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Abstract

The computational modelling of the primary auditory cortex (Al) has been less
fruitful than that of the primary visual cortex (V1) due to the less organized prop-
erties of Al. Greater disorder has recently been demonstrated for the tonotopy of
Al that has traditionally been considered to be as ordered as the retinotopy of V1.
This disorder appears to be incongruous, given the uniformity of the neocortex;
however, we hypothesized that both A1 and V1 would adopt an efficient coding
strategy and that the disorder in Al reflects natural sound statistics. To provide a
computational model of the tonotopic disorder in A1, we used a model that was
originally proposed for the smooth V1 map. In contrast to natural images, natural
sounds exhibit distant correlations, which were learned and reflected in the disor-
dered map. The auditory model predicted harmonic relationships among neigh-
bouring Al cells; furthermore, the same mechanism used to model V1 complex
cells reproduced nonlinear responses similar to the pitch selectivity. These results
contribute to the understanding of the sensory cortices of different modalities in a
novel and integrated manner.

1 Introduction

Despite the anatomical and functional similarities between the primary auditory cortex (Al) and the
primary visual cortex (V1), the computational modelling of A1 has proven to be less fruitful than V1,
primarily because the responses of Al cells are more disorganized. For instance, the receptive fields
of V1 cells are localized within a small portion of the field of view [1], whereas certain Al cells have
receptive fields that are not localized, as these Al cells demonstrate significant responses to multiple
distant frequencies [2, 3]. An additional discrepancy that has recently been discovered between these
two regions relates to their topographic structures, i.e., the retinotopy of V1 and the tonotopy of Al;
these structures had long been considered to be quite similar, but studies on a microscopic scale have
demonstrated that in mice, the tonotopy of Al is much more disordered [4, 5] than the retinotopy
of V1 [6, 7]. This result is consistent with previous investigations involving other species [8, 9],
suggesting that the discrepancy in question constitutes a general tendency among mammals. This
disorderliness appears to pose significant difficulties for the development of computational models
of Al.

A number of computational modelling studies have emphasized the close associations between V1
cells and natural image statistics, which suggests that the V1 adopts an unsupervised, efficient coding
strategy [10]. For instance, the receptive fields of V1 simple cells were reproduced by either sparse
coding [11] or the independent component analysis [12] of natural images. This line of research
yields explanations for the two-dimensional topography, the orientation and retinotopic maps of
V1 [13, 14, 15]. Similar efforts to address Al have been attempted by only a few studies, which
demonstrated that the efficient coding of natural, harmonic sounds, such as human voices or piano



recordings, can explain the basic receptive fields of Al cells [16, 17] and their harmony-related
responses [18, 19]. However, these studies have not yet addressed the topography of Al.

In an integrated and computational manner, the present paper attempts to explain why the tonotopy
of Al is more disordered than the retinotopy of V1. We hypothesized that V1 and A1l still share an
efficient coding strategy, and we therefore proposed that the distant correlations in natural sounds
would be responsible for the relative disorder in Al. To test this hypothesis, we first demonstrated
the significant differences between natural images and natural sounds. Natural images and natural
sounds were then each used as inputs for topographic independent component analysis, a model that
had previously been proposed for the smooth topography of V1, and maps were generated for these
images and sounds. Due to the distant correlations of natural sounds, greater disorder was observed
in the learned map that had been adapted to natural sounds than in the analogous map that had
been adapted to images. For natural sounds, this model not only predicted harmonic relationships
between neighbouring cells but also demonstrated nonlinear responses that appeared similar to the
responses of the pitch-selective cells that were recently found in A1. These results suggest that the
apparently dissimilar topographies of V1 and A1 may reflect statistical differences between natural
images and natural sounds; however, these two regions may employ a common adaptive strategy.

2 Methods

2.1 Topographic independent component analysis

Herein, we discuss an unsupervised learning model termed topographic independent component
analysis (TICA), which was originally proposed for the study of V1 topography [13, 14]. This
model comprises two layers: the first layer 8funits models the linear responses of V1 simple
cells, whereas the second layer/funits models the nonlinear responses of V1 complex cells, and
the connections between the layers define a topography. Given a whitened inputivegterR?

(here,d = N), the input is reconstructed by the linear superposition of a kgsis R?, each of

which corresponds to the first-layer units

I= Zsiai (1)

wheres; € R are activity levels of the units or model neurons. Inverse filterso determines; can
typically be obtained, and thus = I”w; (inner product). Using the activities of the first layer, the
activities of the second-layer units € R can be defined as follows:

¢ = Z h(i, 5)s? )

whereh(i, 7) is the neighbourhood function that takes the valud af ¢ and j are neighbours
and is0 otherwise. The neighbourhood is defined by a square window €exg.5) in cases of
two-dimensional topography. The learningwf is accomplished through the minimization of the
energy function® or the negative log likelihood:

E = —log L(I; {wi}) = = > G(ci) 3

Aw; x <Isl- Zh(i,j)g(cj) > (4)

whereG(c;) = —v/e+ ¢; imposes sparseness on the second-layer activities (.005 for the
stability), andg(c;) is the derivative of7(c¢;). The operatof- - - ) is the mean over the iterations.

2.1.1 An extension for overcomplete representation

Ma and Zhang [15] extended the TICA model to account for overcomplete representdtions),

which are observed in the V1 of primates. In this extension, inverse filters cannot be uniquely de-
fined; therefore, a set of first-layer responsgt® an input is computed by minimizing the following
extended energy function:



4 =
2
2
0 5
2 1
2 1s
0
18125 I 8
> -1
285 ¢
>
g
45 L

Figure 1:Local correlations in natural images and distant correlations in natural sounds.(A)

The correlation matrix of image strips (right) demonstrated only local correlatioi§)in the field

of view (~ 120°). (B) The correlation matrix of the human voice spectra (right) demonstrated not
only local correlation but also off-diagonal distant correlations produced by harmonics.
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where is the relative weight of the activity sparseness, in accordance with sparse coding [11]. The
initial value of s; is set equal to the inner product bfanda;. Every 256 inputs, the basis is updated
using the following gradient. In this study, we used the learningryate0.08.

Aa;, =17 <si I— Zsjaj > (1)

2.2 The discontinuity index for topographic representation

To compare the degrees of disorder in topographies of different modalities, we defined a discontinu-
ity index (DI) for each point of the maps. Features defining a topograpks) (e.g., a retinotopic
position or a frequency) were normalized to the rang@of]. Features () within the neighbour-

hood of theith unit defined by.(4, j) were linearly fitted using the least squares method, and the DI
value at; was then determined using the following equation:

[H@):,/Elﬂfgi?(” (8)

wherer(j) is the residual error of linear regressionjand Ny is the number of units within a
neighbourhood window. If the input space is a torus (see Section 3.3), another DI value is computed
using modifiedf values that are increased byf they were initially within [0, %), and the smaller

of the calculated DI values is used.

3 Results

3.1 Correlations of natural images and natural sounds

Given that V1 is supposed to adapt to natural images and that Al is supposed to adapt to natural
sounds, the first analysis in this study simply compared statistics for natural images and natural
sounds. The natural images were taken from the van Hateren database [20] and were reduced four
times from their original size. Vertical arrays of 120 pixels each were extracted from the reduced
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Figure 2:The ordered retinotopy and disordered tonotopy.(A) The topography of units adapted
to natural images. A small square indicates a wani{grey: 0; white: max value). B) The dis-
tributions of DI for the two topographiesC) The topography of spectro-temporal units that have
been adapted to natural sound3:-K) The retinotopy of the visual map (D) is smooth, whereas the
tonotopy of the auditory map (F) is more disordered, although global tonotopy still exists (E).

images, each of which covered approximat&‘fy(f—5 of the vertical range of the human field of
view). Figure 1A (right) illustrates the correlation matrix for these images, which is a simple struc-
ture that contains local correlations that span approximatelyThis result was not surprising, as
distant pixels typically depict different objects.

For natural sounds, we used human narratives from the Handbook of the International Phonetic
Association [21], as efficient representations of human voices have been successful in facilitating
studies of various components of the auditory system [22, 23], including Al [16, 17]. After these
sounds were downsampled to 4 kHz, their spectrograms were generated using the NSL toolbox
[24] to approximate peripheral auditory processing. Short-time spectra were extracted from the
spectrograms, each of which were 128 pixels wide on a logarithmic scale (24 pixels = 1 octave).
Note that the frequency range- (5 octaves) spans approximately half of a typical mammalian
hearing range~ 10 octaves [25]), whereas the image pixel array spans égﬂyf the field of view.

Figure 1B illustrates the correlation matrix for these sounds, which is a complex structure that incor-
porates distant, off-diagonal correlations. The most prominent off-diagonal correlation, which was
just 1 octave away from the main diagonal, corresponded to the second harmonic of a sound, i.e.,
frequencies at a ratio of 1:2. Similarly, other off-diagonal peaks indicated correlations due to higher
harmonics, i.e., frequencies that were related to each other by simple integral ratios. These distant
correlations represent relatively typical results for natural sounds and differ greatly from the strictly
local correlations observed for natural images.

3.2 Greater disorder for the tonotopy than the retinotopy

To test the hypothesis that V1 and Al share a learning strategy, the TICA model was applied to
natural images and natural sounds, which exhibit different statistical profiles, as discussed above.
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Figure 3: The correlation between discontinuity and input “auditoriness”. When inputs only
correlated locally €, ~ 0: vision-like inputs), DI was low, and DI increased with the input “audi-
toriness”p,. Three lines: the quartiles (25, 50 (bold), and 75%) obtained from 100 iterations.

Learning with natural images was accomplished in accordance with the original TICA study [13,
14]. Images from the van Hateren database were reduced four times from their original size, and
25 x 25 pixel image patches were randomly extracted (n = 50,000). The patches were whitened and
bandpassed by applying principal component analysis, whereby we selected 400 components and
rejected certain components with low variances and the three components with the largest variances
[13]. The topography was20 x 20 torus, and the neighbourhood window was 5.

Figure 2A illustrates the visual topographic map obtained from this analysis, a small square of which
constitutes a basis vectag. As previously observed in the original TICA study [13, 14], each unit

was localized, oriented, and bandpassed; thus, these units appeared to be organized similarly to
the receptive fields of V1 simple cells. The orientation and position of the units changed smoothly
with the coordinates that were examined, which suggested that this map evinces an ordered topog-
raphy. To quantify the retinotopic discontinuity, each unit was fitted using a two-dimensional Gabor
function, and DI was calculated using the y values of the centre coordinates of the resulting Gabor
functions as the features. Figure 2B graphically indicates that the obtained DI values were quite low,
which is consistent with the smooth retinotopy illustrated in Figure 2D.

Next, another TICA model was applied to natural sounds to create an auditory topographic map that
could be compared to the visual topography. As detailed in the previous section, spectrograms of
human voices (sampled at 8 kHz) were generated using the NSL toolbox to approximate peripheral
auditory processing. Spectrogram patches of 200 ms (25 pixels) in width were randomly extracted
(n =50,000) and vertically reduced from 128 to 25 pixels, which enabled these spectrogram patches
to be directly compared with the image patches. The sound patches were whitened, bandpassed, and
adapted using the model in the same manner as was described for the image patches.

Figure 2C shows the resulting auditory topographic map, which is composed of spectro-temporal
units ofa; that are represented by small squares. The units were localized temporally and spectrally,
and some units demonstrated multiple, harmonic peaks; thus, these units appeared to reasonably
represent the typical spectro-temporal receptive fields of Al cells [16, 3]. The frequency to which
an auditory neuron responds most significantly is called its characteristic frequency (CF) [2]. In this
analysis, the CF of a unit was defined as the frequency that demonstrated the largest absolute value
for the unit in question. Figure 2F illustrates the spatial distribution of CFs, i.e., the tonotopic map.
Within local regions, the tonotopy was not necessarily smooth, i.e., neighbouring units displayed
distant CFs. However, at a global level, a smooth tonotopy was observed (Figure 2E). Both of these
findings are consistent with established experimental results [4, 5]. The distribution of tonotopic DI
values is shown in Figure 2B, which clearly demonstrates that the tonotopy was more disordered
than the retinotopyz( < 0.0001; Wilcoxon rank test).

3.3 The topographic disorder due to distant input correlations

The previous section demonstrated that natural sounds could induce greater topographic disorder
than natural images, and this section discusses the attempts to elucidate the disorder resulting from a
specific characteristic of natural sounds, namely, distant correlations. For this purpose, we generated
artificial inputs ¢ = 16) with a parametep, < [0, 1] that regulates the degree of distant correlations.
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Figure 4:The harmonic relationships between CFs of neighbouring units(A) The full distribu-

tion of distance and CF difference between two uni®.The distribution of CF differences within
neighbourhoods (the red-dotted rectangle in (A)). There were three peaks that indicate harmonic
relationships between neighbouring units. The distances were jittered to obtain the visualization.

After the inputs were initially generated from a standard normal distribution, a constant value of
was added at points of each input, where was from a uniform distribution ovef3, 4, 5,6} and

the points’ coordinates were from a normal distribution with a random centre ane- 2. After

adding this constant value af we also added another a;s; = = + 5 with a probabilityp, that

defines its “auditoriness”, i.e., its degree of distant correlations. For greater simplicity and to avoid
border effects, the input space was defined to be a one-dimensional torus. The topography was also
set as a one-dimensional torus of 16 units with a neighbourhood window size of 5.

Figure 3 shows the positive correlation between the input “auditoringsafid the DI of the learned
topographies. In computations of DI, the featyiref a unit was considered to be its peak coordinate
with the largest absolute value, and a toric input space was used (Section 2.2). If the input only
demonstrated local correlations like visual stimplj ¢~ 0), then its learned topography was smooth
(i.e., its DI was low). The DI values generally increased as distant correlations appeared more
frequently, i.e., more “auditoriness” of the inputs grew. Thus, the topographic disorder of auditory
maps results from distant correlations presented by natural auditory signals.

3.4 The harmonic relationship among neighbouring units

Several experiments [4, 5] have reported that the CFs of neighbouring cells can differ by up to 4

octaves, although these studies have failed to provide additional detail regarding the local spatial
patterns of the CF distributions. However, if the auditory topography is representative of natural

stimulus statistics, the topographic map is likely to possess certain additional spatial features that
reflect the statistical characteristics of natural sounds.

To enable a detailed investigation of the CF distribution, we employed a model that had been adapted
to finer frequency spectra of natural sounds, and this model was then used throughout the remainder
of the study. As the temporal structure of the auditory receptive fields was less dominant than their
spectral structure (Figure 2C), we focused solely on the spectral domain and did not attempt to ad-
dress temporal information. Therefore, the inputs for the new model (n = 100,000) were short-time
frequency spectra of 128 pixels each (24 pixels = 1 octave). The data for these spectra were first
obtained from the spectrograms of human voices (8 kHz) using the method detailed in Section 3.1,
and these data were then whitened, bandpassed, and reduced to 100 dimensions prior to input into
the model. To illustrate patterns more clearly, the results shown below were obtained using the
overcomplete extension of TICA described in Section 2.1.1, which included>a 14 torus (ap-
proximately2 x overcomplete) an8lx 3 windows. The CF of a unit was determined using pure-tone
inputs of 128 frequencies.

Figure 4A illustrates the full distribution of the distance and CF difference between two units in a
learned topography. The CFs of even neighbouring units differed by wp4mctaves, which is
consistent with recent experimental findings [4, 5]. A closer inspection of the red-dotted rectangular
region of Figure 4A is shown in Figure 4B. The histogram in Figure 4B demonstrates several peaks
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Figure 5: Nonlinear responses similar to pitch selectivity.(A) The spectra of MFs that share a
fo, all of which are perceived similarlyBj The responses of pitch-selective units to MKS) The
distribution of pitch-selective units on the smoothed tonotopy in a single session.

at harmony-related CF differences, such as 0-59dg, 1.5), 1.0 = log, 2; the largest peak), and

1.59 & log, 3). These examples indicate that CFs of neighbouring units did not differ randomly,
but tended to be harmonically related. A careful inspection of published data (Figure 5d from [5])
suggests that this relationship may be discernible in those published results; however, the magnitude
of non-harmonic relationships cannot be clearly established from the inspection of this previously
published study, as the stimuli used by the relevant experiment [5] were separated by an interval of
0.25 octaves and were therefore biased towards being harmonic. Thus, this prediction of a harmonic
relationship in neighbouring CFs will need to be examined in more detailed investigations.

3.5 Nonlinear responses similar to pitch-selectivity

Psychoacoustics have long demonstrated interesting phenomena related to harmony, namely, the
perception of pitch, which represents a subjective attribute of perceived sounds. Forming a rigid
definition for the notion of pitch is difficult; however, if a tone consists of a stack of harmonics
(fo,2f0,3f0,...), then its pitch is the frequency of the lowest harmonic, which is called the fun-
damental frequency,. The perception of pitch is known to remain constant even if the sound
lacks power at lower harmonics; in fact, pitch fatcan be perceived from a sound that lagks

a phenomenon known as “missing fundamental” [26]. Nonlinear pitch-selective responses similar
to this perception have recently been demonstrated in certain A1 neurons [27] that localize in the
low-frequency area of the global tonotopy.

To investigate pitch-related responses, previously described complex tones [27] that consisted of
harmonics were selected as inputs for the model described in Section 3.4. For each unit, responses
were calculated to complex tones termed missing fundamental complex tones (MFs) [27]. The MFs
were composed of three consecutive harmonics sharing a singllee lowest frequency for these
consecutive harmonics varied from the fundamental frequefidytd the tenth harmonicl( f,), as

shown in Figure 5A. For each unit, five patternsfgfaround its CF { 0.2 octave) were tested,
resulting in a total ofl0 x 5 = 50 variations of MFs. The activity of a unit was normalized to

its maximum response to the MFs. Pitch-selective units were defined as those that significantly
responded (normalized activity 0.4) to all of the MFs sharing a singlg with a lowest harmonic

from 1 to 4.

We found certain pitch-selective units in the second layer (n = 66; 6 simulations), whereas none
were found in the first layer. Figure 5B illustrates the response profiles of the pitch-selective units,
which demonstrated sustained activity for MFs with a lowest harmonic below the sixth harmonic
(6f0), and this result is similar to previously published data [27]. Additionally, these units were
located in a low-frequency region of the global tonotopy, as shown in Figure 5C, and this feature of
pitch-selective units is also consistent with previous findings [27]. The second layer of the TICA
model, which contained the pitch-selective units, was originally designed to represent the layer of V1
complex cells, which have nonlinear responses that can be modelled by a summation of “energies”
of neighbouring simple cells [13, 14, 15]. Our result suggests that the mechanism underlying V1
complex cells may be similar to the organizational mechanism for Al pitch-selective cells.
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Figure 6:The suggested relationships between natural stimulus statistics and topographies.

4 Discussion

Using a single model, we have provided a computational account explaining why the tonotopy of Al

is more disordered than the retinotopy of V1. First, we demonstrated that there are significant differ-
ences between natural images and natural sounds; in particular, the latter evince distant correlations,
whereas the former do not. The topographic independent component analysis therefore generated
a disordered tonotopy for these sounds, whereas the retinotopy adapted to natural images was lo-
cally organized throughout. Detailed analyses of the TICA model predicted harmonic relationships
among neighbouring neurons; furthermore, these analyses successfully replicated pitch selectivity, a
nonlinear response of actual cells, using a mechanism that was designed to model V1 complex cells.
The results suggest that A1 and V1 may share an adaptive strategy, and the dissimilar topographies
of visual and auditory maps may therefore reflect significant differences in the natural stimuli.

Figure 6 summarizes the ways in which the organizations of V1 and Al reflect these input dif-
ferences. Natural images correlate only locally, which produces a smooth retinotopy through an
efficient coding strategy (Figure 6A). By contrast, natural sounds exhibit additional distant corre-
lations (primarily correlations among harmonics), which produce the topographic disorganization
observed for Al (Figure 6B). To extract the features of natural sounds in the auditory pathway, Al
must integrate multiple channels of distant frequencies [2]; for this purpose, the disordered tonotopy
can be beneficial because a neuron can easily collect information regarding distant (and often har-
monically related) frequencies from other cells within its neighbourhood. Our result suggests the
existence of a common adaptive strategy underlying V1 and A1, which would be consistent with
experimental studies that exchanged the peripheral inputs of the visual and auditory systems and
suggested the sensory experiences had a dominant effect on cortical organization [28, 29, 30].

Our final result suggested that a common mechanism may underlie the complex cells of V1 and
the pitch-selective cells of A1l. Additional support for this notion was provided by recent evidence
indicating that the pitch-selective cells are most commonly found in the supragranular layer [27],
and V1 complex cells display a similar tendency. It has been hypothesized that V1 complex cells
collect information from neighbouring cells that are selective to different phases of similar orien-
tations; in an analogous way, Al pitch-selective cells could collect information from the activities
of neighbouring cells, which in this case could be selective to different frequencies sharing a single
fo- To the best of our knowledge, no previous studies in the literature have attempted to use this
analogy of V1 complex cells to explain Al pitch-selective cells (however, other potential analogues
have been mentioned [31, 32]). Our results and further investigations should help us to understand
these pitch-selective cells from an integrated, computational viewpoint. Another issue that must be
addressed is what functional roles the other units in the second layer play. One possible answer to
this question may be multipeaked responses related to harmony [3], which have been explained in
part by sparse coding [18, 19]; however, this answer has not yet been confirmed by existing evidence
and must therefore be assessed in detail by further investigations.
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