
Bayesian active learning with localized priors
for fast receptive field characterization

Mijung Park
Electrical and Computer Engineering

The University of Texas at Austin
mjpark@mail.utexas.edu

Jonathan W. Pillow
Center For Perceptual Systems

The University of Texas at Austin
pillow@mail.utexas.edu

Abstract

Active learning methods can dramatically improve the yield of neurophysiology
experiments by adaptively selecting stimuli to probe a neuron’s receptive field
(RF). Bayesian active learning methods specify a posterior distribution over the
RF given the data collected so far in the experiment, and select a stimulus on
each time step that maximally reduces posterior uncertainty. However, existing
methods tend to employ simple Gaussian priors over the RF and do not exploit
uncertainty at the level of hyperparameters. Incorporating this uncertainty can
substantially speed up active learning, particularly when RFs are smooth, sparse,
or local in space and time. Here we describe a novel framework for active learning
under hierarchical, conditionally Gaussian priors. Our algorithm uses sequential
Markov Chain Monte Carlo sampling (“particle filtering” with MCMC) to con-
struct a mixture-of-Gaussians representation of the RF posterior, and selects op-
timal stimuli using an approximate infomax criterion. The core elements of this
algorithm are parallelizable, making it computationally efficient for real-time ex-
periments. We apply our algorithm to simulated and real neural data, and show
that it can provide highly accurate receptive field estimates from very limited data,
even with a small number of hyperparameter samples.

1 Introduction

Neurophysiology experiments are costly and time-consuming. Data are limited by an animal’s will-
ingness to perform a task (in awake experiments) and the difficulty of maintaining stable neural
recordings. This motivates the use of active learning, known in statistics as “optimal experimen-
tal design”, to improve experiments using adaptive stimulus selection in closed-loop experiments.
These methods are especially powerful for models with many parameters, where traditional methods
typically require large amounts of data.

In Bayesian active learning, the basic idea is to define a statistical model of the neural response,
then carry out experiments to efficiently characterize the model parameters [1–6]. (See Fig. 1A).
Typically, this begins with a (weakly- or non-informative) prior distribution, which expresses our
uncertainty about these parameters before the start of the experiment. Then, recorded data (i.e.,
stimulus-response pairs) provide likelihood terms that we combine with the prior to obtain a poste-
rior distribution. This posterior reflects our beliefs about the parameters given the data collected so
far in the experiment. We then select a stimulus for the next trial that maximizes some measure of
utility (e.g., expected reduction in entropy, mean-squared error, classification error, etc.), integrated
with respect to the current posterior.

In this paper, we focus on the problem of receptive field (RF) characterization from extracellularly
recorded spike train data. The receptive field is a linear filter that describes how the neuron integrates
its input (e.g., light) over space and time; it can be equated with the linear term in a generalized linear
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model (GLM) of the neural response [7]. Typically, RFs are high-dimensional (with 10s to 100s of
parameters, depending on the choice of input domain), making them an attractive target for active
learning methods. Our paper builds on prior work from Lewi et al [6], a seminal paper that describes
active learning for RFs under a conditionally Poisson point process model.

Here we show that a sophisticated choice of prior distribution can lead to substantial improvements
in active learning. Specifically, we develop a method for learning under a class of hierarchical,
conditionally Gaussian priors that have been recently developed for RF estimation [8,9]. These pri-
ors flexibly encode a preference for smooth, sparse, and/or localized structure, which are common
features of real neural RFs. In fixed datasets (“passive learning”), the associated estimators give sub-
stantial improvements over both maximum likelihood and standard lasso/ridge-regression shrinkage
estimators, but they have not yet been incorporated into frameworks for active learning.

Active learning with a non-Gaussian prior poses several major challenges, however, since the poste-
rior is non-Gaussian, and requisite posterior expectations are much harder to compute. We address
these challenges by exploiting a conditionally Gaussian representation of the prior (and posterior)
using sampling at the level of the hyperparameters. We demonstrate our method using the Automatic
Locality Determination (ALD) prior introduced in [9], where hyperparameters control the locality
of the RF in space-time and frequency. The resulting algorithm outperforms previous active learning
methods on real and simulated neural data, even under various forms of model mismatch.

The paper is organized as follows. In Sec. 2, we formally define the Bayesian active learning prob-
lem and review the algorithm of [6], to which we will compare our results. In Sec. 3, we describe
a hierarchical response model, and in Sec. 4 describe the localized RF prior that we will employ
for active learning. In Sec. 5, we describe a new active learning method for conditionally Gaussian
priors. In Sec. 6, we show results of simulated experiments with simulated and real neural data.

2 Bayesian active learning

Bayesian active learning (or “experimental design”) provides a model-based framework for selecting
optimal stimuli or experiments. A Bayesian active learning method has three basic ingredients:
(1) an observation model (likelihood) p(y|x,k), specifying the conditional probability of a scalar
response y given vector stimulus x and parameter vector k; (2) a prior p(k) over the parameters
of interest; and (3) a loss or utility function U , which characterizes the desirability of a stimulus-
response pair (x, y) under the current posterior over k. The optimal stimulus x is the one that
maximizes the expected utility Ey|x[U(x, y)], meaning the utility averaged over the distribution of
(as yet) unobserved y|x.

One popular choice of utility function is the mutual information between (x, y) and the parameters
k. This is commonly known as information-theoretic or infomax learning [10]. It is equivalent to
picking the stimulus on each trial that minimizes the expected posterior entropy.

Let Dt = {xi, yi}ti=1 denote the data collected up to time step t in the experiment. Under infomax
learning, the optimal stimulus at time step t+ 1 is:

xt+1 = arg max
x

Ey|x,Dt
[I(y,k|x,Dt)] = arg min

x
Ey|x,Dt,[H(k|x, y,Dt)], (1)

where H(k|x, y,Dt) = −
∫
p(k|x, y,Dt) log p(k|x, y,Dt)dk denotes the posterior entropy of k,

and p(y|x,Dt) =
∫
p(y|x,k)p(k|Dt)dk is the predictive distribution over response y given stimulus

x and data Dt. The mutual information provided by (y,x) about k, denoted by I(y,k|x,Dt), is
simply the difference between the prior and posterior entropy.

2.1 Method of Lewi, Butera & Paninski 2009

Lewi et al [6] developed a Bayesian active learning framework for RF characterization in closed-loop
neurophysiology experiments, which we henceforth refer to as “Lewi-09”. This method employs a
conditionally Poisson generalized linear model (GLM) of the neural spike response:

λt = g(k>xt)

yt ∼ Poiss(λt), (2)
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Figure 1: (A) Schematic of Bayesian active learning for neurophysiology experiments. For each
presented stimulus x and recorded response y (upper right), we update the posterior over receptive
field k (bottom), then select the stimulus that maximizes expected information gain (upper left).
(B) Graphical model for the non-hierarchical RF model used by Lewi-09. It assumes a Gaussian
prior p(k) and Poisson likelihood p(yt|xt,k). (C) Graphical model for the hierarchical RF model
used here, with a hyper-prior pθ(θ) over hyper-parameters and conditionally Gaussian prior p(k|θ)
over the RF. For simplicity and speed, we assume a Gaussian likelihood for p(yt|xt,k), though all
examples in the manuscript involved real neural data or simulations from a Poisson GLM.

where g is a nonlinear function that ensures non-negative spike rate λt.

The Lewi-09 method assumes a Gaussian prior over k, which leads to a (non-Gaussian) posterior
given by the product of Poisson likelihood and Gaussian prior. (See Fig. 1B). Neither the predictive
distribution p(y|x,Dt) nor the posterior entropy H(k|x, y,Dt) can be computed in closed form.
However, the log-concavity of the posterior (guaranteed for suitable choice of g [11]) motivates a
tractable and accurate Gaussian approximation to the posterior, which provides a concise analytic
formula for posterior entropy [12, 13].

The key contributions of Lewi-09 include fast methods for updating the Gaussian approximation to
the posterior and for selecting the stimulus (subject to a maximum-power constraint) that maximizes
expected information gain. The Lewi-09 algorithm yields substantial improvement in characteriza-
tion performance relative to randomized iid (e.g., “white noise”) stimulus selection. Below, we will
benchmark the performance of our method against this algorithm.

3 Hierarchical RF models

Here we seek to extend the work of Lewi et al to incorporate non-Gaussian priors in a hierarchical
receptive field model. (See Fig. 1C). Intuitively, a good prior can improve active learning by reducing
the prior entropy, i.e., the effective size of the parameter space to be searched. The drawback of
more sophisticated priors is that they may complicate the problem of computing and optimizing the
posterior expectations needed for active learning.

To focus more straightforwardly on the role of the prior distribution, we employ a simple linear-
Gaussian model of the neural response:

yt = k>xt + εt, εt ∼ N (0, σ2), (3)

where εt is iid zero-mean Gaussian noise with variance σ2. We then place a hierarchical, condition-
ally Gaussian prior on k:

k | θ ∼ N (0, Cθ) (4)
θ ∼ pθ, (5)

where Cθ is a prior covariance matrix that depends on hyperparameters θ. These hyperparameters
in turn have a hyper-prior pθ. We will specify the functional form of Cθ in the next section.

In this setup, the effective prior over k is a mixture-of-Gaussians, obtained by marginalizing over θ:

p(k) =

∫
p(k|θ)p(θ)dθ =

∫
N (0, Cθ) pθ(θ)dθ. (6)
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Given data X = (x1, . . . ,xt)
> and Y = (y1, . . . , yt)

>, the posterior also takes the form of a
mixture-of-Gaussians:

p(k|X,Y ) =

∫
p(k|X,Y, θ)p(θ|X,Y )dθ (7)

where the conditional posterior given θ is the Gaussian

p(k|X,Y, θ) = N (µθ,Λθ), µθ = 1
σ2 ΛθX

>Y, Λθ = ( 1
σ2X

>X + C−1θ )−1, (8)

and the mixing weights are given by the marginal posterior,

p(θ|X,Y ) ∝ p(Y |X, θ)pθ(θ), (9)

which we will only need up to a constant of proportionality. The marginal likelihood or evidence
p(Y |X, θ) is the marginal probability of the data given the hyperparameters, and has a closed form
for the linear Gaussian model:

p(Y |X, θ) =
|2πΛθ|

1
2

|2πσ2I|
1
2 |2πCθ|

1
2

exp
[
1
2

(
µ>θ Λ−1θ µθ −m>L−1m

)]
, (10)

where L = σ2(X>X)−1 and m = 1
σ2LX

>Y .

Several authors have pointed out that active learning confers no benefit over fixed-design experi-
ments in linear-Gaussian models with Gaussian priors, due to the fact that the posterior covariance
is response-independent [1, 6]. That is, an optimal design (one that minimizes the final posterior
entropy) can be planned out entirely in advance of the experiment. However, this does not hold
for linear-Gaussian models with non-Gaussian priors, such as those considered here. The posterior
distribution in such models is data-dependent via the marginal posterior’s dependence on Y (eq. 9).
Thus, active learning is warranted even for linear-Gaussian responses, as we will demonstrate em-
pirically below.

4 Automatic Locality Determination (ALD) prior

In this paper, we employ a flexible RF model underlying the so-called automatic locality determina-
tion (ALD) estimator [9].1 The key justification for the ALD prior is the observation that most neural
RFs tend to be localized in both space-time and spatio-temporal frequency. Locality in space-time
refers to the fact that (e.g., visual) neurons integrate input over a limited domain in time and space;
locality in frequency refers to the band-pass (or smooth / low pass) character of most neural RFs.
The ALD prior encodes these tendencies in the parametric form of the covariance matrix Cθ, where
hyperparameters θ control the support of both the RF and its Fourier transform.

The hyperparameters for the ALD prior are θ = (ρ, νs, νf ,Ms,Mf )>, where ρ is a “ridge” pa-
rameter that determines the overall amplitude of the covariance; νs and νf are length-D vectors that
specify the center of the RF support in space-time and frequency, respectively (whereD is the degree
of the RF tensor2); and Ms and Mf are D ×D positive definite matrices that describe an elliptical
(Gaussian) region of support for the RF in space-time and frequency, respectively. In practice, we
will also include the additive noise variance σ2 (eq. 3) as a hyperparameter, since it plays a similar
role to C in determining the posterior and evidence. Thus, for the (D = 2) examples considered
here, there are 12 hyperparameters, including scalars σ2 and ρ, two hyperparameters each for νs and
νf , and three each for symmetric matrices Ms and Mf .

Note that although the conditional ALD prior over k|θ assigns high prior probability to smooth
and sparse RFs for some settings of θ, for other settings (i.e., where Ms and Mf describe elliptical
regions large enough to cover the entire RF) the conditional prior corresponds to a simple ridge
prior and imposes no such structure. We place a flat prior over θ so that no strong prior beliefs about
spatial locality or bandpass frequency characteristics are imposed a priori. However, as data from a
neuron with a truly localized RF accumulates, the support of the marginal posterior p(θ|Dt) shrinks
down on regions that favor a localized RF, shrinking the posterior entropy over k far more quickly
than is achievable with methods based on Gaussian priors.

1“Automatic” refers to the fact that in [9], the model was used for empirical Bayes inference, i.e., MAP
inference after maximizing the evidence for θ. Here, we consider perform fully Bayesian inference under the
associated model.

2e.g., a space×space×time RF has degree D = 3.
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5 Bayesian active learning with ALD

To perform active learning under the ALD model, we need two basic ingredients: (1) an efficient
method for representing and updating the posterior p(k|Dt) as data come in during the experiment;
and (2) an efficient algorithm for computing and maximizing the expected information gain given a
stimulus x. We will describe each of these in turn below.

5.1 Posterior updating via sequential Markov Chain Monte Carlo

To represent the ALD posterior over k given data, we will rely on the conditionally Gaussian repre-
sentation of the posterior (eq. 7) using particles {θi}i=1,...,N sampled from the marginal posterior,
θi ∼ P (θ|Dt) (eq. 9). The posterior will then be approximated as:

p(k|Dt) ≈
1

N

∑
i

p(k|Dt, θi), (11)

where each distribution p(k|Dt, θi) is Gaussian with θi-dependent mean and covariance (eq. 8).

Markov Chain Monte Carlo (MCMC) is a popular method for sampling from distributions known
only up to a normalizing constant. In cases where the target distribution evolves over time by ac-
cumulating more data, however, MCMC samplers are often impractical due to the time required for
convergence (i.e., “burning in”). To reduce the computational burden, we use a sequential sampling
algorithm to update the samples of the hyperparameters at each time step, based on the samples
drawn at the previous time step. The main idea of our algorithm is adopted from the resample-move
particle filter, which involves generating initial particles; resampling particles according to incom-
ing data; then performing MCMC moves to avoid degeneracy in particles [14]. The details are as
follows.

Initialization: On the first time step, generate initial hyperparameter samples {θi} from the hyper-
prior pθ, which we take to be flat over a broad range in θ.

Resampling: Given a new stimulus/response pair {x, y} at time t, resample the existing particles
according to the importance weights:

p(yt|θ(t)i ,Dt−1,xt) = N (yt|µi>xt, xt>Λixt + σ2
i ), (12)

where (µi,Λi) denote the mean and covariance of the Gaussian component attached to particle θi,
This ensures the posterior evolves according to:

p(θ
(t)
i |Dt) ∝ p(yt|θ

(t)
i ,Dt−1,xt)p(θ(t)i |Dt−1). (13)

MCMC Move: Propagate particles via Metropolis Hastings (MH), with multivariate Gaussian pro-
posals centered on the current particle θi of the Markov chain: θ∗ ∼ N (θi,Γ), where Γ is a diagonal
matrix with diagonal entries given by the variance of the particles at the end of time step t−1. Accept
the proposal with probability min(1, α), where α = q(θ∗)

q(θi)
, with q(θi) = p(θi|Dt). Repeat MCMC

moves until computational or time budget has expired.

The main bottleneck of this scheme is the updating of conditional posterior mean µi and covariance
Λi for each particle θi, since this requires inversion of a d × d matrix. (Note that, unlike Lewi-
09, these are not rank-one updates due to the fact that Cθi changes after each θi move). This cost
is independent of the amount of data, linear in the number of particles, and scales as O(d3) in
RF dimensionality d. However, particle updates can be performed efficiently in parallel on GPUs or
machines with multi-core processors, since the particles do not interact except for stimulus selection,
which we describe below.

5.2 Optimal Stimulus Selection

Given the posterior over k at time t, represented by a mixture of Gaussians attached to particles {θi}
sampled from the marginal posterior, our task is to determine the maximally informative stimulus to
present at time t+ 1. Although the entropy of a mixture-of-Gaussians has no analytic form, we can
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Figure 2: Simulated experiment. (A) Angular error in estimates of a simulated RF (20× 20 pixels,
shown in inset) vs. number of stimuli, for Lewi-09 method (blue), the ALD-based active learning
method using 10 (pink) or 100 (red) particles, and the ALD-based passive learning method (black).
True responses were simulated from a Poisson-GLM neuron. Traces show average over 20 inde-
pendent repetitions. (B) RF estimates obtained by each method after 200, 400, and 1000 trials. Red
numbers below indicate angular error (deg).

compute the exact posterior covariance via the formula:

Λ̃t =
1

N

N∑
i=1

(
Λi + µiµi

>)− µ̃µ̃>, (14)

where µ̃t = 1
N

∑
µi is the full posterior mean. This leads to an upper bound on posterior en-

tropy, since a Gaussian is the maximum-entropy distribution for fixed covariance. We then take
the next stimulus to be the maximum-variance eigenvector of the posterior covariance, which is the
most informative stimulus under a Gaussian posterior and Gaussian noise model, subject to a power
constraint on stimuli [6].

Although this selection criterion is heuristic, since it is not guaranteed to maximize mutual informa-
tion under the true posterior, it is intuitively reasonable since it selects the stimulus direction along
which the current posterior is maximally uncertain. Conceptually, directions of large posterior vari-
ance can arise in two different ways: (1) directions of large variance for all covariances Λi, meaning
that all particles assign high posterior uncertainty over k|Dt in the direction of x; or (2) directions in
which the means µi are highly dispersed, meaning the particles disagree about the mean of k|Dt in
the direction of x. In either scenario, selecting a stimulus proportional to the dominant eigenvector
is heuristically justified by the fact that it will reduce collective uncertainty in particle covariances or
cause particle means to converge by narrowing of the marginal posterior. We show that the method
performs well in practice for both real and simulated data (Section 6). We summarize the complete
method in Algorithm 1.

Algorithm 1 Sequential active learning under conditionally Gaussian models
Given particles {θi} from p(θ|Dt), which define the posterior as P (k|Dt) =

∑
iN (µi,Λi),

1. Compute the posterior covariance Λ̃t from {(µi,Λi)} (eq. 14).
2. Select optimal stimulus xt+1 as the maximal eigenvector of Λ̃t
3. Measure response yt+1.
4. Resample particles {θi} with the weights {N (yt+1|µi>xt+1,xt+1

>Λixt+1 + σ2
i )}.

5. Perform MH sampling of p(θ|Dt+1), starting from resampled particles.
repeat
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6 Results

Simulated Data: We tested the performance of our algorithm using data simulated from a Poisson-
GLM neuron with a 20× 20 pixel Gabor filter and an exponential nonlinearity (See Fig. 2). This is
the response model assumed by the Lewi-09 method, and therefore substantially mismatched to the
linear-Gaussian model assumed by our method.

For the Lewi-09 method, we used a diagonal prior covariance with amplitude set by maximizing
marginal likelihood for a small dataset. We compared two versions of the ALD-based algorithm
(with 10 and 100 hyperparameter particles, respectively) to examine the relationship between per-
formance and fidelity of the posterior representation. To quantify the performance, we used the
angular difference (in degrees) between the true and estimated RF.

Fig 2A shows the angular difference between the true RF and estimates obtained by Lewi-09 and
the ALD-based method, as a function of the number of trials. The ALD estimate exhibits more
rapid convergence, and performs noticeably better with 100 than with 10 particles (ALD100 vs.
ALD10), indicating that accurately preserving uncertainty over the hyperparameters is beneficial to
performance. We also show the performance of ALD inference under passive learning (iid random
stimulus selection), which indicates that the improvement in our method is not simply due to the use
of an improved RF estimator. Fig 2B shows the estimates obtained by each method after 200, 400,
and 1000 trials. Note that the estimate with 100 hyperparameter samples is almost indistinguishable
from the true filter after 200 trials, which is substantially lower than the dimensionality of the filter
itself (d = 400).

Fig. 3 shows a performance comparison using three additional 2-dimensional receptive fields, to
show that performance improves across a variety of different RF shapes. The filters included: (A)
a gabor filter similar to that used in [6]; (B) a retina-like center-surround receptive field; (C) a
grid-cell receptive field with multiple modes. As before, noisy responses were simulated from a
Poisson-GLM. For the grid-cell example, these filter is not strongly localized in space, yet the ALD-
based estimate substantially outperforms Lewi-09 due to its sensitivity to localized components in
frequency. Thus, ALD-based method converges more quickly despite the mismatch between the
model used to simulate data and the model assumed for active learning.

Neural Data: We also tested our method with an off-line analysis of real neural data from a sim-
ple cell recorded in primate V1 (published in [15]). The stimulus consisted of 1D spatiotemporal
white noise (“flickering bars”), with 16 spatial bars on each frame, aligned with the cell’s preferred
orientation. We took the RF to have 16 time bins, resulting in a 256-dimensional parameter space
for the RF. We performed simulated active learning by extracting the raw stimuli from 46 minutes
of experimental data. On each trial, we then computed the expected information gain from present-
ing each of these stimuli (blind to neuron’s actual response to each stimulus). We used ALD-based
active learning with 10 hyperparameter particles, and examined performance of both algorithms for
960 trials (selecting from ≈ 276,000 possible stimuli on each trial).
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Figure 4: Comparison of active learning methods in a simulated experiment with real neural data
from a primate V1 simple cell. (Original data recorded in response to white noise “flickering bars”
stimuli, see [15]). (A): Average angular difference between the MLE (inset, computed from an entire
46-minute dataset) and the estimates obtained by active learning, as a function of the amount of data.
We simulated active learning via an offline analysis of the fixed dataset, where methods had access
to possible stimuli but not responses. (B): RF estimates after 10 and 30 seconds of data. Note that
the ALD-based estimate has smaller error with 10 seconds of data than Lewi-09 with 30 seconds of
data. (C): Average entropy of hyperparameter particles as a function of t, showing rapid narrowing
of marginal posterior.

Fig 4A shows the average angular difference between the maximum likelihood estimate (computed
with the entire dataset) and the estimate obtained by each active learning method, as a function of
the number of stimuli. The ALD-based method reduces the angular difference by 45 degrees with
only 160 stimuli, although the filter dimensionality of the RF for this example is 256. The Lewi-09
method requires four times more data to achieve the same accuracy. Fig 4B shows estimates after
160 and 480 stimuli. We also examined the average entropy of the hyperparameter particles as a
function of the amount of data used. Fig. 4C shows that the entropy of the marginal posterior over
hyperparameters falls rapidly during the first 150 trials of active learning.

The main bottleneck of the algorithm is eigendecomposition of the posterior covariance Λ̃, which
took 30ms for a 256 × 256 matrix on a 2 × 2.66 GHz Quad-Core Intel Xeon Mac Pro. Updating
importance weights and resampling 10 particles took 4ms, and a single step of MH resampling for
each particle took 5ms. In total, it took <60 ms to compute the optimal stimulus in each trial using a
non-optimized implementation of our algorithm, indicating that our methods should be fast enough
for use in real-time neurophysiology experiments.

7 Discussion

We have developed a Bayesian active learning method for neural RFs under hierarchical response
models with conditionally Gaussian priors. To take account of uncertainty at the level of hyperpa-
rameters, we developed an approximate information-theoretic criterion for selecting optimal stimuli
under a mixture-of-Gaussians posterior. We applied this framework using a prior designed to capture
smooth and localized RF structure. The resulting method showed clear advantages over traditional
designs that do not exploit structured prior knowledge. We have contrasted our method with that
of Lewi et al [6], which employs a more flexible and accurate model of the neural response, but
a less flexible model of the RF prior. A natural future direction therefore will be to combine the
Poisson-GLM likelihood and ALD prior, which will combine the benefits of a more accurate neural
response model and a flexible (low-entropy) prior for neural receptive fields, while incurring only a
small increase in computational cost.
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