Fast Resampling Weighted v-Statistics

Chunxiao Zhou Jiseong Park Yun Fu
Mark O. Hatfield Clinical Research Center Dept of Math Dept of ECE
National Institutes of Health George Mason Univ Northeastern Univ
Bethesda, MD 20892 Fairfax, VA 22030 Boston, MA 02115
chunxiao.zhou@nih.gov jiseongp @ gmail.com yunfu@ece.neu.edu
Abstract

In this paper, a novel and computationally fast algorithm for computing weighted
v-statistics in resampling both univariate and multivariate data is proposed. To
avoid any real resampling, we have linked this problem with finite group action
and converted it into a problem of orbit enumeration. For further computational
cost reduction, an efficient method is developed to list all orbits by their sym-
metry orders and calculate all index function orbit sums and data function orbit
sums recursively. The computational complexity analysis shows reduction in the
computational cost from n! or n™ level to low-order polynomial level.

1 Introduction

Resampling methods (e.g., bootstrap, cross-validation, and permutation) [3,5] are becoming increas-
ingly popular in statistical analysis due to their high flexibility and accuracy. They have been suc-
cessfully integrated into most research topics in machine learning, such as feature selection, di-
mension reduction, supervised learning, unsupervised learning, reinforcement learning, and active
learning (2, 3,4,7,9, 11, 12, 13, 20].

The key idea of resampling is to generate the empirical distribution of a test statistic by resampling
with or without replacement from the original observations. Then further statistical inference can
be conducted based on the empirical distribution, i.e., resampling distribution. One of the most
important problems in resampling is calculating resampling statistics, i.e., the expected values of
test statistics under the resampling distribution, because resampling statistics are compact represen-
tatives of the resampling distribution. In addition, a resampling distribution may be approximated
by a parametric model with some resampling statistics, for example, the first several moments of
a resampling distribution [5, 16]. In this paper, we focus on computing resampling weighted v-
statistics [18] (see Section 2 for the formal definition). Suppose our data includes n observations,
a weighted v-statistic is a summation of products of data function terms and index function terms,
i.e., weights, over all possible k£ observations chosen from n observations, where k is the order of
the weighted v-statistic. If we treat our data as points in a multi-dimensional space, a weighted
v-statistic can be considered as an average of all possible weighted k-points distances. The higher &,
the more complicated interactions among observations can be modeled in the weighted v-statistic.
Machine learning researchers have already used weighted v-statistics in hypothesis testing, density
estimation, dependence measurement, data pre-processing, and classification [6, 14, 19, 21] .

Traditionally, estimation of resampling statistics is solved by random sampling since exhaustive ex-
amination of the resampling space is usually ill advised [5,16]. There is a tradeoff between accuracy
and computational cost with random sampling. To date, there is no systematic and efficient solution
to the issue of exact calculation of resampling statistics. Recently, Zhou et.al. [21] proposed a recur-
sive method to derive moments of permutation distributions (i.e., empirical distribution generated by
resampling without replacement). The key strategy is to divide the whole index set (i.e., indices of
all possible k& observations) into several permutation equivalent index subsets such that the summa-

tion of the data/index function term over all permutations is invariant within each subset and can be
calculated without conducting any permutation. Therefore, moments are obtained by summing up
several subtotals. However, methods for listing all permutation equivalent index subsets and calcu-
lating of the respective cardinalities were not emphasized in the previous publication [21]. There is
also no systematic way to obtain coefficients in the recursive relationship. Even only for calculating
the first four moments of a second order resampling weighted v statistic, hundreds of index subsets
and thousands of coefficients have to be derived manually. The manual derivation is very tedious and
error-prone. In addition, Zhou’s work is limited to permutation (resampling without replacement)
and is not applicable to bootstrapping (resampling with replacement) statistics.

In this paper, we propose a novel and computationally fast algorithm for computing weighted v-
statistics in resampling both univariate and multivariate data. In the proposed algorithm, the calcu-
lation of weighted v-statistics is considered as a summation of products of data function terms and
index function terms over a high-dimensional index set and all possible resamplings with or without
replacement. To avoid any resampling, we link this problem with finite group actions and convert
it into a problem of orbit enumeration [10]. For further computational cost reduction, an efficient
method has been developed to list all orbits by their symmetry order and to calculate all index func-
tion orbit sums and data function orbit sums recursively. With computational complexity analysis,
we have reduced the computational cost from n! or n” level to low-order polynomial level. Detailed
proofs have been included in the supplementary material.

In comparison with previous work [21], this study gives a theoretical justification of the permutation
equivalence partition idea and extends it to other types of resamplings. We have built up a solid
theoretical framework that explains the symmetry of resampling statistics using a product of sev-
eral symmetric groups. In addition, by associating this problem with finite group action, we have
developed an algorithm to enumerate all orbits by their symmetry order and generated a recursive
relationship for orbits sum calculation systematically. This is a critical improvement which makes
the whole method fully programmable and frees ourselves from onerous derivations in [21].

2 Basic idea

In general, people prefer choosing statistics which have some symmetric properties. All resampling
strategies, such as permutation and bootstrap, are also more or less symmetric. These facts motivated
us to reduce the computational cost by using abstract algebra.

n e
i1=1
Sor—qwlin, -+ yia)h(wi,, - - x4,), where & = (1,29, ,2,)7 is a collection of n observa-
tions (univariate/multivariate), w is an index function of d indices, and h is a data function of d
observations. Both w and h are symmetric, i.e., invariant under permutations of the order of vari-
ables. Weighted v-statistics cover a large amount of popular statistics. For example, in the case of
multiple comparisons, observations are collected from g groups: first group (x1,- -, Z,,), second
group (Tpn, 41, » Tn, 4n,), and last group (Tn—pn, 41, , Tn), Where ny, no, - - - , ny are numbers
of observations in each group. In order to test the difference among groups, it is common to use the
modified F test statistic 7'(z) = (321} 24)2/na+ (3102 @)% /na+- - + (i, 41 %) /g,
where n = ny + ng + --- + ng. We can rewrite the modified I statistic [3] as a second order
weighted v-statistic, i.e., T'(z) = >0 _ >0 _j w(ir, i2)h(zi, , Ti,), here h(z;,, 2i,) = @, 24, and
w(iy,i2) = 1/ny if both x;, and x;, belong to the k-th group, and w(iy,i2) = 0 otherwise.

This study is focused on computing resampling weighted v-statistics, i.e., T(z) = >

The 7-th moment of a resampling weighted v-statistic is:

E, (Tr(x)): E,,(. >2 wli e ia)h(aes,. - ,xm-d))T

1150 5%d
r

{(H w(if, - ,i§)> (H B it 7%,2))}}

k=1

Arl T (e s) o

k=1 k=1

where o is a resampling which is uniformly distributed in the whole resampling space R. |R|, the
number of all possible resamplings, is equal to n! or n™ for resampling without or with replacement.
Thus the r-th moment of a resampling weighted v-statistic can be considered as a summation of
products of data function terms and index function terms over a high-dimensional index set U] =
{1,---,n}? and all possible resamplings in R. Since both index space and resampling space are
huge, it is computationally expensive for calculating resampling statistics directly.

For terminology convenience, {(i1,--- ,i}), -, (i, ,47)} is called an index paragraph, which
includes r index sentences (i}, - - - ,i’;), k =1,---,r, and each index sentence has d index words
z;‘, j = 1,--- d. Note that there are three different types of symmetry in computing resampling

weighted v-statistics. The first symmetry is that permutation of the order of index words will not
affect the result since the data function is assumed to be symmetric. The second symmetry is the
permutation of the order of index sentences since multiplication is commutative. The third symmetry
is that each possible resampling is equally likely to be chosen.

In order to reduce the computational cost, first, the summation order is exchanged,

T

m(r@)= Y ([Tt e ([Mo o)) @
i1 ik e T k=1

7‘17'"77‘d7"'7111“'1i; k=1

where By (TTioy (o 00it))= thy Loer ([Thcy Mo s20as))-

{17 ,n}dT :{{(ZL alé)? 7(27£’ ’22)}‘2751 €
{,---,n}ym = 1,---,d;k = 1,-- ,r} is then divided into disjoint index subsets, in

which E, (IT;_, hle
the computing of resampling statistics in the following sense: (a) we only need to calculate

The whole index set Uj

. xn,ig) is invariant. The above index set partition simplifies

A
17'117

E, (H2:1 Mg, ,ajg,is)) once per each index subset, (b) due to the symmetry of resam-

pling, the calculation of E, (H2:1 Mgy s xmg)) is equivalent to calculating the average of

all data function terms within the corresponding index subset, then we can completely replace all
resamplings with simple summations, and (c) for further computational cost reduction, we can sort
all index subsets in their symmetry order and calculate all index subset summations recursively. We
will discuss the details in the following sections for both resampling without or with replacement.
The abstract algebra terms used in this paper are listed as follows.

Terminology. A group is a non-empty set G with a binary operation satisfying the following axioms:
closure, associativity, identity, and invertibility. The symmetric group on a set, denoted as S,,, is the
group consisting of all bijections or permutations of the set. A semigroup has an associative binary
operation defined and is closed with respect to this operation, but not all its elements need to be
invertible. A monoid is a semigroup with an identity element. A set of generators is a subset of
group elements such that all the elements in the group can be generated by repeated composition of
the generators. Let X be a set and G be a group. A group action is a mapping G x X — X which
satisfies the following two axioms: (a) e - « — z for all z € X, and (b) forall a,b € G and x € X,
a-(b-z) = (ab) - x. Here the '~ denotes the action. It is well known that a group action defines an
equivalence relationship on the set X, and thus provides a disjoint set partition on it. Each part of
the set partition is called an orbit that denotes the trajectory moved by all elements within the group.
We use symbol [] to represent an orbit. Two elements, = and y € X fall into the same orbit if there
exists a g € G such that x = g - y. The set of orbits is denoted by G \\ X. A transversal of orbits is
a set of representatives containing exactly one element from each orbit. In this paper, we limit our
discussion to only finite groups [10,17].

3 Permutation

For permutation statistics, observations are permuted in all possible ways, i.e., R = S,,. Based on
the three types of symmetry, we link the permutation statistics calculation with a group action.

Definition 1. The action of G := S,, X S, x S;" on the index set U] is defined as

(0,7, 1, 7)) - ik = J-i;:ifn,wherem e{l,---,d},and k € {1,--- ,r}.

K
Here, 75 denotes the permutation of the order of index words within the k-th index sentence, T
denotes the permutation of the order of r index sentences, and o denotes the permutation of the value
of an index word from 1 to n. For example, letn =4,d =2, r =2, m = Wfl =1—-2,2-—>1,
=Tt =1=1,2=271=7"'=1=22=lado =1 22 — 43 —
3,4 1, then (o, 7, m, m2) - {(1,4)(3,4)} = {(3,1)(1,2)} by {(1,)(3,4)} — {(4,)(3,4)}
{(3,4)(4,1)} — {(3,1)(1,2)}. Note that the reason to define the action in this way is to guarantee
G x U} — U} is a group action.
In most applications, both r and d are much less than the sample size n, we assume throughout this
paper that n > dr.

Proposition 1. The data function sum E, (Hk L h(z
index orbit of group action G := S,, x S, x S;" acting on the index set U] as defined in definition

Land By (T b+ 1 @0))=

d

,mg.is)) is invariant within each

O'Z koot

[Ty by)
D s O
(Gl G T ity ard ([i) - L))
where card([{(i%, RN 5 IRERIN (LA ,zZ)}]) is the cardinality of the index orbit, i.e., the number
of indices within the index orbit [{(i}, -+ ,iL), -+, (&7, -+ ,i%)}.

Due to the invariance property of F,, (H2:1 h(x,.» T "5))’ the calculation of permutation

U'l17 ? g1

statistics can be simplified by summing up all index function product terms in each index orbit.

Proposition 2. The r-th moment of permutation statistics can be obtained by summing up the
product of the data function orbit sum A and the index function orbit sum w) over all index orbits,

wxh
E, (TT =y 4
@)= card((\) @
AEL
where A = {(i},--- i), -+, (i},--- ,i%)} is a representative index paragraph, [A] is the index

orbit including A, and L is a transversal of all index orbits . The data function orbit sum is

hy = Z Hhx-k"', jg),)]

{GT e d) (G dn) YEN k=1

and the index function orbit sum is

wy = Z ijla' 7.7d (6)

(G 3) (G) YEN h=1

Proposition 2 shows that the calculation of resampling weighted v-statistics can be solved by com-
puting data function orbit sums, index function orbit sums, and cardinalities of all orbits defined in
definition 1. We don’t need to conduct any real permutation at all.

Now we demonstrate how to calculate orbit cardinalities, hy and w). The following
shows a naive algorithm to enumerate all index paragraphs and cardinality of each orbit
of G \\ U], which are needed to calculate hy and w). We construct a Cayley Action
Graph with a vertex set of all possible index paragraphs in Uj. We connect a directed
edge from {(Zla"' Zd) : (Zl"" Zd)} to {(jlv 7.7(1) (.]17"' a.]g)} if {(]117 ajé)7

s da)t = gk{(h,--- ig)y o (1, ik where gk is a generator € {g1,--, gp}.
{gl, .-+, gp} s the set of generators of group G, i.e., G = (g1, , gp). It is sufficient and efficient
to use the set of generators of group to construct the Cayley Action Graph, instead of using the set of
all group elements. For example, we can choose {g1, -+ ,gp} = {01,002} x {T1, 7} x {m,m2}",
where o1 = (12---n), 00 = (12), 71 = (12---7), 70 = (12), 7y = (12---d), and 7o = (12).
Here o1 = (12---n) denotes the permutation 1 — 2,2 — 3,--- 'n — 1, and oo = (12) denotes

1—+2,2—1,3—3,---,n — n. Note that listing the index paragraphs of each orbit is equivalent
to finding all connected components in the Cayley Action Graph, which can be performed by using
existing depth-first or breadth-first search methods [15]. Figure 1 demonstrates the Cayley Action
Graph of G \ U21, where d = 2, » = 1, and n = 3. Since the main effort here is to construct the
Cayley Action Graph, the computational cost of the naive algorithm is O(n%p) = O(n22+7).
Moreover, the memory cost is O(n?"). Unfortunately, this algorithm is not an offline one since we
usually do not know the data size n before we have the data at hand, even d and r can be preset.
In other words, we can not list all index orbits before we know the data size n. Moreover, since
n22+7 is still computationally expensive, the naive algorithm is ill advised even if n is preset.

.1
L

G\\U,
1 2 3
1 o (6])
o o\\ o)
N
/
i 2 €//0 S 5] o) \\\ i
\\ \\ \/
N\ NN
36 ¢ o) @ @ o X >/\
Cayley action graph Set of orbits U, =[{(L1)}]U[{(1,2)}] transversal {\J‘\O ®
Figure 1: Cayley action graph for G \ Uzl*. Figure 2: Finding the transversal.

In table 1, we propose an improved offline algorithm in which we assume that d and r are preset.
For computing h) and w,, we find that we do not need to know all the index paragraphs within
each index orbit. Since each orbit is well structured, it is enough to only list a transversal of orbits
G\ U} and corresponding cardinalities. For example, there are two orbits, [{(1,1)}] and [{(1,2)}],
when d = 2 and r = 1. [{(1,1)}], with cardinality n, includes all index paragraphs with i{ = 3.
[{(1,2)}], with cardinality n(n — 1), includes all index paragraphs with i1 # i}. Actually, the

transversal L :{{(17 1)},{(1,2)} ; carries all the above information. This finding reduces the
computation cost dramatically.

Definition 2. We define an index set U}* = {1,--- ,dr}9" :{{(211[7 R 5) PRI (LU 1 B 118
e{l,---,dr}ym=1,--- d;k=1,--- ,r} and a group G* := Sy, x S, x Sy4".

Since we assumed n >> dr, U} " is a subset of the index set U}. The group G* can be considered a
subgroup of G since the group Sy, can be naturally embedded into the group S,,. Both U™ and G*
are unrelated to the sample size n.

Proposition 3. The transversal of G* \\ U™ is also a transversal of G \\ U}}.

By proposition 3, we notice that the listing of the transversal of G \\ U} is equivalent to the listing of
the transversal of G* \\ U} " (see Figure 2). The latter is computationally much easier than the former
since the cardinalities of G* and U™ are much smaller than those of G and U} when n > dr.
Furthermore, finding the transversal of G* \\ U" can be done without knowning sample size n. Due
to the structure of each orbit of G \\ U}, we can calculate the cardinality of each orbit of G \\ Uj
with the transversal of G* \\ U™, although G \\ U} and G* \\ U}" have different caridnalities for
corresponding orbits.

Table 1: Offline double sided searching algorithm for listing the transversal

Input: d and r,

1. Starting from an orbit representative {(1,--- ,d), --- ,((r — D)d+1,--- ,rd)}

2. Construct the transversal of Sy, \ U] ™ by merging

3. Construct the transversal of of G* \\ U™ by graph isomorphism testing

4. Ending to an orbit representative {(1,--- ,1),---, (1,---,1)}

Output: a transversal L of G \\ U7, #(\), #(\ — v), and merging order(symmetry order) of orbits

Comparing with the Cayley Action Graph naive algorithm, our improved algorithm lists the transver-
sal of G'\\ U] and calculates the cardinalities of all orbits more efficiently. In addition, the improved
algorithm also assigns a symmetry order to all orbits, which helps further reduce the computational

cost of the data function orbit sum h) and the index function orbit sum w). The base of our im-
proved algorithm is on the fact that a subgroup acting on the same set causes a finer partition. On
one hand, it is challenging to directly list the transversal of G* \\ U *. On the other hand, it is much
easier to find two related group actions, causing finer and coarser partitions of U} *. These two group
actions help us find the transversal of G* \\ U™ efficiently with a double sided searching method.

Definition 3. The action of Sy on the index set U}" is defined as o - i,’jl, where o €

Sar, m € {1,---,d}, and & € {1,---,r}. Each orbit of Sg. \\ Uj" is denoted by
[{(Z%v T 7i}l)7 T (ZL e 722)}]5

Note the group action defined in definition 3 only allows permutation of index values, it does not
allow shuffling of index words within each index sentence or of index sentences. Since Sy, is
embedded in G*, the set of orbits Sg, \\ U™ is a finer partition of G* \\ U}". For example, both
[{(1,2)(1,2)}])® and [{(1,2)(2,1)}]* are finer partitions of [{(1,2)(1,2)}]. In addition, it is easy to
construct a transversal of Sg,- \\ U] " by merging distinct index elements.

Definition 4. Given a representative I, which includes at least two distinct index values, for example
i # j, an operation called merging replaces all index values of ¢ or j with min(4, 5).

For example, [{(1,2)(2, 3)}] becomes [{(1,1)(1,3)}] after merging the index values of 1 and 2.

01 (k,m)s
0—1-(k;m)w
denotes a permutation of all dr index words without any restriction, i.e. = - (k,m), denotes the
index sentence location after permutation ¢, and =1 - (k,m),, denotes the index word location after
permutation 6. The orbit of Sg, x Sy, \| U%* is denoted by [{(i1,--- %), -+, (&7, - i) }H"

Definition 5. The action of Sy, X Sy, on the index set U] ™ is defined as o4 ,where 0 € Sy,

Since the group action defined in definition 5 allows free shuffling of the order of all dr index
words, the order does not matter for Sg, x Sy \ U] " and shuffling can across different sentences.

For example, [{(1,2)(1,2)}]" = [{(1,1)(2,2)}]". Sar x Sar \ U} * is a coarser partition of G*\ U7 *.

Proposition 4. A transversal of Sg. \\ U}" can be generated by all possible mergings of
[{(17"' 1d)v"' ’ (d(?‘— 1)+17"' 7dr)}]s'

Proposition 5. Enumerating a transversal of Sy, x Sg, \ UJ™ is equivalent to the integer partition

of dr.

We start the transversal graph construction from an initial orbit [{(1,--- ,d),---,(d(r — 1) +
1,---,dr)}]%, i.e, all index elements have distinct values. Then we generate new orbits of Sg,. \ U
by merging distinct index values in existing orbits until we meet [{(1,---,1),---,(1,---,1)}]%,

i.e., all index elements have equal values. We also add an edge from an existing orbit to a new orbit
generated by merging the existing one. The procedure for d = 2, r = 2 case is shown in Figure 3.

Now we generate the transversal of G* \\ U™ from that of Sg,. \\ U} *. This can be done by checking
whether two orbits in Sy, \ U] ™ are equivalent in G* \\ UJ*. Actually, orbit equivalence checking
is equivalent to the classical graph isomorphism problem since we can consider each index word as
a vertex and connect two index words if they belong to the same index sentence.

The graph isomorphism testing can be done by Luks’s famous algorithm [1,15] with computational
cost exp (O(\/vlogv)> , where v is the number of vertices. Figure 4 shows a transversal of G* \\ U3"
generated from that of Sy \ U * (Figure 3). By proposition 3, it is also a transversal of G \ U3.
Since G* \\ U™ is a finer partition of Sy, x Sg, \\ U] ", orbit equivalence testing is only necessary

when two orbits of Sg, \\ UJ ™ correspond to the same integer partition. This is why we named this
algorithm double sided searching.

HETEON) [{(1.2GHH
— —~ }
: s . . . s [{(1L,DE3)] {12135
HADEAT HADAMT HADGDI HADEHT HADG)I [1.2)E)]
{ } } - —_
[{(1,DA,2)3] {223
HADADI {ADGDI HAD@DI HAA2 {AEDIF {1,223 —_— -
] - Figure 4: Transversal
Figure 3: Transversal graph for Sy \ Us . graph for G \\ U3.

Definition 6. For any two index orbit representatives A € L and v € L, we say that v has a lower
merging or symmetry order than that of A, i.e., v < A, if [v] can be obtained from [A] by several
mergings. Or there is a path from [)] to [v] in the transversal graph. Here L denotes a transversal set
of all orbits.

Definition 7. We define #(\) as the number of Sy, \ UJ™ orbits in [A]. We also define # (A — v)
as the number of different [/]°s which can be reached from a [A]°.

It is easy to get #(\) when we generate a transversal graph of G \\ U} from that of Sy, \\ UJ™.
The #(A — v) can also be obtained from the transversal graph of G \\ U} by counting the num-
ber of different [v]®s which can be reached from a [A]®. For example, there are edges connecting
(L, 1)(3,)1 to [{(1, 1)(1, 4)})° and [{(1, 1)(3, 1)}]°. Since [{(1, 1)(1,4)}] = [{(1, 1)(3, 1)}] =
H{(1,1)(1,2)}, #A = {(1,1)(2,3)} — v = {(1,1)(1,2)}) = 2. Note that this number can also
be obtained from [{(1,2)(3,3)}]® to [{(1,2)(1,1)}]® and [{(1,2)(2, 2)}]*.

The difficulty for computing data function orbit sum and index function orbit sum comes from two
constraints: equal constraint and unequal constraint. For example, in the orbit [{(1, 1), (2,2)}], the
equal constraint is that the first and the second index values are equal and the third and fourth index
values are also equal. On the other hand, the unequal constraint requires that the first two index
values are different from the last two. Due to the difficulties mentioned, we solve this problem
by first relaxing the unequal constraint and then applying the principle of inclusion and exclusion.
Thus, the calculation of an orbit sum can be separated into two parts: the relaxed orbit sum without
unequal constraint and lower order orbit sums. For example, the relaxed index function orbit sum is

2
wjﬂ\:[{u@),(z}g)}] = Zi,jw(i7i)w(j7j) = (Zzw(%l» :

Proposition 6. The index function orbit sum w) can be calculated by subtracting all lower or-
der orbit sums from the corresponding relaxed index function orbit sum wy, i.e., wy = w} —

Y o<r wy%#()\ — v). The cardinality of [\] is #(A)n(n — 1)---(n — ¢ + 1), where ¢ is the

number of distinct values in A. The calculation of the data index function orbit sum A is similar.
So the computational cost mainly depends on the calculation of relaxed orbit sum and the lowest
order orbit sum. The computational cost of the lowest order term is O(n). The calculation of
relaxed orbit can be done by Zhou’s greedy graph search algorithm [21].

Proposition 7. For d > 2, let m(m — 1)/2 < rd(d — 1)/2 < (m + 1)m/2, where r is the order
of moment and m is an integer. For a d-th order weighted v-statistic, the computational cost of the
orbit sum for the r-th moment is bounded by O(n"™). When d = 1, the computational complexity
of the orbit sum is O(n).

4 Bootstrap

Since Bootstrap is resamping with replacement, we need to change S,, to the set of all possible
endofunctions End,, in our computing scheme. In mathematics, an endofunction is a mapping of a
set to its subset. With this change, H := End,, x S, x S acting on U] becomes a monoid action
instead of a group action since endofunction is not invertible. The monoid action also divides the U}
into several subsets. However, these subsets are not necessarily disjoint after mapping. For example,
when d = 2 and r = 1, we can still divide the index set U; into two subsets, i.e., [(1, 1)] and [(1, 2)].
However, [(1,2)] is mapped to U] = [(1,2)]U[(1, 1)] by monoid action H x U} — U, although
[(1,1)] is still mapped to itself. Fortunately, the computation of Bootstrap weighted v-statistics
only needs index function orbit sums and relaxed data function orbit sums in the corresponding
permutation computation. Therefore, the Bootstrap weighted v-statistics calculation is just a sub-
problem of permutation weighted v-statistics calculation.

Proposition 8. We can obtain the r-th moment of bootstrapping weighted v-statistics by summing
up the product of the index function orbit sum w) and the relaxed data function orbit sum h} over
all index orbits, i.e.,

B(T"(a) = Y s)

AeL
where o € End,,, card([A*]) = #(A)n?, and ¢ is the number of distinct values in A.

Table 2: Comparison of accuracy and complexity for calculation of resampling statistics.

Methods | 2nd moment 3rd 4th Time
Exact 0.7172 -0.8273 1.0495 1.1153e3
Linear Our 0.7172 -0.8273 1.0495 0.0057
Permutation Random 0.7014 -0.8326 1.0555 0.5605
Exact 1.0611e3 -4.6020e4 | 2.1560e6 | 1.718e3
Quadratic Our 1.0611e3 -4.6020e4 | 2.1560e6 0.006
Random 1.0569e3 -4.5783e4 | 2.1825e6 2.405
Exact 3.5166 8.9737 35.4241 | 204.4381
Linear Our 3.5166 8.9737 35.4241 0.0053
Bootstrap Random 3.4769 8.8390 34.6393 0.3294
Exact 2.4739¢e5 -6.0322e6 | 2.6998e8 | 445.536
Quadratic Our 2.4739e5 -6.0322¢6 | 2.6998e8 0.005
Random 2.4576€e5 -5.9825e6 | 2.6589e8 1.987

The computational cost of bootstrapping weighted v-statistics is the same level as that of permutation
statistics.

5 Numerical results

To evaluate the accuracy and efficiency of our mothds, we generate simulated data and conduct per-
mutation and bootstrapping for both linear test statistic > ., w(i)h(z;) and quadratic test statistic
Sy > w(it,ig)h(xi,, 4,) . To demonstrate the universal applicability of our method and
prevent a chance result, we generate w(¢), h(x;), w(i1,i2), h(x;, , 2;,) randomly. We compare the
accuracy and complexity among exact permutation/bootstrap, random permutaton/bootrap (10,000
times), and our methods. Table 2 shows comparisons for computing the second, third, and fourth
moments of permutation statistics with 11 observations (the running time is in seconds) and of boot-
strap statistics with 8 observations.

In all cases, our method achieves the same moments as those of exact permutation/bootstrap, and re-
duces computational cost dramatically comparing with both random sampling and exact sampling.
For demonstration purpose, we choose a small sample size here, i.e., sample size is 11 for per-
mutation and 8 for bootstrap. Our method is expected to gain more computational efficiency as n
increases.

6 Conclusion

In this paper, we propose a novel and computationally fast algorithm for computing weighted v-
statistics in resampling both univariate and multivariate data. Our theoretical framework reveals that
the three types of symmetry in resampling weighted v-statistics can be represented by a product of
symmetric groups. As an exciting result, we demonstrate the calculation of resampling weighted
v-statistics can be converted into the problem of orbit enumeration. A novel efficient orbit enumer-
ation algorithm has been developed by using a small group acting on a small index set. For further
computational cost reduction, we sort all orbits by their symmetry order and calculate all index func-
tion orbit sums and data function orbit sums recursively. With computational complexity analysis,
we have reduced the computational cost from n! or n™ level to low-order polynomial level.

7 Acknowledgement

This research was supported by the Intramural Research Program of the NIH, Clinical Research
Center and through an Inter-Agency Agreement with the Social Security Administration, the NSF
CNS 1135660, Office of Naval Research award N00014-12-1-0125, Air Force Office of Scien-
ticfic Research award FA9550-12-1-0201, and IC Postdoctoral Research Fellowship award 2011-
11071400006.

References

[01] Babai, L., Kantor, W.M. , and Luks, E.M. (1983), Computational complexity and the classification of finite
simple groups, Proc. 24th FOCS, pp. 162-171.

[02] Minaei-Bidgoli, B., Topchy, A., and Punch, W. (2004), A comparison of resampling methods for clustering
ensembles, In Proc. International Conference on Atrtificial Intelligence, Vol. 2, pp. 939-945.

[03] Estabrooks, A., Jo, T., and Japkowicz, N. (2004), A Multiple Resampling Method for Learning from
Imbalanced Data Sets, Comp. Intel. 20 (1) pp. 18-36.

[04] Francois, D., Rossib, F., Wertza, V., and Verleysen, M. (2007), Resampling methods for parameter-free
and robust feature selection with mutual information, Neurocomputing 70(7-9):1276-1288.

[05] Good, P. (2005), Permutation, Parametric and Bootstrap Tests of Hypotheses, Springer, New York.

[06] Gretton, A., Borgwardt, K., Rasch, M., Scholkopf, B., and Smola, A. (2007), A kernel method for the
two-sample- problem, In Advances in Neural Information Processing Systems (NIPS).

[07] Guo, S. (2011), Bayesian Recommender Systems: Models and Algorithms, Ph.D. thesis.

[08] Hopcroft, J., and Tarjan, R. (1973), Efficient algorithms for graph manipulation, Communications of the
ACM 16: 372-378.

[09] Huang, J., Guestrin, C., and Guibas, L. (2007), Efficient Inference for Distributions on Permutations, In
Advances in Neural Information Processing Systems (NIPS).

[10] Kerber, A. (1999), Applied Finite Group Actions, Springer-Verlag, Berlin.

[11] Kondor, R., Howard, A., and Jebara, T. (2007), Multi-Object Tracking with Representations of the Sym-
metric Group, Artificial Intelligence and Statistics (AISTATS).

[12] Kuwadekar, A. and Neville, J. (2011), Relational Active Learning for Joint Collective Classification Mod-
els, In International Conference on Machine Learning (ICML), P. 385-392.

[13] Liu, H., Palatucci, M., and Zhang, J.(2009), Blockwise coordinate descent procedures for the multi-task
lasso, with applications to neural semantic basis discovery, In International Conference on Machine Learning
(ICML).

[14] Matthew Higgs and John Shawe-Taylor. (2010), A PAC-Bayes bound for tailored density estimation, In
Proceedings of the International Conference on Algorithmic Learning Theory (ALT).

[15] McKay, B. D. (1981), Practical graph isomorphism, Congressus Numerantium 30: 45-87, 10th. Manitoba
Conf. on Numerical Math. and Computing.

[16] Mielke, P. W., and K. J. Berry (2007), Permutation Methods: A Distance Function Approach, Springer,
New York.

[17] Nicholson, W. K. (2006), Introduction to Abstract Algebra, 3rd ed., Wiley, New York.

[18] Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, Wiley, New York.
[19] Song, L. (2008), Learning via Hilbert Space Embedding of Distributions, Ph.D. thesis.

[20] Sutton, R. and Barto, A. (1998), Reinforcement Learning, MIT Press.

[21] Zhou, C., Wang, H., and Wang, Y. M. (2009), Efficient moments-based permutation tests, In Advances in
Neural Information Processing Systems (NIPS), p. 2277-2285.

