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Abstract

Multiple-output regression models require estimating multiple parameters, one for
each output. Structural regularization is usually employed to improve parameter
estimation in such models. In this paper, we present a multiple-output regression
model that leverages the covariance structure of the latentmodel parameters as
well as theconditional covariance structure of the observed outputs. This is in
contrast with existing methods that usually take into account only one of these
structures. More importantly, unlike some of the other existing methods, none of
these structures need be knowna priori in our model, and arelearned from the
data. Several previously proposed structural regularization based multiple-output
regression models turn out to be special cases of our model. Moreover, in addition
to being a rich model for multiple-output regression, our model can also be used in
estimating the graphical model structure of a set of variables (multivariate outputs)
conditioned on another set of variables (inputs). Experimental resultson both
synthetic and real datasets demonstrate the effectivenessof our method.

1 Introduction
Multivariate response prediction, also known as multiple-output regression [3] when the responses
are real-valued vectors, is an important problem in machinelearning and statistics. The goal in
multiple-output regression is to learn a model for predicting K > 1 real-valued responses (the
output) fromD predictors or features (the input), given a training dataset consisting ofN input-
output pairs. Multiple-output prediction is also an instance of the problem of multitask learning [5,
10] where predicting each output is a task and all the tasks share the same input data. Multiple-
output regression problems are encountered frequently in various application domains. For example,
in computational biology [11], we often want to predict the gene-expression levels of multiple genes
based on a set of single nucleotide polymorphisms (SNPs); ineconometrics [17], we often want to
predict the stock prices in the future using relevant macro-economic variables and stock prices in the
past as inputs; in geostatistics, we are often interested injointly predicting the concentration levels
of different heavy metal pollutants [9]; and so on.

One distinguishing aspect of multiple-output regression is that the outputs are often related to each
other via some underlying (and oftena priori unknown) structure. A part of this can be captured by
the imposing a relatedness structure among the regression coefficients (e.g., the weight vectors in a
linear regression model) of all the outputs. We refer to the relatedness structure among the regression
coefficients astask structure. However, there can still be some structure left in the outputs that is not
explained by the regression coefficients alone. This can be due to a limited expressive power of our
chosen hypothesis class (e.g., linear predictors considered in this paper). The residual structure that
is left out when conditioned on inputs will be referred to asoutput structure here. This can be also be
seen as the covariance structure in the output noise. It is therefore desirable tosimultaneously learn
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and leverageboth the output structure and the task structure in multiple-output regression models
for improved parameter estimation and prediction accuracy.

Although some of the existing multiple-output regression models have attempted to incorporate such
structures [17, 11, 13], most of these models are restrictive in the sense that (1) they usually exploit
only one of the two structures (output structureor task structure, but not both), and (2) they assume
availability of prior information about such structures which may not always be available. For
example, Multivariate Regression with Covariance Estimation [17] (MRCE) is a recently proposed
method whichlearns the output structure (in form of the covariance matrix for correlated noise
across multiple outputs) along with the regression coefficients (i.e., the weight vector) for predicting
each output. However MRCE does not explicitly model the relationships among the regression
coefficients of the multiple tasks and therefore fails to account for the task structure. More recently,
[14] proposed an extension of the MRCE model by allowing weighting the individual entries of
the regression coefficients and the entries of the output (inverse) covariance matrix, but otherwise
this model has essentially the same properties as MRCE. Among other works, Graph-guided Fused
Lasso [11] (GFlasso) incorporates task structure to some degree by assuming that the regression
coefficients of all the outputs have similar sparsity patterns. This amounts to assuming that all
the outputs share almost same set of relevant features. However, GFlasso assumes that output graph
structure is known which is rarely true in practice. Some other methods such as[13] take into account
the task structure by imposing structural sparsity on the regression coefficients of the multiple tasks
but again assume that output structure is knowna priori and/or is of a specific form. In [22], the
authors proposed a multitask learning model by explicitly modeling the task structures as the task
covariance matrix but this model does not take into account the output structure which is important
in multiple-output regression problems.

In this paper, we present a multiple-output regression model that allows leveraging both output
structure and task structure without assuming ana priori knowledge of either. In our model, both
output structure and task structure arelearned from the data, along with the regression coefficients
for each task. Specifically, we model the output structure using the (inverse) covariance matrix of
the correlated noise across the multiple outputs, and the task structure using the (inverse) covariance
matrix of the regression coefficients of the multiple tasks being learned in the model. By explicitly
modeling and learning the output structure and task structure, our model also addresses the limi-
tations of the existing models that typically assume certain specific type of output structures (e.g.,
tree [13]) or task structures (e.g., shared sparsity [11]).In particular, a model with task relatedness
structure based on shared sparsity on the task weight vectors may not be appropriate in many real
applications where all the features are important for prediction and the true task structure is at a
more higher level (e.g., weight vectors for some tasks are closer to each other compared to others).
Apart from providing a flexible way of learning multiple-output regression, our model can also be
used for the problem of conditional inverse covariance estimation of the (multivariate) outputs that
depend on another set of inputs variables, an important problem that has been gaining significant
attention recently [23, 15, 20, 4, 7, 6].

2 Multiple-Output Regression

In multiple-output regression, each input is associated with a vector of responses and the goal is
the learn the input-output relationship given some training data consisting of input-output pairs.
Formally, given anN × D input matrixX = [x1, . . . ,xN ]⊤ and anN × K output matrixY =
[y1, . . . ,yN ]⊤, the goal in multiple-output regression is to learn the functional relationship between
the inputsxn ∈ R

D and the outputsyn ∈ R
K . For a linear regression model, we write:

yn = W⊤xn + b+ ǫn ∀n = 1, . . . , N (1)

HereW = [w1, . . . ,wK ] denotes theD × K matrix wherewk denotes the regression coefficient
of the k-th output,b = [b1, . . . , bK ]⊤ ∈ R

K is a vector of bias terms for theK outputs, and
ǫn = [ǫn1, . . . , ǫnK ]⊤ ∈ R

K is a vector consisting of the noise for each of theK outputs. The noise
is typically assumed to be Gaussian with a zero mean and uncorrelated across theK outputs.

Standard parameter estimation for Equation 1 involves maximizing the (penalized) log-likelihood of
the model, or equivalently minimizing the (regularized) loss function over the training data:

argmin
W,b

tr((Y −XW − 1b⊤)(Y −XW − 1b⊤)⊤) + λR(W) (2)
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wheretr(.) denotes matrix trace,1 anN×1 vector of all 1s andR(W) the regularizer on the weight
matrixW consisting of the regression weight vectors of all the outputs. For a choice ofR(W) =
tr(W⊤W) (theℓ2-squared norm, equivalent to assuming independent, zero-mean Gaussian priors
on the weight vectors), solving Equation 2 amounts to solving K independent regression problems
and this solution ignores any correlations among the outputs or among the weight vectors.

3 Multiple-Output Regression with Output and Task Structures

To take into account bothconditional output covariance and the covariance among the weight vec-
tors W = [w1, . . . ,wK ], we assume a full covariance matrixΩ of sizeK × K on the output
noise distribution to captureconditional output covariance, and a structured prior distribution on the
weight vector matrixW that induces structural regularization ofW. We place the following prior
distribution onW

p(W) ∝
K
∏

k=1

Nor(wk|0, ID)MND×K(W|0D×K , ID ⊗Σ) (3)

whereMND×K(M,A ⊗ B) denotes the matrix-variate normal distribution withM ∈ R
D×K

being its mean,A ∈ R
D×D its row-covariance matrix andB ∈ R

K×K its column-covariance
matrix. Here⊗ denotes the Kronecker product. In this prior distribution,theNor(wk|0, ID) factors
regularize the weight vectorswk individually, and theMND×K(W|0D×K , ID ⊗Σ) term couples
theK weight vectors, allowing them to share statistical strength.

To derive our objective function, we start by writing down the likelihood of the model, for a set of
N i.i.d. observations:

N
∏

n=1

p(yn|xn,W,b) =

N
∏

n=1

Nor(yn|W
⊤xn + b,Ω) (4)

In the above, a diagonalΩ would imply that theK outputs are allconditionally independent of
each other. In this paper, we assume a fullΩ which will allow us to capture the conditional output
correlations.

Combining the prior onW and the likelihood, we can write down the posterior distribution ofW:

p(W|X,Y,b,Ω,Σ) ∝ p(W)
∏N

n=1
p(yn|xn,W,b)

=
∏K

k=1
Nor(wk|0, ID) MND×K(W|0D×K , ID ⊗Σ)

∏N
n=1

Nor(yn|W
⊤xn + b,Ω)

Taking the log of the above and simplifying the resulting expression, we can then write the negative
log-posterior ofW as (ignoring the constants):

tr((Y −XW − 1b⊤)Ω−1(Y −XW − 1b⊤)⊤) +N log |Ω|+ tr(WW⊤)

+ tr(WΣ−1W⊤) +D log |Σ|

where1 denotes aN × 1 vector of all 1s. Note that in the termtr(WΣ−1W⊤), the inverse
covariance matrixΣ−1 plays the role of coupling pairs of weight vectors, and therefore controls
the amount of sharing between any pair of tasks. The task covariance matrixΣ as well as the
conditional output covariance matrixΩ will be learned from the data. For reasons that will become
apparent later, we parameterize our model in terms of theinverse covariance matricesΩ−1 andΣ−1

instead of covariance matrices. With this parameterization, the negative log-posterior becomes:

tr((Y −XW − 1b⊤)Ω−1(Y −XW − 1b⊤)⊤)−N log |Ω−1|+ tr(WW⊤)

+ tr(WΣ−1W⊤)−D log |Σ−1|
(5)

The objective function in Equation 5 naturally imposes positive-definite constraints on the inverse
covariance matricesΩ−1 andΣ−1. In addition, we will impose sparsity constraints (via anℓ1
penalty) onΩ−1 andΣ−1. Sparsity on these parameters is appealing in this context for two rea-
sons: (1) Sparsity leads to improved robust estimates [19, 8] of Ω−1 andΣ−1, and (2) Sparsity
supports the notion that the output correlations and the task correlations tend to be sparse [21, 4, 8]
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– not all pairs of outputs are related (given the inputs and other outputs), and likewise not all task
pairs (and therefore the corresponding weight vectors) arerelated. Finally, we will also introduce
regularization hyperparameters to control the trade-off between data-fit and model complexity. Pa-
rameter estimation in the model involvesminimizing the negative log-posterior which is equivalent
to minimizing the (regularized) loss function. The minimization problem is given as

argmin
W,b,Σ−1,Ω−1

tr((Y −XW − 1b⊤)Ω−1(Y −XW − 1b⊤)⊤)−N log |Ω−1|+ λ tr(WW⊤)

+λ1 tr(WΣ−1W⊤)−D log |Σ−1|+ λ2||Ω
−1||1 + λ3||Σ

−1||1
(6)

where||A||1 denotes the sum of absolute values of the matrixA. Note that by replacing the regular-
izer tr(WW⊤) with a sparsity inducing regularizer on the individual weight vectorsw1, . . . ,wK ,
one can also learn Lasso-like sparsity [19] in the regression weights. In this exposition, however,
we considerℓ2 regularization on the regression weights and let thetr(WΣ−1W⊤) term capture the
similarity between the weights of two tasks by learning the task inverse covariance matrixΣ−1. The
above cost function is not jointly convex in the variables but is individually convex in each variable
when others are fixed. We adopt an alternating optimization strategy that was empirically observed
to converge in all our experiments. More details are provided in the experiments section. Finally,
although it is not the main goal of this paper, since our modelprovides an estimate of the inverse
covariance structureΩ−1 of the outputs conditioned on the inputs, it can also be used for the more
general problem of estimating the conditional inverse covariance [23, 15, 20, 4, 7] of a set of vari-
ablesy = {y1, . . . , yK} conditioned on another set of variablesx = {x1, . . . , xD}, givenpaired
samples of the form{(x1,y1), . . . , (xN ,yN )}.

3.1 Special Cases

In this section, we show that our model subsumes/generalizes some previously proposed models for
multiple-output regression. Some of these include:

• Multivariate Regression with Covariance Estimation (MRCE-ℓ2): With the task in-
verse covariance matrixΣ−1 = IK and the bias term set to zero, our model results in
theℓ2 regularized weights variant of the MRCE model [17] which would be equivalent to
minimizing the following objective:

arg min
W,Ω−1

tr((Y−XW)Ω−1(Y−XW)⊤)+λ tr(WW⊤)−N log |Ω−1|+λ2||Ω
−1||1

• Multitask Relationship Learning for Regression (MTRL): With the output inverse co-
variance matrixΩ−1 = IK and the sparsity constraint onΣ−1 dropped, our model results
in the regression version of the multitask relationship learning model proposed in [22].
Specifically, the corresponding objective function would be:

arg min
W,Σ−1

tr((Y−XW)(Y−XW)⊤)+λ tr(WW⊤)+λ1 tr(WΣ−1W⊤)−D log |Σ−1|

In [22], the− log |Σ−1| term is dropped since the authors solve their cost function in terms ofΣ
and this term is concave inΣ. A constraint oftr(Σ) = 1 was introduced in its place to restrict the
complexity of the model. We keep thelog | · | constraint in our cost function since we parameterize
our model in terms ofΣ−1, and− log |Σ−1| is convex inΣ−1.

3.2 Optimization

We take an alternating optimization approach to solve the optimization problem given by Equa-
tion 6. Each sub-problem in the alternating optimization steps is convex. The matricesΣ andΩ are
initialized toI in the beginning. The bias vectorb is initialized to 1

NY⊤1.

Optimization w.r.t. W whenΩ−1,Σ−1 and b are fixed:

GivenΩ−1,Σ−1,b, the matrixW consisting of the regression weight vectors of all the taskscan
be obtained by solving the following optimization problem:

argmin
W

tr((Y−XW−1b⊤)Ω−1(Y−XW−1b⊤)⊤)+λ tr(WW⊤)+λ1 tr(WΣ−1W⊤) (7)

4



The estimateŴ is given by solving the following system of linear equationsw.r.t. W:
[(

Ω−1 ⊗X′X
)

+
((

λ1Σ
−1 + λIK

)

⊗ ID
)]

vec(W) = vec(X′(Y − 1b⊤)Ω−1) (8)

It is easy to see that withΩ andΣ set to identity, the model becomes equivalent to solvingK
regularized independent linear regression problems.

Optimization w.r.t. b whenΩ−1,Σ−1 andW are fixed:

GivenΩ−1,Σ−1,W, the bias vectorb for all theK outputs can be obtained by solving the follow-
ing optimization problem:

argmin
b

tr((Y −XW − 1b⊤)Ω−1(Y −XW − 1b⊤)⊤) (9)

The estimatêb is given byb̂ = 1

N

∑N
n=1

(Y −XW)⊤1

Optimization w.r.t. Σ−1 whenΩ−1,W and b are fixed:

GivenΩ−1,W,b, the task inverse covariance matrixΣ−1 can be estimated by solving the following
optimization problem:

argmin
Σ−1

λ1 tr(WΣ−1W⊤)−D log |Σ−1|+ λ3||Σ
−1||1 (10)

It is easy to see that the above is an instance of the standard inverse covariance estimation problem
with sample covarianceλ1

D W⊤W, and can be solve using standard tools for inverse covariance
estimation. We use the graphical Lasso procedure [8] to solve Equation 10 to estimateΣ−1:

Σ̂−1 = gLasso(
λ1

D
W⊤W, λ3) (11)

If we assumeΣ−1 to benon-sparse, we can drop theℓ1 penalty onΣ−1 from Equation 10. However,
the solution toΣ−1 will not be defined (whenK > D) or will overfit (whenK is of the same order
asD). To avoid this, we add a regularizer of the formλ tr(Σ−1) to Equation 10. This can be seen as
imposing a matrix variate Gaussian prior onΣ−1/2 with both row and column covariance matrices
equal toI to make the solution well defined. In the previous case of sparseΣ−1, the solution was
well defined because of the sparsity prior onΣ−1. The optimization problem forΣ−1 is then given
as

argmin
Σ−1

λ1 tr(WΣ−1W⊤)−D log |Σ−1|+ λ tr
(

Σ−1
)

. (12)

Equation 12 admits a closed form solution which is given by
(

λ1W
⊤
W+λI

D

)−1

. For the non-sparse

Σ−1 case, we keep the parameterλ same as the hyperparameter for the termtr(WW⊤) in Equa-
tion 6.

Optimization w.r.t. Ω−1 whenΣ−1,W and b are fixed:

GivenΣ−1,W,b, the task inverse covariance matrixΩ−1 can be estimated by solving the following
optimization problem:

argmin
Ω−1

tr((Y −XW − 1b⊤)Ω−1(Y −XW − 1b⊤)⊤)−N log |Ω−1|+ λ2||Ω
−1||1 (13)

It is again easy to see that the above problem is an instance ofthe standard inverse covariance esti-
mation problem with sample covariance1N (Y−XW−1b⊤)′(Y−XW−1b⊤), and can be solved
using standard tools for inverse covariance estimation. Weuse the graphical Lasso procedure [8] to
solve Equation 10 to estimateΣ−1:

Ω̂−1 = gLasso(
1

N
(Y −XW − cb⊤)⊤(Y −XW − cb⊤), λ2) (14)

4 Experiments

In this section, we evaluate our model by comparing it with several relevant baselines on both syn-
thetic and real-world datasets. Our main set of results are on multiple-output regression problems
on which we report mean-squared errors averaged across all the outputs. However, since our model
also provides an estimate of theconditional inverse covariance structureΩ−1 of the outputs, in Sec-
tion 4.3 we provide experimental results on the structure recovery task as well. We compare our
method with following baselines:
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• Independent regressions (RLS):This baseline learns regularized least squares (RLS) re-
gression model for each output, without assuming any structure among the weight vectors
or among the outputs. This corresponds to our model withΣ = IK andΩ = IK . The
weight vector of each individual problem isℓ2 regularized with a hyperparameterλ.

• Curds and Whey (C&W): The predictor in Curds and Whey [3] takes the formWcw =
WrlsUΛU−, whereWrls denotes the regularized least squares predictor, the columns
of matrix U are the projection directions for the responsesY obtained from canonical
correlation analysis (CCA) ofX andY, andU− denotes Moore-Penrose pseudoinverse of
U. The diagonal matrixΛ contains the shrinkage factors for each CCA projection direction.

• Multi-task Relationship Learning (MTRL): This method leverages task relationships
by assuming a matrix-variate prior on the weight matrixW [22]. We chose this baseline
because of its flexibility in modeling the task relationships by “discovering” how the weight
vectors are related (viaΣ−1), rather than assuming a specific structure on them such as
shared sparsity [16], low-rank assumption [2], etc. However MTRL in the multiple-output
regression setting cannot take into account the output structure. It is therefor a special case
of our model if we assume the output inverse covariance matrix Ω−1 = I. The MTRL
approach proposed in [22] does not have sparse penalty onΣ−1. We experimented with
both sparse and non-sparse variants of MTRL and report the better of the two results here.

• Multivariate Regression with Covariance Estimation (MRCE-ℓ2): This baseline is the
ℓ2 regularized variant of the MRCE model [17]. MRCE leverages output structure by
assuming a full noise covariance in multiple-output regression and learning it along with the
weight matrixW from the data. MRCE however cannot take into account the taskstructure
because it cannot capture the relationships among the columns of W. It is therefore a
special case of our model if we assume the task inverse covariance matrixΣ−1 = I. We
do not compare with the originalℓ1 regularized MRCE [17] to ensure a fair comparison by
keeping all the models non-sparse in weight vectors.

In the experiments, we refer to our model asMROTS (Multiple-outputRegression withOutput
and Task Structures). We experiment with two variants of our proposedmodel, onewithout a
sparsity inducing penalty on the task coupling matrixΣ−1 (calledMROTS-I ), and the otherwith
the sparse penalty onΣ−1 (calledMROTS-II ). The hyperparameters are selected using four-fold
cross-validation. Both MTRL and MRCE-ℓ2 have two hyperparameters each and these are selected
by searching on a two-dimensional grid. For the proposed model with non-sparseΣ−1, we fix the
hyperparameterλ in Equations 6 and 12 as0.001 for all the experiments. This is used to ensure
that the task inverse covariance matrix estimateΣ̂−1 exists and is robust when number of response
variablesK is of the same order or larger than the input dimensionD. The other two parameters
λ1 andλ2 are selected using cross-validation. For sparseΣ−1 case, we use the same values ofλ1

andλ2 that were selected for non-sparse case, and only the third parameterλ3 is selected by cross-
validation. This procedure avoids a potentially expensivesearch over a three dimensional grid. The
hyperparameterλ in Equation 6 is again fixed at0.001.

4.1 Synthetic data

We describe the process for synthetic data generation here.First, we generate a random positive
definite matrixΣ−1 which will act as the task inverse covariance matrix. Next, amatrixV of size
D×K is generated with each entry sampled from a zero mean and1/D variance normal distribution.
We compute the square-rootS of Σ (= SS, whereS is also a symmetric positive definite matrix),
andS is used to generate the final weight matrixW asW = VS. It is clear that for aW generated
in this fashion, we will haveE[WTW] = SS = Σ. This process generatesW such that its
columns (and therefore the weight vectors for different outputs) are correlated. A bias vectorb of
sizeK is generated randomly from a zero mean unit variance normal distribution. Then we generate
a sparse random positive definite matrixΩ−1 that acts as the conditional inverse covariance matrix
on output noise making the outputs correlated (given the inputs). Next, input samples are generated
i.i.d. from a normal distribution and the corresponding multivariate output variables are generated
asyi = Wxi+b+ǫi, ∀i = 1, 2, . . . , N , whereǫi is the correlated noise vector randomly sampled
from a zero mean normal distribution with covariance matrixΩ.

We generate three sets of synthetic data using the above process to gauge the effectiveness of the
proposed model under varying circumstances: (i)D = 20, K = 10 and non-sparseΣ−1, (ii)
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Method Synth data I Synth data II Synth data III Paper I Paper II Gene data

RLS 37.29 3.22 3.94 1.08 1.04 1.92
C&W 37.14 21.88 7.06 1.08 1.08 1.51
MTRL 34.45 3.12 3.86 1.07 1.03 1.24

MRCE-ℓ2 29.84 3.08 3.92 1.36 1.03 1.55
MROTS-I 26.65 2.61 3.75 0.90 1.03 1.18
MROTS-II 25.90 2.60 3.55 0.90 1.03 1.20

Table 1: Prediction error (MSE) on synthetic and real datasets. RLS: Independent regression, C&W: Curds
and Whey model [3], MTRL: Multi-task relationship learning [22], MRCE-ℓ2: Theℓ2-regularized version of
MRCE [17], MROTS-I: our model without sparse penalty onΣ

−1, MROTS-II: our model with sparse penalty
onΣ−1. Best results are highlighted in bold fonts.

D = 10, K = 20 and non-sparseΣ−1, and (iii) D = 10, K = 20 and sparseΣ−1. We also
experiment with varying number of training samples (N = 20, 30, 40 and50).
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Figure 1:(a) and (b): Mean Square Error with varying number of training samples, (c) and (d): Mean Square
Error and the value of the Objective function with increasing iterations for the proposed method.

4.2 Real data

We also evaluate our model on the following real-world multiple-output regression datasets:

• Paper datasets: These are two multivariate multiple-response regression datasets from
paper industry [1]. The first dataset has30 samples with each sample having9 features and
32 outputs. The second dataset has29 samples (after ignoring one sample with missing
response variables), each having9 features and13 outputs. We take15 samples for training
and the remaining samples for test.

• Genotype dataset:This dataset has genotypes as input variables and phenotypes or ob-
served traits as output variables [12]. The number of genotypes (features) is25 and the
number of phenotypes (outputs) is30. We have a total of100 samples in this dataset and
we split it equally into training and test data.

The results on synthetic and real-world datasets are shown in Table 1. For synthetic datasets, the
reported results are with50 training samples. Independent linear regression performsthe worst on all
synthetic datasets. MRCE-ℓ2 performs better than MTRL on first and second synthetic data while
MTRL is better on the third dataset. This mixed behavior of MRCE-ℓ2 and MTRL supports our
motivation that both task structure (i.e., relationships among weight vectors) and output structure are
important in multiple-output regression. Both MTRL and MRCE-ℓ2 are special cases of our model
with former ignoring the output structure (captured byΩ−1) and the latter ignoring the weight vector
relationships (captured byΣ−1). Both variants of our model (MROTS-I and MROTS-II) perform
significantly better than the compared baselines. The improvement with sparseΣ−1 variant is more
prominent on the third dataset which is generated with sparse Σ−1 (5.33% relative reduction in
MSE), than on the first two datasets (2.81% and0.3% relative reduction in MSE). However, in our
experiments, the sparseΣ−1 variant (MROTS-II) always performed better or as good as thenon-
sparse variant on all synthetic and real datasets, which suggests thatexplicitly encouraging zero
entries inΣ−1 leads to better estimates of task relationships (by avoiding spurious correlations
between weight vectors). This can potentially improve the prediction performance. Finally, we also
note that the Curds & Whey method [3] performs significantly worse than RLS for Synthetic data II
and III. C&W uses CCA to project the response matrixY to a lowermin(D,K)-dimensional space
learningmin(D,K) predictors there and then projecting them back to the original K-dimensional
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space. This procedure may end up throwing away relevant information from responses ifK is
much higher thanD. These empirical results suggest that C&W may adversely affect the prediction
performance when the number of response variablesK is higher than the number of explanatory
variablesD (D = 2K in these cases).

On the real-world datasets too, our model performs better than or on par with the compared base-
lines. Both MROTS-I and MROTS-II perform significantly better than the other baselines on the
first Paper dataset (9 features and32 outputs per sample). All models perform almost similarly on
the second Paper dataset (9 features and13 outputs per sample), which could be due to the absence
of a strong task or output structure in this data. C&W does notpreform well on both Paper datasets
which might be due to the reason discussed earlier. On the genotype-phenotype prediction task
too, both our models achieve better average mean squared errors than the other baselines, with both
variants performing roughly comparably.

We also evaluate our model’s performance with varying number of training examples and compare
with the other baselines. Figures 1(a) and 1(b) show the plots of mean square error vs. number of
training examples for first two synthetic datasets. We do notplot C&W for Synthetic data II since
it performs worse than RLS. On the first synthetic data, the performance gain of our model is more
pronounced when number of training examples is small. For the second synthetic data, we retain
similar performance gain over other models when number of training examples are increased from
20. The MSE numbers for the first synthetic data are higher than the ones obtained for the second
synthetic data because of a difference in the magnitude of error covariances used in the generation
of datasets.

We also experiment with the convergence properties of our method. Figures 1(c) and 1(d) show that
plots of average MSE and the value of the objective function (given by Equation 6) with increasing
number of iterations on the first synthetic dataset and the first Paper dataset. The plots show that our
alternating optimization procedure converges in roughly 10–15 iterations.

4.3 Covariance structure recovery

Although not the main goal of the paper, we experiment with learned inverse covariance
matrix of the outputs (given the inputs) as a sanity check on the proposed model. To
better visualize, we generate a dataset with5 responses and3 predictors using the same
process as described in Sec. 4.1. Figure on the right shows the true conditional inverse
covariance matrixΩ−1 (Top), the matrix learned with MROTŜΩ−1 (Middle), and the
precision matrix learned with graphical lasso ignoring thepredictors (Bottom). Taking
into account the regression weights results in better estimate of the true covariance
matrix. We got similar results for MRCE-ℓ2 which also takes into account the predictors
while learning the inverse covariance, although MROTS estimates were closer to the
ground truth in terms of the Frobenius norm.

5 Related Work
Apart from the prior works discussed in Section 1, our work has connections to some other works
which we discuss in this section. Recently, Sohn & Kim [18] proposed a model for jointly esti-
mating the weight vector for each output and the covariance structure of the outputs. However, they
assume a shared sparsity structure on the weight vectors. This assumption may be restrictive in some
problems. Some other works on conditional graphical model estimation [20, 4] are based on similar
structural sparsity assumptions. In contrast, our model does not assume any specific structure on the
weight vectors, and by explicitly modeling the covariance structure of the weight vectors,learns the
appropriate underlying structure from the data.

6 Future Work and Conclusion

We have presented a flexible model for multiple-output regression taking into account the covariance
structure of the outputs and the covariance structure of theunderlying prediction tasks. Our model
does not require a priori knowledge of these structures and learns these from the data. Our model
leads to improved accuracies on multiple-output regression tasks. Our model can be extended in
several ways. For example, one possibility is to model nonlinear input-output relationships by ker-
nelizing the model along the lines of [22].
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