Learning optimal spike-based representations
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Abstract

How can neural networks learn to represent information optimally? We answer
this question by deriving spiking dynamics and learning dynamics directly from
a measure of network performance. We find that a network of integrate-and-fire
neurons undergoing Hebbian plasticity can learn an optimal spike-based repre-
sentation for a linear decoder. The learning rule acts to minimise the membrane
potential magnitude, which can be interpreted as a representation error after learn-
ing. In this way, learning reduces the representation error and drives the network
into a robust, balanced regime. The network becomes balanced because small rep-
resentation errors correspond to small membrane potentials, which in turn results
from a balance of excitation and inhibition. The representation is robust because
neurons become self-correcting, only spiking if the representation error exceeds a
threshold. Altogether, these results suggest that several observed features of cor-
tical dynamics, such as excitatory-inhibitory balance, integrate-and-fire dynamics
and Hebbian plasticity, are signatures of a robust, optimal spike-based code.

A central question in neuroscience is to understand how populations of neurons represent informa-
tion and how they learn to do so. Usually, learning and information representation are treated as two
different functions. From the outset, this separation seems like a good idea, as it reduces the prob-
lem into two smaller, more manageable chunks. Our approach, however, is to study these together.
This allows us to treat learning and information representation as two sides of a single mechanism,
operating at two different timescales.

Experimental work has given us several clues about the regime in which real networks operate in
the brain. Some of the most prominent observations are: (a) high trial-to-trial variability—a neu-
ron responds differently to repeated, identical inputs [1, 2]; (b) asynchronous firing at the network
level—spike trains of different neurons are at most very weakly correlated [3, 4, 5]; (c) tight balance
of excitation and inhibition—every excitatory input is met by an inhibitory input of equal or greater
size [6, 7, 8] and (4) spike-timing-dependent plasticity (STDP)—the strength of synapses change as
a function of presynaptic and postsynaptic spike times [9].

Previously, it has been shown that observations (a)—(c) can be understood as signatures of an optimal,
spike-based code [10, 11]. The essential idea is to derive spiking dynamics from the assumption that
neurons only fire if their spike improves information representation. Information in a network may
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originate from several possible sources: external sensory input, external neural network input, or
alternatively, it may originate within the network itself as a memory, or as a computation. Whatever
the source, this initial assumption leads directly to the conclusion that a network of integrate-and-fire
neurons can optimally represent a signal while exhibiting properties (a)—(c).

A major problem with this framework is that network connectivity must be completely specified a
priori, and requires the tuning of N? parameters, where NN is the number of neurons in the network.
Although this is feasible mathematically, it is unclear how a real network could tune itself into this
optimal regime. In this work, we solve this problem using a simple synaptic learning rule. The key
insight is that the plasticity rule can be derived from the same basic principle as the spiking rule in
the earlier work—namely, that any change should improve information representation.

Surprisingly, this can be achieved with a local, Hebbian learning rule, where synaptic plasticity
is proportional to the product of presynaptic firing rates with post-synaptic membrane potentials.
Spiking and synaptic plasticity then work hand in hand towards the same goal: the spiking of a
neuron decreases the representation error on a fast time scale, thereby giving rise to the actual
population representation; synaptic plasticity decreases the representation error on a slower time
scale, thereby improving or maintaining the population representation. For a large set of initial
connectivities and spiking dynamics, neural networks are driven into a balanced regime, where
excitation and inhibition cancel each other and where spike trains are asynchronous and irregular.
Furthermore, the learning rule that we derive reproduces the main features of STDP (property (d)
above). In this way, a network can learn to represent information optimally, with synaptic, neural
and network dynamics consistent with those observed experimentally.

1 Derivation of the learning rule for a single neuron

We begin by deriving a learning rule for a single neuron with an autapse (a self-connection) (Fig.
1A). Our approach is to derive synaptic dynamics for the autapse and spiking dynamics for the
neuron such that the neuron learns to optimally represent a time-varying input signal. We will derive
a learning rule for networks of neurons later, after we have developed the fundamental concepts for
the single neuron case.

Our first step is to derive optimal spiking dynamics for the neuron, so that we have a target for our
learning rule. We do this by making two simple assumptions [11]. First, we assume that the neuron
can provide an estimate or read-out Z(¢) of a time-dependent signal x(t) by filtering its spike train
o(t) as follows:

Z(t) = —2(t) + To(t), (1)

where I' is a fixed read-out weight, which we will refer to as the neuron’s “output kernel” and the
spike train can be written as o(t) = >, (t — t;), where {t;} are the spike times. Next, we assume
that the neuron only produces a spike if that spike improves the read-out, where we measure the
read-out performance through a simple squared-error loss function:

L(t) = (x(t) — &(t))". 2)

With these two assumptions, we can now derive optimal spiking dynamics. First, we observe that if
the neuron produces an additional spike at time ¢, the read-out increases by I', and the loss function
becomes L(t|spike) = (x(t) — (2(t) + I'))2. This allows us to restate our spiking rule as follows:
the neuron should only produce a spike if L(¢|no spike) > L(t|spike), or (z(t) — #(t))? > (z(t) —
(&(t) + T))2. Now, squaring both sides of this inequality, defining V (t) = I'(x(t) — (t)) and
defining T' = I'? /2 we find that the neuron should only spike if:

V(t)> T. 3)

We interpret V' (¢) to be the membrane potential of the neuron, and we interpret T' as the spike
threshold. This interpretation allows us to understand the membrane potential functionally: the
voltage is proportional to a prediction error—the difference between the read-out & (¢) and the actual
signal z:(¢). A spike is an error reduction mechanism—the neuron only spikes if the error exceeds
the spike threshold. This is a greedy minimisation, in that the neuron fires a spike whenever that
action decreases L(t) without considering the future impact of that spike. Importantly, the neuron
does not require direct access to the loss function L(t).



To determine the membrane potential dynamics, we take the derivative of the voltage, which gives
us V =T'(& — 2). (Here, and in the following, we will drop the time index for notational brevity.)
Now, using Eqn. (1) we obtain V =T'i — I'(=# + I'o) = —I'(z — 2) + I'(¢ + x) — I"%0, so that:

V =—V+4Tc—T?, 4)

where ¢ = & + x is the neural input. This corresponds exactly to the dynamics of a leaky integrate-
and-fire neuron with an inhibitory autapse' of strength I'2, and a feedforward connection strength I

The dynamics and connectivity guarantee that a neuron spikes at just the right times to optimise the
loss function (Fig. 1B). In addition, it is especially robust to noise of different forms, because of
its error-correcting nature. If x is constant in time, the voltage will rise up to the threshold 7' at
which point a spike is fired, adding a delta function to the spike train o at time ¢, thereby producing
a read-out  that is closer to  and causing an instantaneous drop in the voltage through the autapse,
by an amount I'? = 27T, effectively resetting the voltage to V = —T.

We now have a target for learning—we know the connection strength that a neuron must have at the
end of learning if it is to represent information optimally, for a linear read-out. We can use this target
to derive synaptic dynamics that can learn an optimal representation from experience. Specifically,
we consider an integrate-and-fire neuron with some arbitrary autapse strength w. The dynamics of
this neuron are given by

V=-V+Tc—wo. (@)
This neuron will not produce the correct spike train for representing x through a linear read-out
(Eqn. (1)) unless w = I'2.

Our goal is to derive a dynamical equation for the synapse w so that the spike train becomes optimal.
We do this by quantifying the loss that we are incurring by using the suboptimal strength, and then
deriving a learning rule that minimises this loss with respect to w. The loss function underlying
the spiking dynamics determined by Eqn. (5) can be found by reversing the previous membrane
potential analysis. First, we integrate the differential equation for V, assuming that w changes on
time scales much slower than the membrane potential. We obtain the following (formal) solution:

V =Tz — wo, (6)

where 0 is determined by 6 = —6 + 0. The solution to this latter equation is 6 = h * 0, a convolution
of the spike train with the exponential kernel h(7) = 6(7) exp(—7). As such, it is analogous to the
instantaneous firing rate of the neuron.

Now, using Eqn. (6), and rewriting the read-out as & = I'6, we obtain the loss incurred by the
sub-optimal neuron,
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We observe that the last two terms of Eqn. (7) will vanish whenever w = I'?, i.e., when the optimal
reset has been found. We can therefore simplify the problem by defining an alternative loss function,

L= (z—1)? (V?+2(w—T?)0o+ (w—T?)%%). (7)

1
Ly = §V2, ®)

which has the same minimum as the original loss (V' = 0 or x = &, compare Eqn. (2)), but yields a
simpler learning algorithm. We can now calculate how changes to w affect Ly :
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We can ignore the last term in this equation (as we will show below). Finally, using simple gradient
descent, we obtain a simple Hebbian-like synaptic plasticity rule:
0Ly

where 7 is the learning time constant.

!'This contribution of the autapse can also be interpreted as the reset of an integrate-and-fire neuron. Later,
when we generalise to networks of neurons, we shall employ this interpretation.



This synaptic learning rule is capable of learning the synaptic weight w that minimises the difference
between x and 2 (Fig. 1B). During learning, the synaptic weight changes in proportion to the post-
synaptic voltage V' and the pre-synaptic firing rate o (Fig. 1C). As such, this is a Hebbian learning
rule. Of course, in this single neuron case, the pre-synaptic neuron and post-synaptic neuron are the
same neuron. The synaptic weight gradually approaches its optimal value I'2. However, it never
completely stabilises, because learning never stops as long as neurons are spiking. Instead, the
synapse oscillates closely about the optimal value (Fig. 1D).

This is also a “greedy” learning rule, similar to the spiking rule, in that it seeks to minimise the error
at each instant in time, without regard for the future impact of those changes. To demonstrate that the
second term in Eqn. (5) can be neglected we note that the equations for V, 0, and w define a system
of coupled differential equations that can be solved analytically by integrating between spikes. This
results in a simple recurrence relation for changes in w from the i*" to the (i + 1)*" spike,

W (wi — 2T)

(T —Tec—w;)’ (i

Wit1 = Wi +
This iterative equation has a single stable fixed point at w = 2T = I'?, proving that the neuron’s
autaptic weight or reset will approach the optimal solution.

2 Learning in a homogeneous network

We now generalise our learning rule derivation to a network of N identical, homogeneously con-
nected neurons. This generalisation is reasonably straightforward because many characteristics of
the single neuron case are shared by a network of identical neurons. We will return to the more
general case of heterogeneously connected neurons in the next section.

We begin by deriving optimal spiking dynamics, as in the single neuron case. This provides a target
for learning, which we can then use to derive synaptic dynamics. As before, we want our network
to produce spikes that optimally represent a variable = for a linear read-out. We assume that the
read-out £ is provided by summing and filtering the spike trains of all the neurons in the network:

& =—%+To, (12)
where the row vector I' = (T, ..., T") contains the read-out weights? of the neurons and the column
vector o = (01, . ..,on) their spike trains. Here, we have used identical read-out weights for each

neuron, because this indirectly leads to homogeneous connectivity, as we will demonstrate.

Next, we assume that a neuron only spikes if that spike reduces a loss-function. This spiking rule is
similar to the single neuron spiking rule except that this time there is some ambiguity about which
neuron should spike to represent a signal. Indeed, there are many different spike patterns that provide
exactly the same estimate . For example, one neuron could fire regularly at a high rate (exactly like
our previous single neuron example) while all others are silent. To avoid this firing rate ambiguity,
we use a modified loss function, that selects amongst all equivalent solutions, those with the smallest
neural firing rates. We do this by adding a ‘metabolic cost’ term to our loss function, so that high
firing rates are penalised:

L= (x—2)?*+plol? (13)
where p is a small positive constant that controls the cost-accuracy trade-off, akin to a regularisation
parameter.

Each neuron in the optimal network will seek to reduce this loss function by firing a spike. Specifi-
cally, the i*" neuron will spike whenever L(no spike in i) > L(spike in 7). This leads to the follow-
ing spiking rule for the i*" neuron:

Vi>T; (14)
where V; = I'(z — &) — po; and T; = T'2/2 + 11/2. We can naturally interpret V; as the membrane
potential of the i*” neuron and T} as the spiking threshold of that neuron. As before, we can now
derive membrane potential dynamics:

V=-V4+T7c— (I'T + ul)o, (15)

’The read-out weights must scale as I' ~ 1/N so that firing rates are not unrealistically small in large
networks. We can see this by calculating the average firing rate vazl 0;/N ~x/(N) ~ O(N/N) ~ O(1).



where I is the identity matrix and T7T' + 1T is the network connectivity. We can interpret the self-
connection terms {I'2 + 1} as voltage resets that decrease the voltage of any neuron that spikes. This
optimal network is equivalent to a network of identical integrate-and-fire neurons with homogeneous
inhibitory connectivity.

The network has some interesting dynamical properties. The voltages of all the neurons are largely
synchronous, all increasing to the spiking threshold at about the same time? (Fig. 1F). Nonetheless,
neural spiking is asynchronous. The first neuron to spike will reset itself by I'? + y, and it will
inhibit all the other neurons in the network by I'2. This mechanism prevents neurons from spik-

3The first neuron to spike will be random if there is some membrane potential noise.
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Figure 1: Learning in a single neuron and a homogeneous network. (A) A single neuron represents
an input signal by producing an output z. (B) During learning, the single neuron output & (solid red
line, top panel) converges towards the input = (blue). Similarly, for a homogeneous network the out-
put & (dashed red line, top panel) converges towards z. Connectivity also converges towards optimal
connectivity in both the single neuron case (solid black line, middle panel) and the homogeneous net-

work case (dashed black line, middle panel), as quantified by D = max; ;(|Q;; — Q57 2 Q5P %)
at each point in time. Consequently, the membrane potential reset (bottom panel) converges towards
the optimal reset (green line, bottom panel). Spikes are indicated by blue vertical marks, and are
produced when the membrane potential reaches threshold (bottom panel). Here, we have rescaled
time, as indicated, for clarity. (C) Our learning rule dictates that the autapse w in our single neuron
(bottom panel) changes in proportion to the membrane potential (top panel) and the firing rate (mid-
dle panel). (D) At the end of learning, the reset w fluctuates weakly about the optimal value. (E) For
a homogeneous network, neurons spike regularly at the start of learning, as shown in this raster plot.
Membrane potentials of different neurons are weakly correlated. (F) At the end of learning, spiking
is very irregular and membrane potentials become more synchronous.



ing synchronously. The population as a whole acts similarly to the single neuron in our previous
example. Each neuron fires regularly, even if a different neuron fires in every integration cycle.

The design of this optimal network requires the tuning of N (N — 1) synaptic parameters. How can
an arbitrary network of integrate-and-fire neurons learn this optimum? As before, we address this
question by using the optimal network as a target for learning. We start with an arbitrarily connected
network of integrate-and-fire neurons:

V=-V+IT¢-Qo, (16)

where €2 is a matrix of connectivity weights, which includes the resets of the individual neurons.
Assuming that learning occurs on a slow time scale, we can rewrite this equation as

VvV =TTz - Q6. (17)

Now, repeating the arguments from the single neuron derivation, we modify the loss function to
obtain an online learning rule. Specifically, we set Ly = || V||?/2, and calculate the gradient:

aLV 8Vk _ (96[
- - _ 5; — Q2L |
20, zk:Vk 90, Z};Vk&n% %:Vk “ a0, (18)

We can simplify this equation considerably by observing that the contribution of the second sum-
mation is largely averaged out under a wide variety of realistic conditions*. Therefore, it can be
neglected, and we obtain the following local learning rule:
: OLy _

This is a Hebbian plasticity rule, whereby connectivity changes in proportion to the presynaptic
firing rate 0, and post-synaptic membrane potential V;. We assume that the neural thresholds are set
to a constant 7" and that the neural resets are set to their optimal values —7'. In the previous section
we demonstrated that these resets can be obtained by a Hebbian plasticity rule (Eqn. (10)).

This learning rule minimises the difference between the read-out and the signal, by approaching
the optimal recurrent connection strengths for the network (Fig. 1B). As in the single neuron case,
learning does not stop, so the connection strengths fluctuate close to their optimal value. During
learning, network activity becomes progressively more asynchronous as it progresses towards opti-
mal connectivity (Fig. 1E, F).

3 Learning in the general case

Now that we have developed the fundamental concepts underlying our learning rule, we can derive
a learning rule for the more general case of a network of N arbitrarily connected leaky integrate-
and-fire neurons. Our goal is to understand how such networks can learn to optimally represent a
J-dimensional signal x = (x4, ..., 2y), using the read-out equation X = —x + T'o.

We consider a network with the following membrane potential dynamics:
V=-V+ITc- Qo, (20)

where c is a J-dimensional input. We assume that this input is related to the signal according to
¢ = x + x. This assumption can be relaxed by treating the input as the control for an arbitrary
linear dynamical system, in which case the signal represented by the network is the output of such a
computation [11]. However, this further generalisation is beyond the scope of this work.

As before, we need to identify the optimal recurrent connectivity so that we have a target for learning.
Most generally, the optimal recurrent connectivity is Q%' = I''T' + pI. The output kernels of the
individual neurons, T';, are given by the rows of T', and their spiking thresholds by 7} = ||T';||%/2 +

*From the definition of the membrane potential we can see that Vi, ~ O(1/N) because I' ~ 1/N. There-
fore, the size of the first term in Eqn. (18) is >, Vidx:i0; = Vi0; ~ O(1/N). Therefore, the second term can
be ignored if 3", Vi Q1106,/0; < O(1/N). This happens if Q4 < O(1/N?) as at the start of learning.
It also happens towards the end of learning if the terms {x;00;/0€2;; } are weakly correlated with zero mean,
or if the membrane potentials {V; } are weakly correlated with zero mean.



(/2. With these connections and thresholds, we find that a network of integrate-and-fire neurons
will produce spike trains in such a way that the loss function L = ||x — %X||? + p||o]|? is minimised,
where the read-out is given by X = I'o. We can show this by prescribing a greedy’ spike rule:
a spike is fired by neuron ¢ whenever L(no spike in i) > L(spike in ¢) [11]. The resulting spike
generation rule is

Vi > T;, 21

where V; = I'} (x — X) — uo; is interpreted as the membrane potential.

SDespite being greedy, this spiking rule can generate firing rates that are practically identical to the optimal
solutions: we checked this numerically in a large ensemble of networks with randomly chosen kernels.
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Figure 2: Learning in a heterogeneous network. (A) A network of neurons represents an input
signal x by producing an output X. (B) During learning, the loss L decreases (top panel). The differ-
ence between the connection strengths and the optimal strengths also decreases (middle panel), as

quantified by the mean difference (solid line), given by D = ||Q — QOptHQ / HQ"‘“HQ and the maxi-
mum difference (dashed line), given by max; ; (|Q;; — Q(i’?t ’2 / |2%|7). The mean population firing
rate (solid line, bottom panel) also converges towards the optimaf firing rate (dashed line, bottom
panel). (C, E) Before learning, a raster plot of population spiking shows that neurons produce bursts
of spikes (upper panel). The network output X (red line, middle panel) fails to represent x (blue
line, middle panel). The excitatory input (red, bottom left panel) and inhibitory input (green, bottom
left panel) to a randomly selected neuron is not tightly balanced. Furthermore, a histogram of inter-
spike intervals shows that spiking activity is not Poisson, as indicated by the red line that represents
a best-fit exponential distribution. (D, F) At the end of learning, spiking activity is irregular and
Poisson-like, excitatory and inhibitory input is tightly balanced and X matches x.



How can we learn this optimal connection matrix? As before, we can derive a learning rule by
minimising the cost function Ly = ||V||?/2. This leads to a Hebbian learning rule with the same
form as before: )

TQij = V;éj. (22)
Again, we assume that the neural resets are given by —7;. Furthermore, in order for this learning rule
to work, we must assume that the network input explores all possible directions in the .J-dimensional
input space (since the kernels I'; can point in any of these directions). The learning performance
does not critically depend on how the input variable space is sampled as long as the exploration
is extensive. In our simulations, we randomly sample the input ¢ from a Gaussian white noise
distribution at every time step for the entire duration of the learning.

We find that this learning rule decreases the loss function L, thereby approaching optimal network
connectivity and producing optimal firing rates for our linear decoder (Fig. 2B). In this example, we
have chosen connectivity that is initially much too weak at the start of learning. Consequently, the
initial network behaviour is similar to a collection of unconnected single neurons that ignore each
other. Spike trains are not Poisson-like, firing rates are excessively large, excitatory and inhibitory
input is unbalanced and the decoded variable %X is highly unreliable (Fig. 2C, E). As a result of
learning, the network becomes tightly balanced and the spike trains become asynchronous, irregular
and Poisson-like with much lower rates (Fig. 2D, F). However, despite this apparent variability, the
population representation is extremely precise, only limited by the the metabolic cost and the discrete
nature of a spike. This learnt representation is far more precise than a rate code with independent
Poisson spike trains [11]. In particular, shuffling the spike trains in response to identical inputs
drastically degrades this precision.

4 Conclusions and Discussion

In population coding, large trial-to-trial spike train variability is usually interpreted as noise [2]. We
show here that a deterministic network of leaky integrate-and-fire neurons with a simple Hebbian
plasticity rule can self-organise into a regime where information is represented far more precisely
than in noisy rate codes, while appearing to have noisy Poisson-like spiking dynamics.

Our learning rule (Eqn. (22)) has the basic properties of STDP. Specifically, a presynaptic spike
occurring immediately before a post-synaptic spike will potentiate a synapse, because membrane
potentials are positive immediately before a postsynaptic spike. Furthermore, a presynaptic spike
occurring immediately after a post-synaptic spike will depress a synapse, because membrane po-
tentials are always negative immediately after a postsynaptic spike. This is similar in spirit to the
STDP rule proposed in [12], but different to classical STDP, which depends on post-synaptic spike
times [9].

This learning rule can also be understood as a mechanism for generating a tight balance between
excitatory and inhibitory input. We can see this by observing that membrane potentials after learning
can be interpreted as representation errors (projected onto the read-out kernels). Therefore, learning
acts to minimise the magnitude of membrane potentials. Excitatory and inhibitory input must be
balanced if membrane potentials are small, so we can equate balance with optimal information
representation.

Previous work has shown that the balanced regime produces (quasi-)chaotic network dynamics,
thereby accounting for much observed cortical spike train variability [13, 14, 4]. Moreover, the
STDP rule has been known to produce a balanced regime [16, 17]. Additionally, recent theoretical
studies have suggested that the balanced regime plays an integral role in network computation [15,
13]. In this work, we have connected these mechanisms and functions, to conclude that learning this
balance is equivalent to the development of an optimal spike-based population code, and that this
learning can be achieved using a simple Hebbian learning rule.
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