthetic and real datasets. RLS: Indepémelgression, C&W: Curds
and Whey model [3], MTRL: Multi-task relationship learning [22], MR@- The ¢»-regularized version of

MRCE [17], MROTS-I: our model without sparse penaltyBn!, MROTS-II: our model with sparse penalty
onX !, Best results are highlighted in bold fonts.

D = 10, K = 20 and non-spars& !, and (i) D = 10, K = 20 and sparsé&~!. We also
experiment with varying number of training sampl@é £ 20, 30, 40 and50).
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Figure 1:(a) and (b): Mean Square Error with varying number of training sas and (d): Mean Square
Error and the value of the Objective function with increasing iterations ®ptbposed method.

4.2 Real data
We also evaluate our model on the following real-world nplétioutput regression datasets:

e Paper datasets: These are two multivariate multiple-response regressaiasgts from
paper industry [1]. The first dataset ttssamples with each sample havihfeatures and
32 outputs. The second dataset 2@ssamples (after ignoring one sample with missing
response variables), each havinfgatures and3 outputs. We také5 samples for training
and the remaining samples for test.

e Genotype dataset: This dataset has genotypes as input variables and phesaty -
served traits as output variables [12]. The number of geresty(features) i25 and the
number of phenotypes (outputs)3g8. We have a total 0of00 samples in this dataset and
we split it equally into training and test data.

The results on synthetic and real-world datasets are showahle 1. For synthetic datasets, the
reported results are with) training samples. Independent linear regression perftrenaorst on all
synthetic datasets. MRCE-performs better than MTRL on first and second synthetic détitew
MTRL is better on the third dataset. This mixed behavior of &R/, and MTRL supports our
motivation that both task structure (i.e., relationship®ag weight vectors) and output structure are
important in multiple-output regression. Both MTRL and MR, are special cases of our model
with former ignoring the output structure (captured®y') and the latter ignoring the weight vector
relationships (captured by —!). Both variants of our model (MROTS-I and MROTS-II) perform
significantly better than the compared baselines. The ingmnent with spars& ! variant is more
prominent on the third dataset which is generated with gpars' (5.33% relative reduction in
MSE), than on the first two datase®s§1% and0.3% relative reduction in MSE). However, in our
experiments, the spar®—"! variant (MROTS-II) always performed better or as good asrite-
sparse variant on all synthetic and real datasets, whichgestg thaexplicitly encouraging zero
entries inX~! leads to better estimates of task relationships (by avgidjpurious correlations
between weight vectors). This can potentially improve tregligtion performance. Finally, we also
note that the Curds & Whey method [3] performs significantlyseathan RLS for Synthetic data Il
and Ill. C&W uses CCA to project the response malito a lowermin (D, K)-dimensional space
learningmin(D, K) predictors there and then projecting them back to the aldfrdimensional



space. This procedure may end up throwing away relevantnretion from responses iK is
much higher tharD. These empirical results suggest that C&W may adversedgttiie prediction
performance when the number of response variahlés higher than the number of explanatory
variablesD (D = 2K in these cases).

On the real-world datasets too, our model performs bettar tit on par with the compared base-
lines. Both MROTS-I and MROTS-II perform significantly battthan the other baselines on the
first Paper datase9 features an®2 outputs per sample). All models perform almost similarly on
the second Paper datasgféatures and3 outputs per sample), which could be due to the absence
of a strong task or output structure in this data. C&W doespnetorm well on both Paper datasets
which might be due to the reason discussed earlier. On thetgmatrphenotype prediction task
too, both our models achieve better average mean squaced #ran the other baselines, with both
variants performing roughly comparably.

We also evaluate our model’s performance with varying nunobé&aining examples and compare
with the other baselines. Figures 1(a) and 1(b) show thes jplbtmean square error vs. number of
training examples for first two synthetic datasets. We doptatt C&W for Synthetic data Il since
it performs worse than RLS. On the first synthetic data, thopmance gain of our model is more
pronounced when number of training examples is small. Feisgtond synthetic data, we retain
similar performance gain over other models when numberaifittg examples are increased from
20. The MSE numbers for the first synthetic data are higher tharohes obtained for the second
synthetic data because of a difference in the magnituderof eovariances used in the generation
of datasets.

We also experiment with the convergence properties of otihoae Figures 1(c) and 1(d) show that
plots of average MSE and the value of the objective functgivefr by Equation 6) with increasing
number of iterations on the first synthetic dataset and teeRaper dataset. The plots show that our
alternating optimization procedure converges in rouglh/1b iterations.

4.3 Covariance structure recovery

Although not the main goal of the paper, we experiment wiélnied inverse covariance
matrix of the outputs (given the inputs) as a sanity checkhenproposed model. To
better visualize, we generate a dataset withsponses antlipredictors using the same
process as described in Sec. 4.1. Figure on the right shensui conditional inverse
covariance matrix2—! (Top), the matrix learned with MROTQ ! (Middle), and the
precision matrix learned with graphical lasso ignoring piredictors (Bottom). Taking
into account the regression weights results in better eséirof the true covariance
matrix. We got similar results for MRCE; which also takes into account the predictor
while learning the inverse covariance, although MROT Sneetties were closer to the
ground truth in terms of the Frobenius norm.

5 Related Work

Apart from the prior works discussed in Section 1, our work bannections to some other works
which we discuss in this section. Recently, Sohn & Kim [18)mwrsed a model for jointly esti-
mating the weight vector for each output and the covariatraetsire of the outputs. However, they
assume a shared sparsity structure on the weight vectoissa3sumption may be restrictive in some
problems. Some other works on conditional graphical mostéiation [20, 4] are based on similar
structural sparsity assumptions. In contrast, our modes thmt assume any specific structure on the
weight vectors, and by explicitly modeling the covariantacure of the weight vectortgarnsthe
appropriate underlying structure from the data.

6 Future Work and Conclusion

We have presented a flexible model for multiple-output regjmn taking into account the covariance
structure of the outputs and the covariance structure ofitickerlying prediction tasks. Our model
does not require a priori knowledge of these structures eah$ these from the data. Our model
leads to improved accuracies on multiple-output regrestisks. Our model can be extended in
several ways. For example, one possibility is to model mewlr input-output relationships by ker-
nelizing the model along the lines of [22].
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