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Abstract

Positive definite operator-valued kernels generalize the well-known notion of
reproducing kernels, and are naturally adapted to multi-output learning situa-
tions. This paper addresses the problem of learning a finite linear combination
of infinite-dimensional operator-valued kernels which are suitable for extending
functional data analysis methods to nonlinear contexts. We study this problem in
the case of kernel ridge regression for functional responses with an `r-norm con-
straint on the combination coefficients (r ≥ 1). The resulting optimization prob-
lem is more involved than those of multiple scalar-valued kernel learning since
operator-valued kernels pose more technical and theoretical issues. We propose a
multiple operator-valued kernel learning algorithm based on solving a system of
linear operator equations by using a block coordinate-descent procedure. We ex-
perimentally validate our approach on a functional regression task in the context
of finger movement prediction in brain-computer interfaces.

1 Introduction

During the past decades, a large number of algorithms have been proposed to deal with learning
problems in the case of single-valued functions (e.g., binary-output function for classification or real
output for regression). Recently, there has been considerable interest in estimating vector-valued
functions [21, 5, 7]. Much of this interest has arisen from the need to learn tasks where the target is
a complex entity, not a scalar variable. Typical learning situations include multi-task learning [11],
functional regression [12], and structured output prediction [4].

In this paper, we are interested in the problem of functional regression with functional responses in
the context of brain-computer interface (BCI) design. More precisely, we are interested in finger
movement prediction from electrocorticographic signals [23]. Indeed, from a set of signals measur-
ing brain surface electrical activity on d channels during a given period of time, we want to predict,
for any instant of that period whether a finger is moving or not and the amplitude of the finger flex-
ion. Formally, the problem consists in learning a functional dependency between a set of d signals
and a sequence of labels (a step function indicating whether a finger is moving or not) and between
the same set of signals and vector of real values (the amplitude function). While, it is clear that this
problem can be formalized as functional regression problem, from our point of view, such problem
can benefit from the multiple operator-valued kernel learning framework. Indeed, for these prob-
lems, one of the difficulties arises from the unknown latency between the signal related to the finger
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movement and the actual movement [23]. Hence, instead of fixing in advance some value for this
latency in the regression model, our framework allows to learn it from the data by means of several
operator-valued kernels.

If we wish to address functional regression problem in the principled framework of reproducing
kernel Hilbert spaces (RKHS), we have to consider RKHSs whose elements are operators that map
a function to another function space, possibly source and target function spaces being different.
Working in such RKHSs, we are able to draw on the important core of work that has been per-
formed on scalar-valued and vector-valued RKHSs [28, 21]. Such a functional RKHS framework
and associated operator-valued kernels have been introduced recently [12, 13]. A basic question
with reproducing kernels is how to build these kernels and what is the optimal kernel choice for a
given application. In order to overcome the need for choosing a kernel before the learning process,
several works have tried to address the problem of learning the scalar-valued kernel jointly with
the decision function [18, 29]. Since these seminal works, many efforts have been carried out in
order to theoretically analyze the kernel learning framework [9, 3] or in order to provide efficient
algorithms [24, 1, 15]. While many works have been devoted to multiple scalar-valued kernel learn-
ing, this problem of kernel learning have been barely investigated for operator-valued kernels. One
motivation of this work is to bridge the gap between multiple kernel learning (MKL) and operator-
valued kernels by proposing a framework and an algorithm for learning a finite linear combination
of operator-valued kernels. While each step of the scalar-valued MKL framework can be extended
without major difficulties to operator-valued kernels, technical challenges arise at all stages because
we deal with infinite dimensional spaces. It should be pointed out that in a recent work [10], the
problem of learning the output kernel was formulated as an optimization problem over the cone
of positive semidefinite matrices, and a block-coordinate descent method was proposed to solve it.
However, they did not focus on learning the input kernel. In contrast, our multiple operator-valued
kernel learning formulation can be seen as a way of learning simultaneously input and output ker-
nels, although we consider a linear combination of kernels that are fixed in advance.

In this paper, we make the following contributions: 1) we introduce a novel approach to infinite-
dimensional multiple operator-valued kernel learning (MovKL) suitable for learning the functional
dependencies and interactions between continuous data; 2) we extend the original formulation of
ridge regression in dual variables to the functional data analysis domain, showing how to perform
nonlinear functional regression with functional responses by constructing a linear regression opera-
tor in an operator-valued kernel feature space (Section 2); 3) we derive a dual form of the MovKL
problem with functional ridge regression, and show that a solution of the related optimization prob-
lem exists (Section 2); 4) we propose a block-coordinate descent algorithm to solve the MovKL
optimization problem which involves solving a challenging linear system with a sum of block op-
erator matrices (Section 3); 5) we provide an empirical evaluation of MovKL performance which
demonstrates its effectiveness on a BCI dataset (Section 4).

2 Problem Setting

Before describing the multiple operator-valued kernel learning algorithm that we will study and ex-
periment with in this paper, we first review notions and properties of reproducing kernel Hilbert
spaces with operator-valued kernels, show their connection to learning from multiple response
data (multiple outputs; see [21] for discrete data and [12] for continuous data), and describe the
optimization problem for learning kernels with functional response ridge regression.

2.1 Notations and Preliminaries

We start by some standard notations and definitions used all along the paper. Given a Hilbert
space H, 〈·, ·〉H and ‖ · ‖H refer to its inner product and norm, respectively. We denote by Gx
and Gy the separable real Hilbert spaces of input and output functional data, respectively. In func-
tional data analysis domain, continuous data are generally assumed to belong to the space of square
integrable functions L2. In this work, we consider that Gx and Gy are the Hilbert space L2(Ω) which
consists of all equivalence classes of square integrable functions on a finite set Ω. Ω being poten-
tially different for Gx and Gy . We denote by F(Gx,Gy) the vector space of functions f : Gx −→ Gy ,
and by L(Gy) the set of bounded linear operators from Gy to Gy .
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We consider the problem of estimating a function f such that f(xi) = yi when observed functional
data (xi, yi)i=1,...,n ∈ (Gx,Gy). Since Gx and Gy are spaces of functions, the problem can be thought
of as an operator estimation problem, where the desired operator maps a Hilbert space of factors to
a Hilbert space of targets. We can define the regularized operator estimate of f ∈ F as:

fλ , arg min
f∈F

1

n

n∑
i=1

‖yi − f(xi)‖2Gy + λ‖f‖2F . (1)

In this work, we are looking for a solution to this minimization problem in a function-valued repro-
ducing kernel Hilbert space F . More precisely, we mainly focus on the RKHS F whose elements
are continuous linear operators on Gx with values in Gy . The continuity property is obtained by
considering a special class of reproducing kernels called Mercer kernels [7, Proposition 2.2]. Note
that in this case, F is separable since Gx and Gy are separable [6, Corollary 5.2].

We now introduce (function) Gy-valued reproducing kernel Hilbert spaces and show the correspon-
dence between such spaces and positive definite (operator) L(Gy)-valued kernels. These extend the
traditional properties of scalar-valued kernels.

Definition 1 (function-valued RKHS)
A Hilbert space F of functions from Gx to Gy is called a reproducing kernel Hilbert space if there is
a positive definite L(Gy)-valued kernel KF (w, z) on Gx × Gx such that:

i. the function z 7−→ KF (w, z)g belongs to F , ∀z ∈ Gx, w ∈ Gx, g ∈ Gy ,

ii. ∀f ∈ F , w ∈ Gx, g ∈ Gy, 〈f,KF (w, ·)g〉F = 〈f(w), g〉Gy (reproducing property).

Definition 2 (operator-valued kernel)
An L(Gy)-valued kernel KF (w, z) on Gx is a function KF (·, ·) : Gx×Gx −→ L(Gy); furthermore:

i. KF is Hermitian if KF (w, z) = KF (z, w)∗, where ∗ denotes the adjoint operator,

ii. KF is positive definite on Gx if it is Hermitian and for every natural number r and all
{(wi, ui)i=1,...,r} ∈ Gx × Gy ,

∑
i,j〈KF (wi, wj)uj , ui〉Gy ≥ 0.

Theorem 1 (bijection between function-valued RKHS and operator-valued kernel)
An L(Gy)-valued kernel KF (w, z) on Gx is the reproducing kernel of some Hilbert space F , if and
only if it is positive definite.

The proof of Theorem 1 can be found in [21]. For further reading on operator-valued kernels and
their associated RKHSs, see, e.g., [5, 6, 7].

2.2 Functional Response Ridge Regression in Dual Variables

We can write the ridge regression with functional responses optimization problem (1) as follows:

min
f∈F

1

2
‖f‖2F +

1

2nλ

n∑
i=1

‖ξi‖2Gy
with ξi = yi − f(xi).

(2)

Now, we introduce the Lagrange multipliers αi, i = 1, . . . , n which are functional variables since
the output space is the space of functions Gy . For the optimization problem (2), the Lagrangian
multipliers exist and the Lagrangian function is well defined. The method of Lagrange multipliers on
Banach spaces, which is a generalization of the classical (finite-dimensional) Lagrange multipliers
method suitable to solve certain infinite-dimensional constrained optimization problems, is applied
here. For more details, see [16]. Let α = (αi)i=1,...,n ∈ Gny the vector of functions containing the
Lagrange multipliers, the Lagrangian function is defined as

L(f, α, ξ) =
1

2
‖f‖2F +

1

2nλ
‖ξ‖2Gn

y
+ 〈α, y − f(x)− ξ〉Gn

y
, (3)

where α = (α1, . . . , αn) ∈ Gny , y = (y1, . . . , yn) ∈ Gny , f(x) = (f(x1), . . . , f(xn)) ∈ Gny ,

ξ = (ξ1, . . . , ξn) ∈ Gny , and ∀a, b ∈ Gny , 〈a, b〉Gn
y

=
n∑
i=1

〈ai, bi〉Gy .
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Differentiating (3) with respect to f ∈ F and setting to zero, we obtain

f(.) =

n∑
i=1

K(xi, .)αi, (4)

where K : Gx × Gx −→ L(Gy) is the operator-valued kernel of F .

Substituting this into (3) and minimizing with respect to ξ, we obtain the dual of the functional
response kernel ridge regression (KRR) problem

max
α
−nλ

2
‖α‖2Gn

y
− 1

2
〈Kα, α〉Gn

y
+ 〈α, y〉Gn

y
, (5)

where K = [K(xi, xj)]
n
i,j=1 is the block operator kernel matrix. The computational details regrad-

ing the dual formulation of functional KRR are derived in Appendix B of [14].

2.3 MovKL in Dual Variables

Let us now consider that the function f(·) is sum of M functions {fk(·)}Mk=1 where each fk belongs
to a Gy-valued RKHS with kernel Kk(·, ·). Similarly to scalar-valued multiple kernel learning, we
can cast the problem of learning these functions fk as

min
d∈D

min
fk∈Fk

M∑
k=1

‖fk‖2Fk

2dk
+

1

2nλ

n∑
i=1

‖ξi‖2Gy

with ξi = yi −
∑M
k=1 fk(xi),

(6)

where d = [d1, · · · , dM ], D = {d : ∀k, dk ≥ 0 and
∑
k d

r
k ≤ 1} and 1 ≤ r ≤ ∞. Note that this

problem can equivalently be rewritten as an unconstrained optimization problem. Before deriving
the dual of this problem, it can be shown by means of the generalized Weierstrass theorem [17] that
this problem admits a solution. We report the proof in Appendix A of [14].

Now, following the lines of [24], a dualization of this problem leads to the following equivalent one

min
d∈D

max
α∈Gn

y

−nλ
2
‖α‖2Gn

y
− 1

2
〈Kα, α〉Gn

y
+ 〈α, y〉Gn

y
, (7)

where K =
M∑
k=1

dkKk and Kk is the block operator kernel matrix associated to the operator-valued

kernel Kk. The KKT conditions also state that at optimality we have fk(·) =
n∑
i=1

dkKk(xi, ·)αi.

3 Solving the MovKL Problem

After having presented the framework, we now devise an algorithm for solving this MovKL problem.

3.1 Block-coordinate descent algorithm

Since the optimization problem (6) has the same structure as a multiple scalar-valued kernel learning
problem, we can build our MovKL algorithm upon the MKL literature. Hence, we propose to
borrow from [15], and consider a block-coordinate descent method. The convergence of a block
coordinate descent algorithm which is related closely to the Gauss-Seidel method was studied in
works of [30] and others. The difference here is that we have operators and block operator matrices
rather than matrices and block matrices, but this doesn’t increase the complexity if the inverse of
the operators are computable (typically analytically or by spectral decomposition). Our algorithm
iteratively solves the problem with respect to α with d being fixed and then with respect to d with α
being fixed (see Algorithm 1). After having initialized {dk} to non-zero values, this boils down to
the following steps :

1. with {dk} fixed, the resulting optimization problem with respect to α has the following
form:

(K + λI)α = y, (8)
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where K =
∑M
k=1 dkKk. While the form of solution is rather simple, solving this linear

system is still challenging in the operator setting and we propose below an algorithm for its
resolution.

2. with {fk} fixed, according to problem (6), we can rewrite the problem as

min
d∈D

M∑
k=1

‖fk‖2Fk

dk
(9)

which has a closed-form solution and for which optimality occurs at [20]:

dk =
‖fk‖

2
r+1

(
∑
k ‖fk‖

2r
r+1 )1/r

. (10)

This algorithm is similar to that of [8] and [15] both being based on alternating optimization. The
difference here is that we have to solve a linear system involving a block-operator kernel matrix
which is a combination of basic kernel matrices associated to M operator-valued kernels. This
makes the system very challenging, and we present an algorithm for solving it in the next paragraph.
We also report in Appendix C of [14] a convergence proof of a modified version of the MovKL
algorithm that minimizes a perturbation of the objective function (6) with a small positive parameter
required to guarantee convergence [2].

3.2 Solving a linear system involving multiple operator-valued kernel matrices

One common way to construct operator-valued kernels is to build scalar-valued ones which are
carried over to the vector-valued (resp. function-valued) setting by a positive definite matrix (resp.
operator). In this setting an operator-valued kernel has the following form:

K(w, z) = G(w, z)T,

where G is a scalar-valued kernel and T is a positive operator in L(Gy). In multi-task learning,
T is a finite dimensional matrix that is expected to share information between tasks [11, 5]. More
recently and for supervised functional output learning problems, T is chosen to be a multiplica-
tion or an integral operator [12, 13]. This choice is motivated by the fact that functional linear
models for functional responses [25] are based on these operators and then such kernels provide
an interesting alternative to extend these models to nonlinear contexts. In addition, some works on
functional regression and structured-output learning consider operator-valued kernels constructed
from the identity operator as in [19] and [4]. In this work we adopt a functional data analysis point
of view and then we are interested in a finite combination of operator-valued kernels constructed
from the identity, multiplication and integral operators. A problem encountered when working with
operator-valued kernels in infinite-dimensional spaces is that of solving the system of linear operator
equations (8). In the following we show how to solve this problem for two cases of operator-valued
kernel combinations.

Case 1: multiple scalar-valued kernels and one operator. This is the simpler case where the
combination of operator-valued kernels has the following form

K(w, z) =

M∑
k=1

dkGk(w, z)T, (11)

where Gk is a scalar-valued kernel, T is a positive operator in L(Gy), and dk are the combi-
nation coefficients. In this setting, the block operator kernel matrix K can be expressed as a
Kronecker product between the multiple scalar-valued kernel matrix G =

∑M
k=1 dkGk, where

Gk = [Gk(xi, xj)]
n
i,j=1, and the operator T . Thus we can compute an analytic solution of the

system of equations (8) by inverting K + λI using the eigendecompositions of G and T as in [13].

Case 2: multiple scalar-valued kernels and multiple operators. This is the general case where
multiple operator-valued kernels are combined as follows

K(w, z) =

M∑
k=1

dkGk(w, z)Tk, (12)
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Algorithm 1 `r-norm MovKL

Input Kk for k = 1, . . . ,M

d1k ←−
1

M
for k = 1, . . . ,M

α←− 0

for t = 1, 2, . . . do
α′ ←− α
K←−

∑
k d

t
kKk

α←− solution of (K+ λI)α = y

if ‖α− α′‖ < ε then
break

end if

dt+1
k ←− ‖fk‖

2
r+1

(
∑

k ‖fk‖
2r

r+1 )1/r
for k = 1, . . . ,M

end for

Algorithm 2 Gauss-Seidel Method

choose an initial vector of functions α(0)

repeat
for i = 1, 2, . . . , n

α
(t)
i ←− sol. of (13):

[K(xi, xi) + λI]α
(t)
i = si

end for
until convergence

where Gk is a scalar-valued kernel, Tk is a positive operator in L(Gy), and dk are the combination
coefficients. Inverting the associated block operator kernel matrix K is not feasible in this case,
that is why we propose a Gauss-Seidel iterative procedure (see Algorithm 2) to solve the system
of linear operator equations (8). Starting from an initial vector of functions α(0), the idea is to
iteratively compute, until a convergence condition is satisfied, the functions αi according to the
following expression

[K(xi, xi) + λI]α
(t)
i = yi −

i−1∑
j=1

K(xi, xj)α
(t)
j −

n∑
j=i+1

K(xi, xj)α
(t−1)
j , (13)

where t is the iteration index. This problem is still challenging because the kernel K(·, ·) still
involves a positive combination of operator-valued kernels. Our algorithm is based on the idea
that instead of inverting the finite combination of operator-valued kernels [K(xi, xi) + λI], we can
consider the following variational formulation of this system

min
α

(t)
i

1

2
〈
M+1∑
k=1

Kk(xi, xi)α
(t)
i , α

(t)
i 〉Gy − 〈si, α

(t)
i 〉Gy ,

where si = yi −
i−1∑
j=1

K(xi, xj)α
(t)
j −

n∑
j=i+1

K(xi, xj)α
(t−1)
j , Kk = dkGkTk, ∀k ∈ {1, . . . ,M},

and KM+1 = λI .

Now, by means of a variable-splitting approach, we are able to decouple the role of the different
kernels. Indeed, the above problem is equivalent to the following one :

min
α

(t)
i

1

2
〈K̂(xi, xi)α

(t)
i ,α

(t)
i 〉GM

y
− 〈si,α(t)

i 〉GM
y

with α
(t)
i,1 = α

(t)
i,k for k = 2, . . . ,M + 1,

where K̂(xi, xi) is the (M + 1) × (M + 1) diagonal matrix [Kk(xi, xi)]
M+1
k=1 . α

(t)
i is the vector

(α
(t)
i,1, . . . , α

(t)
i,M+1) and the (M + 1)-dimensional vector si = (si, 0, . . . , 0). We now have to deal

with a quadratic optimization problem with equality constraints. Writing down the Lagrangian
of this optimization problem and then deriving its first-order optimality conditions leads us to the
following set of linear equations K1(xi, xi)αi,1 − si +

∑M
k=1 γk = 0

Kk(xi, xi)αi,k − γk = 0
αi,1 − αi,k = 0

(14)

where k = 2, . . . ,M + 1 and {γk} are the Lagrange multipliers related to the M equality con-
straints. Finally, in this set of equations, the operator-valued kernels have been decoupled and thus,
if their inversion can be easily computed (which is the case in our experiments), one can solve the
problem (14) with respect to {αi,k} and γk by means of another Gauss-Seidel algorithm after simple
reorganization of the linear system.
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Figure 1: Example of a couple of input-output signals in our BCI task. (left) Amplitude modula-
tion features extracted from ECoG signals over 5 pre-defined channels. (middle) Signal of labels
denoting whether the finger is moving or not. (right) Real amplitude movement of the finger.

4 Experiments

In order to highlight the benefit of our multiple operator-valued kernel learning approach, we have
considered a series of experiments on a real dataset, involving functional output prediction in a
brain-computer interface framework. The problem we addressed is a sub-problem related to fin-
ger movement decoding from Electrocorticographic (ECoG) signals. We focus on the problem of
estimating if a finger is moving or not and also on the direct estimation of the finger movement
amplitude from the ECoG signals. The development of the full BCI application is beyond the scope
of this paper and our objective here is to prove that this problem of predicting finger movement can
benefit from multiple kernel learning.

To this aim, the fourth dataset from the BCI Competition IV [22] was used. The subjects were 3
epileptic patients who had platinium electrode grids placed on the surface of their brains. The num-
ber of electrodes varies between 48 to 64 depending on the subject, and their position on the cortex
was unknown. ECoG signals of the subject were recorded at a 1KHz sampling using BCI2000 [27].
A band-pass filter from 0.15 to 200Hz was applied to the ECoG signals. The finger flexion of the
subject was recorded at 25Hz and up-sampled to 1KHz by means of a data glove which measures
the finger movement amplitude. Due to the acquisition process, a delay appears between the finger
movement and the measured ECoG signal [22]. One of our hopes is that this time-lag can be prop-
erly learnt by means of multiple operator-valued kernels. Features from the ECoG signals are built
by computing some band-specific amplitude modulation features, which is defined as the sum of the
square of the band-specific filtered ECoG signal samples during a fixed time window.

For our finger movement prediction task, we have kept 5 channels that have been manually selected
and split ECoG signals in portions of 200 samples. For each of these time segments, we have the
label of whether at each time sample, the finger is moving or not as well as the real movement
amplitudes. The dataset is composed of 487 couples of input-output signals, the output signals
being either the binary movement labels or the real amplitude movement. An example of input-
output signals are depicted in Figure 1. In a nutshell, the problem boils down to be a functional
regression task with functional responses.

To evaluate the performance of the multiple operator-valued kernel learning approach, we use both:
(1) the percentage of labels correctly recognized (LCR) defined by (Wr/Tn) × 100%, where Wr

is the number of well-recognized labels and Tn the total number of labels to be recognized; (2) the
residual sum of squares error (RSSE) as evaluation criterion for curve prediction

RSSE =

∫ ∑
i

{yi(t)− ŷi(t)}2dt, (15)

where ŷi(t) is the prediction of the function yi(t) corresponding to real finger movement or the
finger movement state.

For the multiple operator-valued kernels having the form (12), we have used a Gaussian kernel
with 5 different bandwidths and a polynomial kernel of degree 1 to 3 combined with three oper-
ators T : identity Ty(t) = y(t), multiplication operator associated with the function e−t

2

defined
by Ty(t) = e−t

2

y(t), and the integral Hilbert-Schmidt operator with the kernel e−|t−s| proposed
in [13], Ty(t) =

∫
e−|t−s|y(s)ds. The inverses of these operators can be computed analytically.
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Table 1: (Left) Results for the movement state prediction. Residual Sum of Squares Error (RSSE)
and the percentage number of Labels Correctly Recognized (LCR) of : (1) baseline KRR with the
Gaussian kernel, (2) functional response KRR with the integral operator-valued kernel, (3) MovKL
with `∞, `1 and `2-norm constraint. (Right) Residual Sum of Squares Error (RSSE) results for
finger movement prediction.

Algorithm RSSE LCR(%)

KRR - scalar-valued - 68.32 72.91
KRR - functional response - 49.40 80.20
MovKL - `∞ norm - 45.44 81.34
MovKL - `1 norm - 48.12 80.66
MovKL - `2 norm - 39.36 84.72

Algorithm RSSE

KRR - scalar-valued - 88.21
KRR - functional response - 79.86
MovKL - `∞ norm - 76.52
MovKL - `1 norm - 78.24
MovKL - `2 norm - 75.15

While the inverses of the identity and the multiplication operators are easily and directly computable
from the analytic expressions of the operators, the inverse of the integral operator is computed from
its spectral decomposition as in [13]. The number of eigenfunctions as well as the regularization
parameter λ are fixed using “one-curve-leave-out cross-validation” [26] with the aim of minimizing
the residual sum of squares error.

Empirical results on the BCI dataset are summarized in Table 1. The dataset was randomly parti-
tioned into 65% training and 35% test sets. We compare our approach in the case of `1 and `2-norm
constraint on the combination coefficients with: (1) the baseline scalar-valued kernel ridge regres-
sion algorithm by considering each output independently of the others, (2) functional response ridge
regression using an integral operator-valued kernel [13], (3) kernel ridge regression with an evenly-
weighted sum of operator-valued kernels, which we denote by `∞-norm MovKL.

As in the scalar case, using multiple operator-valued kernels leads to better results. By directly com-
bining kernels constructed from identity, multiplication and integral operators we could reduce the
residual sum of squares error and enhance the label classification accuracy. Best results are obtained
using the MovKL algorithm with `2-norm constraint on the combination coefficients. RSSE and
LCR of the baseline kernel ridge regression are significantly outperformed by the operator-valued
kernel based functional response regression. These results confirm that by taking into account the
relationship between outputs we can improve performance. This is due to the fact that an operator-
valued kernel induces a similarity measure between two pairs of input/output.

5 Conclusion

In this paper we have presented a new method for learning simultaneously an operator and a fi-
nite linear combination of operator-valued kernels. We have extended the MKL framework to deal
with functional response kernel ridge regression and we have proposed a block coordinate descent
algorithm to solve the resulting optimization problem. The method is applied on a BCI dataset to
predict finger movement in a functional regression setting. Experimental results show that our algo-
rithm achieves good performance outperforming existing methods. It would be interesting for future
work to thoroughly compare the proposed MKL method for operator estimation with previous re-
lated methods for multi-class and multi-label MKL in the contexts of structured-output learning and
collaborative filtering.
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