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Abstract

The problem of multiple change point estimation is considered for sequences with
unknown number of change points. A consistency framework is suggested that
is suitable for highly dependent time-series, and an asymptotically consistent al-
gorithm is proposed. In order for the consistency to be established the only as-
sumption required is that the data is generated by stationary ergodic time-series
distributions. No modeling, independence or parametric assumptions are made;
the data are allowed to be dependent and the dependence can be of arbitrary form.
The theoretical results are complemented with experimental evaluations.

1 Introduction

We are given a sequence x := X1, X2, . . . , Xn formed as the concatenation of an unknown num-
ber k + 1 of sequences, such that x = X1 . . . Xπ1Xπ1+1 . . . Xπ2 . . . Xπk . . . Xn. The time-series
distributions that generate a pair of adjacent sequences separated by indices πi, i = 1..k are differ-
ent. (Non-adjacent sequences are allowed to be generated by the same distribution). The so-called
change points πi, i = 1..k are unknown and to be estimated. Change point estimation is one of the
core problems in statistics, and as such, has been studied extensively under various formulations.
However, even nonparametric formulations of the problem typically assume that the data in each
segment are independent and identically distributed, and that the change necessarily affects single-
dimensional marginal distributions. In this paper we consider the most general nonparametric setting
where, the changes may be completely arbitrary (e.g., in the form of the long-range dependence).
We propose a change point estimation algorithm that is asymptotically consistent under such mini-
mal assumptions.
Motivation. Change point analysis is an indispensable tool in a broad range of applications such
as market analysis, bioinformatics, network traffic, audio/video segmentation only to name a few.
Clearly, in these applications the data can be highly dependent and can not be easily modeled by
parametric families of distributions. From a machine learning perspective, change point estimation
is a difficult unsupervised learning problem: the objective is to estimate the change points in a given
sequence while no labeled examples are available. To better understand the challenging nature of
the problem, it is useful to compare it to time-series clustering. In time-series clustering, a set of
sequences is to be partitioned, whereas in change point estimation the partitioning is done on a se-
quence of sequences. While objectives are the same, in the latter, information about the individual
elements is no longer available, since only a single sequence formed by their concatenation is pro-
vided as input. This makes change point estimation a more challenging problem than time-series
clustering.

In the general setting of highly-dependent time-series correct estimation of the number of change
points is provably impossible, even in the weakest asymptotic sense, and even if there is at most
one change [23]. While a popular mitigation is to consider more restrictive settings, we are inter-
ested in intermediate formulations that can have asymptotically consistent solutions under the most
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general assumptions. In light of the similarities between clustering and change point analysis, we
propose a formulation that is motivated by hierarchical clustering. When the number of clusters is
unknown, a hierarchical clustering algorithm produces a tree, such that some pruning of this tree
gives the ground-truth clustering (e.g., [3]). In change point estimation with an unknown number
k of change points, we suggest to aim for a sorted list of change points, whose first k elements are
some permutation of the true change points. An algorithm that achieves this goal is called consistent.

Related Work. Change point analysis is a classical problem in mathematical statistics [6, 4, 5,
17]. In a typical formulation, samples within each segment are assumed to be i.i.d. and the change
usually refers to the change in the mean. More general formulations are often considered as well,
however, it is usually assumed that the samples are i.i.d. in each of the segments [20, 8, 9, 21] or
that they belong to some specific model class (such as Hidden Markov processes) [15, 16, 27]. In
these frameworks the problem of estimating the number of change points is usually addressed with
penalized criteria, see, for example, [19, 18]. In nonparametric settings, the typical assumptions
usually impose restrictions on the form of the change or the nature of dependence (e.g., the time-
series are assumed strongly mixing) [6, 4, 10, 12]. Even when more general settings are considered,
it is almost exclusively assumed that the single-dimensional marginal distributions are different [7].

The framework considered in this paper is similar to that of [25] and of our recent paper [13], in
the sense that the only assumption made is that the distributions generating the data are stationary
ergodic. The particular case of k = 1 is considered in [25]. In [13] we provide a non-trivial extension
of [25] for the case where k > 1 is known and is provided to the algorithm. However, as mentioned
above, when the number k of change points is unknown, it is provably impossible to estimate it,
even under the assumption k ∈ {0, 1} [23]. In particular, if the input k is not the correct number of
change points, then the behavior of the algorithm proposed in [13] can be arbitrary bad.

Results. We present a nonparametric change point estimation algorithm for time-series data with
unknown number of change points. We consider the most general framework where the only as-
sumption made is that the unknown distributions generating the data are stationary ergodic. This
means that we make no such assumptions as independence, finite memory or mixing. Moreover, we
do not need the finite-dimensional marginals of any fixed size before and after the change points to
be different. Also, the marginal distributions are not required to have densities.

We show that the proposed algorithm is asymptotically consistent in the sense that among the change
point estimates that it outputs, the first k converge to the true change points. Moreover, our algorithm
can be efficiently calculated; it has a computational complexity O(n2 polylog n) where n is the
length of the input sequence. To the best of our knowledge, this work is the first to address the
change point problem with an unknown number of change points in such general framework.

We further confirm our theoretical findings through experiments on synthetic data. Our experimental
setup is designed so as to demonstrate the generality of the suggested framework. To this end, we
generate our data by time-series distributions that, while being stationary ergodic, do not belong to
any “simpler” class of processes. In particular they cannot be modeled as hidden Markov processes
with finite or countably infinite set of states. Through our experiments we show that the algorithm
is consistent in the sense that as the length of the input sequence grows, the produced change point
estimations converge to the actual change points.

Organization. In Section 2 we introduce some preliminary notation and definitions. We formulate
the problem in Section 3. Section 4 presents our main theoretical results, including the proposed
algorithm, and an informal description of how and why it works. In Section 5 we prove that the
proposed algorithm is asymptotically consistent under the general framework considered; we also
show that our algorithm can be computed efficiently. In Section 6 we present some experimental
results, and finally in Section 7 we provide some concluding remarks and future directions.

2 Notation and definitions

Let X be some measurable space (the domain); in this work we let X = R, but extensions to
more general spaces are straightforward. For a sequenceX1, . . . , Xn we use the abbreviationX1..n.
Consider the Borel σ-algebra B onX∞ generated by the cylinders {B×X∞ : B ∈ Bm,l,m, l ∈ N}
where, the sets Bm,l,m, l ∈ N are obtained via the partitioning of Xm into cubes of dimension m
and volume 2−ml (starting at the origin). Let also Bm := ∪l∈NBm,l. Processes are probability
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measures on the space (X∞,B). For x = X1..n ∈ Xn and B ∈ Bm let ν(x, B) denote the
frequency with which x falls in B, i.e.

ν(x, B) :=
I{n ≥ m}
n−m+ 1

n−m+1∑
i=1

I{Xi..i+m−1 ∈ B} (1)

A process ρ is stationary if for any i, j ∈ 1..n and B ∈ Bm, m ∈ N, we have ρ(X1..j ∈ B) =
ρ(Xi..i+j−1 ∈ B). A stationary process ρ is called (stationary) ergodic if for all B ∈ B we have
limn→∞ ν(X1..n, B) = ρ(B) with ρ-probability 1. The distributional distance between a pair of
process distributions ρ1 and ρ2 is defined as follows

d(ρ1, ρ2) :=

∞∑
m,l=1

wmwl
∑

B∈Bm,l
|ρ1(B)− ρ2(B)|

where, wi := 2−i, i ∈ N. Note that any summable sequence of positive scores also works. It is
easy to see that d(·, ·) is a metric. For more on the distributional distance and its properties see [11].

In this work we use empirical estimates of this distance. Specifically, the empirical estimate of the
distance between a sequence x = X1..n ∈ Xn, n ∈ N and a process distribution ρ is defined as

d̂(x, ρ) :=

∞∑
m,l=1

wmwl
∑

B∈Bm,l
|ν(x, B)− ρ(B)| (2)

and for a pair of sequences xi ∈ Xni ni ∈ N, i = 1, 2. it is defined as

d̂(x1,x2) :=

∞∑
m,l=1

wmwl
∑

B∈Bm,l
|ν(x1, B)− ν(x2, B)|. (3)

Although expressions (2) and (3) involve infinite sums they can be easily calculated [22]. Moreover,
the estimates d̂(·, ·) are asymptotically consistent [25]: for any pair of stationary ergodic distributions
ρ1, ρ2 generating sequences xi ∈ Xni i = 1, 2 we have

lim
n1,n2→∞

d̂(x1,x2) = d(ρ1, ρ2), a.s., and (4)

lim
ni→∞

d̂(xi, ρj) = d(ρi, ρj), i, j ∈ 1, 2, a.s. (5)

Moreover, a more general estimate of (.·, ·) may be obtained as

ď(x1,x2) :=

mn∑
m=1

ln∑
l=1

wmwl
∑

B∈Bm,l
|ν(x1, B)− ν(x2, B)| (6)

where, mn and ln are any sequences of integers that go to infinity with n. As shown in [22] the
consistency results for d̂, i.e. (2) and (3) equally hold for ď so long as mn, ln go to infinity with n.
Let x = X1..n be a sequence and consider a subsequence Xa..b of x with a < b ∈ 1..n. We define
the intra-subsequence distance of Xa..b as

∆x(a, b) := d̂(Xa..b a+b2 c
, Xd a+b2 e..b

) (7)

We further define the single-change point estimator of Xa..b, a < b as

Φx(a, b, α) := argmax
t∈[a,b]

d̂(Xa−nα..t, Xt..b+nα), α ∈ (0, 1) (8)

3 Problem Formulation

We formalize the multiple change point estimation problem as follows. We are given a sequence

x := X1, . . . , Xn ∈ Xn

which is the concatenation of an unknown number κ+ 1 of sequences

X1..π1 , Xπ1+1..π2 , . . . , Xπκ+1..n.
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Each of these sequences is generated by an unknown stationary ergodic process distribution. More-
over, every two consecutive sequences are generated by two different process distributions. (A pair
of non-consecutive sequences may be generated by the same distribution.) The process distributions
are not required to be independent. The parameters πk are unknown and have to be estimated; they
are called change points. Note that it is not required for the means, variances or single-dimensional
marginals of the distributions to be different. We are considering the most general scenario where
the process distributions are different.
Definition 1 (change point estimator). A change point estimator is a function that takes a sequence x
and a parameter λ ∈ (0, 1) and outputs a sequence of change point estimates, π̂ := π̂1, π̂2, . . . π̂1/λ.
(Note that the total number of estimated change points 1/λ may be larger than the true number of
change points κ.)

To construct consistent algorithms, we assume that the change points πk are linear in n i.e. πk :=
nθk where θk ∈ (0, 1) k = 1..κ are unknown. We also define the minimum normalized distance
between the change points as

λmin := min
k=1..κ+1

θk − θk−1 (9)

where θ0 := 0 and θκ+1 := 1, and assume λmin > 0. The reason why we impose these conditions is
that the consistency properties we are after are asymptotic in n. If the length of one of the sequences
is constant or sublinear in n then asymptotic consistency is impossible in this setting. We define the
consistency of a change point estimator as follows.
Definition 2 (Consistency of a change point estimator). Let π̂ := π̂1, π̂2, . . . π̂1/λ be a change point
estimator. Let θ̂(κ) = (θ̂1, . . . , θ̂κ) := sort( 1

n π̂1, . . . ,
1
n π̂κ), where sort(·) orders the first κ elements

π̂1, . . . , π̂κ of π̂ with respect to their order of appearance in x. We call the change point estimator
π̂ asymptotically consistent if with probability 1 we have

lim
n→∞

sup
k=1..κ

|θ̂k − θk| = 0.

4 Theoretical Results

In this section we introduce a nonparametric multiple change point estimation algorithm for the
case where the number of change points is unknown. We also give an informal description of the
algorithm, and intuitively explain why it works. The main result is Theorem 1 which states that the
proposed algorithm is consistent under the most general assumptions. Moreover, the computational
complexity of the algorithm is O(n2 polylog n) where n denotes the length of the input sequence.

The main steps of the algorithm are as follows. Given λ ∈ (0, 1), a sequence of evenly-spaced
indices is formed. The index-sequence is used to partition x = X1..n into consecutive segments
of length nα, where α := λ

3 . The single-change point estimator Φ(·, ·, ·) is used to generate a
candidate change point within every segment. Moreover, the intra-subsequence-distance ∆(·, ·) of
each segment is used as its performance score s(·, ·). The change point candidates are ordered
according to the performance-scores of their corresponding segments. The algorithm assumes the
input parameter λ to be a lower-bound on the true normalized minimum distance λmin between
actual change points. Hence, the sorted list of estimated change points is filtered in such a way that
its elements are at least λn apart. The algorithm outputs an ordered sequence π̂ of change point
estimates, where the ordering is done with respect to the performance scores s(·, ·). The length of
π̂ may be larger than κ. However, as we show in Theorem 1, from some n on, the first κ elements
π̂k, k = 1..κ of the output π̂ converge to some permutation of the true change points, π1, · · · , πκ.
Theorem 1. Let x := X1..n ∈ Xn, n ∈ N be a sequence with change points at least nλmin apart,
for some λmin ∈ (0, 1). Then Alg1(x, λ) is asymptotically consistent for λ ∈ (0, λmin].

Remark 2 (Computational complexity). While the definition (3) of d̂(·, ·) involves taking infi-
nite sums, the distance can be calculated efficiently. Indeed, in (3) all summands correspond-
ing to m > maxi=1,2 ni equal 0; moreover, all summands corresponding to l > smin are
equal, where smin corresponds to the partition in which each cell has at most one point in it
smin := mini,j∈1..n, Xi 6=Xj |Xi − Xj |. Thus, even with a most naive implementation the com-
putational complexity of the algorithm is at most polynomial in all arguments. A more efficient
implementation can be obtained if one uses ď(·, ·) given by (6), instead of d̂(·, ·), with m = log n,
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Algorithm 1 Estimating the change points
input: Sequence x = X1..n, Minimum Normalized Distance between the change points λ
initialize: Step size α← λ

3 , Output change point Sequence π̂ ← ()
1. Generate 2 sets of index-sequences:

bti ← nα(i+
1

t+ 1
), i = 0..

1

α
, t = 1, 2

2. Calculate the intra-distance value (given by (7)) of every segment Xbti..bti+1
, i = 1.. 1

α
, t = 1, 2 as its

performance score: s(t, i)← ∆x(bti, b
t
i+1), i = 1..

1

α
, t = 1, 2

3. Use the single-change point-estimator (given by (8)) to estimate a change point in every segment:
p̂(t, i) := Φx(bti, b

t
i+1, α), i = 1..

1

α
− 1, t = 1, 2

4. Remove duplicates and sort based on scores:
U ← {(t, i) : i ∈ 1..

1

α
− 1, t = 1, 2}

while U 6= ∅ do
i. Select an available change point estimate of highest score and add it to π̂:

(τ, l)← argmax(t,i)∈U s(t, i) - break the ties arbitrarily

π̂ ← π̂ ⊕ p̂(τ, l), i.e. append π̂ with p̂(τ, l)

ii. Remove the estimates within a radius of λn/2 from π̂(l):

U ← U \ {(t, i) : p̂(t, i) ∈ (p̂(τ, l)− λn/2, p̂(τ, l) + λn/2)}

end while
return: A sequence π̂ of change point estimates. Note: Elements of π̂ are at least nλ apart and are
sorted in decreasing order of their scores s(·, ·).

where n is the length of the samples; in this case, the consistency results are unaffected, and the
computational complexity of calculating the distance becomes n polylog n, making the complexity
of the algorithm n2 polylog n. The choice m = log n is further justified by the fact that the fre-
quencies of cells in Bm,l corresponding to higher values of m are not consistent estimates of their
probabilities (and thus only add to the error of the estimate); see [22, 14] for further discussion.

The proof of the theorem is given in the next section. Here we provide an intuition as to why the
consistency statement holds.
First, recall that the empirical distributional distance between a given pair of sequences converges
to the distributional distance between the corresponding process distributions. Consider a sequence
x = X1..n, and assume that a segment Xa..b, a, b ∈ 1..n does not contain any change points, so
that Xa.. a+b2

and X a+b
2 ..b are generated by the same process. If the length of Xa..b is linear in n, so

that b − a = αn for some α ∈ (0, 1), then its intra-subsequence distance ∆x(a, b) (defined by (7))
converges to 0 with n going to infinity. On the other hand, if there is a single change point π within
Xa..b whose distance from a and b is linear in n, then ∆x(a, b) converges to a non-zero constant.

Now assume that Xa..b with its change point at π ∈ a..b is contained within a larger segment
Xa−nα′..b+nα′ for some α′ ∈ (0, 1). In this case, the single-change point estimator Φ(a, b, α′)
(defined by (8)) produces an estimate that from some n on converges to π provided that π is the only
change point in Xa−nα′..b+nα′ . These observations are key to the consistency of the algorithm.

When λ ≤ λmin, each of the index-sequences generated with α := λ
3 partitions x in such a way

that every three consecutive segments of the partition contain at most one change point. Also, the
segments are of lengths linear in n. In this scenario, from some n on, the change point estimator
Φ(·, ·, ·) produces correct candidates within each of the segments that contains a true change point.
Moreover, from some n on, the performance scores s(·, ·) of the segments without change points
converge to 0, while those corresponding to the segments that encompass a change point converge
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to a non-zero constant. Thus from some n on, the κ change point candidates of highest performance
score that are at least at a distance λn from one another, each converge to a unique change point.

A problem occurs if the generated index-sequence is such that it includes some of the change points
as elements. As a mitigation strategy, we generate two index-sequences with the same gap αn
between their consecutive elements but with distinct starting points: one starts at nα2 and the other
at nα3 . Each index-sequence gives a different partitioning of x into consecutive segments. This way,
every change point is fully encompassed by at least one segment from either of the two partitions.
We choose the appropriate segments based on their performance scores. From the above argument
we can see that segments with change points will have higher scores, and the change points within
will be estimated correctly; finally, this is used to prove the theorem in the next session.

5 Proof of Theorem 1

The proof relies on Lemma 1 and Lemma 2, which we borrow from [13] and state here without proof.
We also require the following additional notation.

Definition 3. For every change point πk, k = 1..κ and every fixed t = 1, 2 we denote by Lt(πk)
and by Rt(πk) the elements of the index-sequence bti, i = 1.. 1α that appear immediately to the left
and to the right of πk respectively, i.e. Lt(πk) := max

bti≤πk, i=0.. 1α

bti and Rt(πk) := min
bti≥πk, i=0.. 1α

bti.

(Equality occurs when πk for some k ∈ 1..κ is exactly at the start or at the end of a segment.)

Lemma 1 ([13]). Let x = X1..n be generated by a stationary ergodic process ρ. For all ζ ∈ [0, 1)
and α ∈ (0, 1) we have, lim

n→∞
sup

b1≥ζn, b2≥b1+αn
∆x(b1, b2) = 0.

Lemma 2 ([13]). Let δ denote the minimum distance between the distinct distributions generating
the data. Denote by κ the “unknown” number of change points and assume that for some ζ ∈ (0, 1)
and some t = 1, 2 we have, infk=1..κ

i=0.. 1α

|bti − πk| ≥ ζn.

(i) With probability one we have, lim
n→∞

inf
k∈1..κ

∆x(Lt(πk), Rt(πk)) ≥ δζ.
(ii) If additionally we have that [Lt(πk)− nα,Rt(πk) + nα] ⊆ [πk−1, πk+1] then with probability

one we obtain, lim
n→∞

sup
k∈1..κ

1

n
|Φx(Lt(πk), Rt(πk), α)− πk| = 0.

Proof of Theorem 1. We first give an outline of the proof. In order for a change point πk, k ∈ 1..κ
to be estimated correctly through this algorithm, there needs to be at least one t = 1, 2 such that

1. πk ∈ (Lt(πk), Rt(πk)) and 2. [Lt(πk)− nα,Rt(πk) + nα] ⊆ [πk−1, πk]

where α := λ
3 , as specified by the algorithm. We show that from some n on, for every change point

the algorithm selects an appropriate segment satisfying these conditions, and assigns it a perfor-
mance score s(·, ·) that converges to a non-zero constant. Moreover, the performance scores of the
segments without change points converge to 0. Recall that, the change point candidates are finally
sorted according to their performance scores, and the sorted list is filtered to include only elements
that are at least λn apart. For λ ≤ λmin, from some n on, the first κ elements of the output change
point sequence π̂ are some permutation of the true change points. The proof follows.

Fix an ε > 0. Recall that the algorithm specifies α := λ
3 and generates a sequence of evenly-spaced

indicies bti := nα(i+ 1
t+1 ), i = 1.. 1α , t = 1, 2. Observe that

bti − bti−1 = nα, i = 1..
1

α
. (10)

For every i ∈ 0.. 1α and t ∈ 1, 2 we have that the index bti is either exactly equal to a change point or
has a linear distance from it. More formally, define ζ(t, i) := min

k∈1..κ
|α(i+ 1

t+1 )−θk|, i ∈ 0..1/α t ∈

1..2. (Note that ζ(t, i) can also be zero). For all i ∈ 0.. 1α , t = 1, 2 and k ∈ 1..κ we have

|bti − πk| ≥ nζ(t, i). (11)
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For every t = 1, 2 and i = 0..1/α, a performance score s(t, i) is calculated as the intra-subsequence
distance ∆x(bti, b

t
i+1) of the segment Xbti..b

t
i+1

. Let I := {(t, i) : t ∈ 1, 2, i ∈ 1.. 1α s.t. ∃k ∈
1..κ, πk ∈ (bti, b

t
i+1)}. Also define the complement set I ′ := {1, 2} × {1.. 1α} \ I. By (10), (11)

and Lemma 1, there exists some N1 such that for all n ≥ N1 we have,

sup
(t,i)∈I′

s(t, i) ≤ ε. (12)

Since λ ≤ λmin, we have α ∈ (0, λmin/3]. Therefore, for every t = 1, 2 and every change point
πk, k ∈ 1..κ we have

[Lt(πk)− nα,Rt(πk) + nα] ⊆ [πk−1, πk+1]. (13)

Define µmin := min(t,i)∈I ζ(t, i). It follows from the definition of I that

µmin > 0. (14)

By (10), (11), (13), (14) and Lemma 2.(i), there exists some N2 such that for all n ≥ N2 we have

inf
(t,i)∈I

s(t, i) ≥ δµmin (15)

where δ denotes the minimum distance between the distributions. Let π(t, i), i ∈ 0..1/α, t = 1, 2
denote the change point that is contained within bti..b

t
i+1, (t, i) ∈ I, i.e. π(t, i) := πk, k ∈

1..κ s.t. πk ∈ (bti, b
t
i+1). As specified in Step 3, the change point candidates are obtained as p̂(t, i) :=

Φx(b
τ(i)
i , b

τ(i)
i+1 , α), i = 1..1/α− 1. By (10), (11), (13), (14) and Lemma 2.(ii) there exists some N4

such that for all n ≥ N4 we have

sup
(t,i)∈I

1

n
|p̂(t, i)− π(t, i)| ≤ ε. (16)

Let N := maxi=1..4Ni. Recall that (as specified in Step 4), the algorithm generates an output
sequence π̂ := π̂1, . . . , π̂1/λ by first sorting the change point candidates according to their perfor-
mance scores, and then filtering the sorted list so that the remaining elements are at least nλ apart.
It remains to see that the corresponding estimate of every change point appears exactly once in π̂.
By (12) and (15) for all n ≥ N the segments bti..b

t
i+1, (t, i) ∈ I are assigned higher scores than

bti..b
t
i+1, (t, i) ∈ I ′. Moreover, by construction for every change point πk, k = 1..κ there ex-

ists some (t, i) ∈ I such that πk = π(t, i) which, by (16) is estimated correctly for all n ≥ N .
Next we show that every estimate appears at most once in the output sequence π̂. By (16) for all
(t, i), (t′, i′) ∈ I such that π(t, i) = π(t′, i′) and all n ≥ N we have

1

n
|p̂(t, i)− p̂(t′, i′)| ≤ 1

n
|p̂(t, i)− π(t, i)|+ 1

n
|p̂(t′, i′)− π(t′, i′)| ≤ 2ε. (17)

On the other hand, for all (t, i), (t′, i′) ∈ I such that π(t, i) 6= π(t′, i′) and all n ≥ N we have

1

n
|p̂(t, i)− p̂(t′, i′)| ≥ 1

n
|π(t, i)− π(t′, i′)| − 1

n
|p̂(t, i)− π(t, i)| − 1

n
|p̂(t′, i′)− π(t′, i′)|

≥ 1

n
|π(t, i)− π(t′, i′)| − 2ε ≥ λmin − 2ε (18)

where the last inequality follows from (16) and that the true change points are at least nλmin apart.
By (17) and (18) the duplicate estimates of every change point are filtered, while estimates cor-
responding to different change points are left untouched. Finally, following the notation of Defi-
nition 2, let θ̂(κ) = (θ̂1, . . . , θ̂κ) := sort( 1

n π̂1, · · · ,
1
n π̂κ), (sorted with respect to their order of

appearance in x). For n ≥ N we have, supk∈1..κ |θ̂k − θk| ≤ ε and the statement follows.

6 Experimental Results
In this section we use synthetically generated time-series data to empirically evaluate our algorithm.
To generate the data we have selected distributions that while being stationary ergodic, do not be-
long to any “simpler” class of time-series, and are difficult to approximate by finite-state models. In
particular they cannot be modeled by a hidden Markov process with a finite state-space. These dis-
tributions were used in [26] as examples of stationary ergodic processes which are not B-processes.
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Figure 1: Left (Experiment 1): Average (over 20 runs) error as a function of the length of the input
sequence. Right (Experiment 2): Average (over 25 runs) error as a function the input parameter λ.

Time-series generation. To generate a sequence x = X1..n we proceed as follows. Fix some pa-
rameter α ∈ (0, 1) and select r0 ∈ [0, 1]. For each i = 1..n let ri = ri−1 + α − bri−1 + αc. The
samples Xi are obtained from ri by thresholding at 0.5, i.e. Xi := I{ri > 0.5}. We call this pro-
cedure DAS(α). If α is irrational then x forms a stationary ergodic time-series. We simulate α by
a longdouble with a long mantisa. For the purpose of our experiments we use four different process
distributions DAS(αi), i = 1..4 with α1 = 0.30..., α2 = 0.35..., α3 = 0.40... and α4 = 0.45....
To generate an input sequence x = X1..n we fix some λmin = 0.23 and randomly generate κ = 3
change points at a minimum distance nλmin. We use DAS(αi), i = 1..4 to respectively generate
the four subsequences between every pair of consecutive change points.
Experiment 1: (Convergence with Sequence Length) In this experiment we demonstrate that the
estimation error converges to 0 as the sequence length grows. We iterate over n = 1000..20000; at
every iteration we generate an input sequence of length n as described above. We apply Algorithm 1
with λ = 0.18 to find the change points. Figure 1 (Left) shows the average error-rate as a function
of sequence length.
Experiment 2: (Dependence on λ) Algorithm 1 requires λ ∈ (0, 1) as a lower-bound on λmin.
In this experiment we show that this lower bound need not be tight. In particular, there is a rather
large range of λ ≤ λmin for which the estimation error is low. To demonstrate this, we fixed the
sequence length n = 20000 and observed the error-rate as we varied the input parameter λ between
0.01..0.35. Figure 1 (Right) shows the average error-rate as a function of λ.

7 Outlook

In this work we propose a consistency framework for multiple change points estimation in highly
dependent time-series, for the case where the number of change points is unknown. The notion of
consistency that we consider requires an algorithm to produce a list of change points such that the
first k change points approach the true unknown change points in asymptotic. While in the general
setting that we consider it is not possible to estimate the number of change points, other related
formulations may be of interest. For example, if the number of different time-series distributions is
known, but the number of change points is not, it may still be possible to estimate the latter. A simple
example of this scenario would be when two distributions generate many segments in alternation.

While the consistency result here (and in the previous works [14, 22, 25]) rely on the convergence of
frequencies, recent results of [1, 2] on uniform convergence can be used (see [24]) to solve related
statistical problems about time-series (e.g., clustering) and thus may also prove useful in change
point analysis.
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