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Abstract

This paper considers a wide spectrum of regularized stochastic optimization prob-
lems where both the loss function and regularizer can be non-smooth. We develop
a novel algorithm based on the regularized dual averaging (RDA) method, that
can simultaneously achieve the optimal convergence rates for both convex and
strongly convex loss. In particular, for strongly convex loss, it achieves the opti-
mal rate ofO( 1

N + 1
N2 ) forN iterations, which improves the rateO( logN

N ) for pre-
vious regularized dual averaging algorithms. In addition, our method constructs
the final solution directly from the proximal mapping instead of averaging of all
previous iterates. For widely used sparsity-inducing regularizers (e.g., `1-norm),
it has the advantage of encouraging sparser solutions. We further develop a multi-
stage extension using the proposed algorithm as a subroutine, which achieves the
uniformly-optimal rate O( 1

N + exp{−N}) for strongly convex loss.

1 Introduction

Many risk minimization problems in machine learning can be formulated into a regularized stochas-
tic optimization problem of the following form:

minx∈X {φ(x) := f(x) + h(x)}. (1)

Here, the set of feasible solutions X is a convex set in Rn, which is endowed with a norm ‖ · ‖ and
the dual norm ‖ · ‖∗. The regularizer h(x) is assumed to be convex, but could be non-differentiable.
Popular examples of h(x) include `1-norm and related sparsity-inducing regularizers. The loss
function f(x) takes the form: f(x) := Eξ(F (x, ξ)) =

∫
F (x, ξ)dP (ξ), where ξ is a random vector

with the distribution P . In typical regression or classification tasks, ξ is the input and response (or
class label) pair. We assume that for every random vector ξ, F (x, ξ) is a convex and continuous
function in x ∈ X . Therefore, f(x) is also convex. Furthermore, we assume that there exist
constants L ≥ 0, M ≥ 0 and µ̃ ≥ 0 such that

µ̃

2
‖x− y‖2 ≤ f(y)− f(x)− 〈y − x, f ′(x)〉 ≤ L

2
‖x− y‖2 +M‖x− y‖, ∀x, y ∈ X , (2)

where f ′(x) ∈ ∂f(x), the subdifferential of f . We note that this assumption allows us to adopt a
wide class of loss functions. For example, if f(x) is smooth and its gradient f ′(x) = ∇f(x) is
Lipschitz continuous, we have L > 0 and M = 0 (e.g., squared or logistic loss). If f(x) is non-
smooth but Lipschitz continuous, we have L = 0 and M > 0 (e.g., hinge loss). If µ̃ > 0, f(x) is
strongly convex and µ̃ is the so-called strong convexity parameter.

In general, the optimization problem in Eq.(1) is challenging since the integration in f(x) is compu-
tationally intractable for high-dimensional P . In many learning problems, we do not even know the
underlying distribution P but can only generate i.i.d. samples ξ from P . A traditional approach is to
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consider empirical loss minimization problem where the expectation in f(x) is replaced by its em-
pirical average on a set of training samples {ξ1, . . . , ξm}: femp(x) := 1

m

∑m
i=1 F (x, ξi). However,

for modern data-intensive applications, minimization of empirical loss with an off-line optimization
solver could suffer from very poor scalability.

In the past few years, many stochastic (sub)gradient methods [6, 5, 8, 12, 14, 10, 9, 11, 7, 18] have
been developed to directly solve the stochastic optimization problem in Eq.(1), which enjoy low per-
iteration complexity and the capability of scaling up to very large data sets. In particular, at the t-th
iteration with the current iterate xt, these methods randomly draw a sample ξt from P ; then com-
pute the so-called “stochastic subgradient” G(xt, ξt) ∈ ∂xF (xt, ξt) where ∂xF (xt, ξt) denotes the
subdifferential of F (x, ξt) with respect to x at xt; and update xt using G(xt, ξt). These algorithms
fall into the class of stochastic approximation methods. Recently, Xiao [21] proposed the regu-
larized dual averaging (RDA) method and its accelerated version (AC-RDA) based on Nesterov’s
primal-dual method [17]. Instead of only utilizing a single stochastic subgradient G(xt, ξt) of the
current iteration, it updates the parameter vector using the average of all past stochastic subgradients
{G(xi, ξi)}ti=1 and hence leads to improved empirical performances.

In this paper, we propose a novel regularized dual averaging method, called optimal RDA or ORDA,
which achieves the optimal expected convergence rate of E[φ(x̂) − φ(x∗)], where x̂ is the solution
from ORDA and x∗ is the optimal solution of Eq.(1). As compared to previous dual averaging
methods, it has three main advantages:

1. For strongly convex f(x), ORDA improves the convergence rate of stochastic dual aver-
aging methods O(σ

2 logN
µ̃N ) ≈ O( logN

µ̃N ) [17, 21] to an optimal rate O
(
σ2+M2

µ̃N + L
N2

)
≈

O
(

1
µ̃N

)
, where σ2 is the variance of the stochastic subgradient, N is the number of itera-

tions, and the parameters µ̃, M and L of f(x) are defined in Eq.(2).

2. ORDA is a self-adaptive and optimal algorithm for solving both convex and strongly con-
vex f(x) with the strong convexity parameter µ̃ as an input. When µ̃ = 0, ORDA reduces
to a variant of AC-RDA in [21] with the optimal rate for solving convex f(x). Further-
more, our analysis allows f(x) to be non-smooth while AC-RDA requires the smoothness
of f(x). For strongly convex f(x) with µ̃ > 0, our algorithm achieves the optimal rate of(

1
µ̃N

)
while AC-RDA does not utilize the advantage of strong convexity.

3. Existing RDA methods [21] and many other stochastic gradient methods (e.g., [14, 10])
can only show the convergence rate for the averaged iterates: x̄N =

∑N
t=1 %txt/

∑N
t=1 %t,

where the {%t} are nonnegative weights. However, in general, the average iterates x̄N
cannot keep the structure that the regularizer tends to enforce (e.g., sparsity, low-rank,
etc). For example, when h(x) is a sparsity-inducing regularizer (`1-norm), although xt
computed from proximal mapping will be sparse as t goes large, the averaged solution
could be non-sparse. In contrast, our method directly generates the final solution from the
proximal mapping, which leads to sparser solutions.

In addition to the rate of convergence, we also provide high probability bounds on the error of
objective values. Utilizing a technical lemma from [3], we could show the same high probability
bound as in RDA [21] but under a weaker assumption.

Furthermore, using ORDA as a subroutine, we develop the multi-stage ORDA which obtains the
convergence rate of O

(
σ2+M2

µ̃N + exp{−
√
µ̃/LN}

)
for strongly convex f(x). Recall that ORDA

has the rate O
(
σ2+M2

µ̃N + L
N2

)
for strongly convex f(x). The rate of muli-stage ORDA improves

the second term in the rate of ORDA from O
(
L
N2

)
to O

(
exp{−

√
µ̃/LN}

)
and achieves the so-

called “uniformly-optimal ” rate [15]. Although the improvement is on the non-dominating term,
multi-stage ORDA is an optimal algorithm for both stochastic and deterministic optimization. In
particular, for deterministic strongly convex and smooth f(x) (M = 0), one can use the same al-
gorithm but only replaces the stochastic subgradient G(x, ξ) by the deterministic gradient ∇f(x).
Then, the variance of the stochastic subgradient σ = 0. Now the term σ2+M2

µ̃N in the rate equals
to 0 and multi-stage ORDA becomes an optimal deterministic solver with the exponential rate
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Algorithm 1 Optimal Regularized Dual Averaging Method: ORDA(x0, N,Γ, c)

Input Parameters: Starting point x0 ∈ X , the number of iterations N , constants Γ ≥ L and c ≥ 0.
Parameters for f(x): Constants L, M and µ̃ for f(x) in Eq. (2) and set µ = µ̃/τ .
Initialization: Set θt = 2

t+2 ; νt = 2
t+1 ; γt = c(t+ 1)3/2 + τΓ; z0 = x0.

Iterate for t = 0, 1, 2, . . . , N :

1. yt =
(1−θt)(µ+θ2t γt)
θ2t γt+(1−θ2t )µ

xt +
(1−θt)θtµ+θ3t γt
θ2t γt+(1−θ2t )µ

zt

2. Sample ξt from the distribution P (ξ) and compute the stochastic subgradient G(yt, ξt).

3. gt = θtνt

(∑t
i=0

G(yi,ξi)
νi

)
4. zt+1 = arg minx∈X

{
〈x, gt〉+ h(x) + θtνt

(∑t
i=0

µV (x,yi)
νi

)
+ θtνtγt+1V (x, x0)

}
5. xt+1 = arg minx∈X

{
〈x,G(yt, ξt)〉+ h(x) +

(
µ
τθ2t

+ γt
τ

)
V (x, yt)

}
Output: xN+1

O
(

exp{−
√
µ̃/LN}

)
. This is the reason why such a rate is “uniformly-optimal”, i.e., optimal

with respect to both stochastic and deterministic optimization.

2 Preliminary and Notations

In the framework of first-order stochastic optimization, the only available information of f(x) is the
stochastic subgradient. Formally speaking, stochastic subgradient of f(x) at x, G(x, ξ), is a vector-
valued function such that EξG(x, ξ) = f ′(x) ∈ ∂f(x). Following the existing literature, a standard
assumption on G(x, ξ) is made throughout the paper : there exists a constant σ such that ∀x ∈ X ,

Eξ(‖G(x, ξ)− f ′(x)‖2∗) ≤ σ2. (3)

A key updating step in dual averaging methods, the proximal mapping, utilizes the Bregman diver-
gence. Let ω(x) : X → R be a strongly convex and differentiable function, the Bregman divergence
associated with ω(x) is defined as:

V (x, y) := ω(x)− ω(y)− 〈∇ω(y), x− y〉. (4)

One typical and simple example is ω(x) = 1
2‖x‖

2
2 together with V (x, y) = 1

2‖x − y‖
2
2. One may

refer to [21] for more examples. We can always scale ω(x) so that V (x, y) ≥ 1
2‖x − y‖

2 for all
x, y ∈ X . Following the assumption in [10]: we assume that V (x, y) grows quadratically with the
parameter τ > 1, i.e., V (x, y) ≤ τ

2‖x − y‖
2 with τ > 1 for all x, y ∈ X . In fact, we could simply

choose ω(x) with a τ -Lipschitz continuous gradient so that the quadratic growth assumption will be
automatically satisfied.

3 Optimal Regularized Dual Averaging Method

In dual averaging methods [17, 21], the key proximal mapping step utilizes the average of all past
stochastic subgradients to update the parameter vector. In particular, it takes the form: zt+1 =

arg minx∈X
{
〈gt, x〉+h(x) + βt

t V (x, x0)
}
, where βt is the step-size and gt = 1

t+1

∑t
i=0G(zi, ξi).

For strongly convex f(x), the current dual averaging methods achieve a rate of O(σ
2 logN
µ̃N ), which

is suboptimal. In this section, we propose a new dual averaging algorithm which adapts to both
strongly and non-strongly convex f(x) via the strong convexity parameter µ̃ and achieves optimal
rates in both cases. In addition, for previous dual averaging methods, to guarantee the convergence,
the final solution takes the form: x̂ = 1

N+1

∑N
t=0 zt and hence is not sparse in nature for sparsity-

inducing regularizers. Instead of taking the average, we introduce another proximal mapping and
generate the final solution directly from the second proximal mapping. This strategy will provide us
sparser solutions in practice. It is worthy to note that in RDA, zN has been proved to achieve the de-
sirable sparsity pattern (i.e., manifold identification property) [13]. However, according to [13], the
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convergence of φ(zN ) to the optimal φ(x∗) is established only under a more restrictive assumption
that x∗ is a strong local minimizer of φ relative to the optimal manifold and the convergence rate is
quite slow. Without this assumption, the convergence of φ(zN ) is still unknown.

The proposed optimal RDA (ORDA) method is presented in Algorithm 1. To simplify our notations,
we define the parameter µ = µ̃/τ , which scales the strong convexity parameter µ̃ by 1

τ , where τ is
the quadratic growth constant. In general, the constant Γ which defines the step-size parameter γt
is set to L. However, we allow Γ to be an arbitrary constant greater than or equal to L to facilitate
the introduction of the multi-stage ORDA in the later section. The parameter c is set to achieve the
optimal rates for both convex and strongly convex loss. When µ > 0 (or equivalently, µ̃ > 0), c is
set to 0 so that γt ≡ τΓ ≥ τL; while for µ = 0, c =

√
τ(σ+M)

2
√
V (x∗,x0)

. Since x∗ is unknown in practice,

one might replace V (x∗, x0) in c by a tuning parameter.

Here, we make a few more explanations of Algorithm 1. In Step 1, the intermediate point yt is
a convex combination of xt and zt and when µ = 0, yt = (1 − θt)xt + θtzt. The choice of the
combination weights is inspired by [10]. Second, with our choice of θt and νt, it is easy to prove that∑t
i=0

1
νi

= 1
θtνt

. Therefore, gt in Step 3 is a convex combination of {G(yi, ξi)}ti=0. As compared
to RDA which uses the average of past subgradients, gt in ORDA is a weighted average of all
past stochastic subgradients and the subgradient from the larger iteration has a larger weight (i.e.,
G(yi, ξi) has the weight 2(i+1)

(t+1)(t+2) ). In practice, instead of storing all past stochastic subgradients,

gt could be simply updated based on gt−1: gt = θtνt

(
gt−1

θt−1νt−1
+ G(yt,ξt)

νt

)
. We also note that

since the error in the stochastic subgradient G(yt, ξt) will affect the sparsity of xt+1 via the second
proximal mapping, to obtain stable sparsity recovery performances, it would be better to construct
the stochastic subgradient with a small batch of samples [21, 1]. This could help to reduce the noise
of the stochastic subgradient.

3.1 Convergence Rate

We present the convergence rate for ORDA. We start by presenting a general theorem without plug-
ging the values of the parameters. To simplify our notations, we define ∆t := G(yt, ξt)− f ′(yt).

Theorem 1 For ORDA, if we require c > 0 when µ̃ = 0, then for any t ≥ 0:

φ(xt+1)−φ(x∗) ≤ θtνtγt+1V (x∗, x0) +
θtνt

2

t∑
i=0

(‖∆i‖∗ +M)2(
µ
τθi

+ θiγi
τ
− θiL

)
νi

+ θtνt

t∑
i=0

〈x∗ − ẑi,∆i〉
νi

, (5)

where ẑt = θtµ
µ+γtθ2t

yt +
(1−θt)µ+γtθ2t

µ+γtθ2t
zt, is a convex combination of yt and zt; and ẑt = zt when

µ = 0. Taking the expectation on both sides of Eq.(5):

Eφ(xt+1)− φ(x∗) ≤ θtνtγt+1V (x∗, x0) + (σ2 +M2)θtνt

t∑
i=0

1(
µ
τθi

+ θiγi
τ
− θiL

)
νi
. (6)

The proof of Theorem 1 is given in Appendix. In the next two corollaries, we establish the rates of
convergence in expectation for ORDA by choosing different values for c based on µ̃.

Corollary 1 For convex f(x) with µ̃ = 0 , by setting c =
√
τ(σ+M)

2
√
V (x∗,x0)

and Γ = L, we obtain:

Eφ(xN+1)− φ(x∗) ≤ 4τLV (x∗, x0)

N2
+

8(σ +M)
√
τV (x∗, x0)√
N

. (7)

Based on Eq.(6), the proof of Corollary 1 is straightforward with the details in Appendix. Since x∗
is unknown in practice, one could set c by replacing V (x∗, x0) in c with any value D∗ ≥ V (x∗, x0).
By doing so, Eq.(7) remains valid after replacing all V (x∗, x0) by D∗. For convex f(x) with µ̃ = 0,
the rate in Eq.(7) has achieved the uniformly-optimal rate according to [15]. In fact, if f(x) is a
deterministic and smooth function with σ = M = 0 (e.g., smooth empirical loss), one only needs
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to change the stochastic subgradient G(yt, ξt) to∇f(yt). The resulting algorithm, which reduces to
Algorithm 3 in [20], is an optimal deterministic first-order method with the rate O(LV (x∗,x0)

N2 ).

We note that the quadratic growth assumption of V (x, y) is not necessary for convex f(x).
If one does not assume this assumption and replaces the last step in ORDA by xt+1 =

arg minx∈X
{
〈x,G(yt, ξt)〉+ h(x) +

(
µ

2θ2t
+ γt

2

)
‖x− yt‖2

}
, we can achieve the same rate as in

Eq.(7) but just removing all τ from the right hand side. But the quadratic growth assumption is
indeed required for showing the convergence for strongly convex f(x) as in the next corollary.

Corollary 2 For strongly convex f(x) with µ̃ > 0, we set c = 0 and Γ = L and obtain that:

Eφ(xN+1)− φ(x∗) ≤ 4τLV (x∗, x0)

N2
+

4τ(σ2 +M2)

µN
. (8)

The dominating term in Eq.(8), O
(

1
µN

)
, is optimal and better than the O

(
logN
µN

)
rate for previous

dual averaging methods. However, ORDA has not achieved the uniformly-optimal rate, which takes
the form ofO(σ

2+M2

µN +exp(−
√

µ
LN)). In particular, for deterministic smooth and strongly convex

f(x) (i.e., empirical loss with σ = M = 0), ORDA only achieves the rate of O( L
N2 ) while the

optimal deterministic rate should beO
(
exp(−

√
µ
LN)

)
[16]. Inspired by the multi-restart technique

in [7, 11], we present a multi-stage extension of ORDA in Section 4 which achieves the uniformly-
optimal convergence rate.

3.2 High Probability Bounds

For stochastic optimization problems, another important evaluation criterion is the confidence
level of the objective value. In particular, it is of great interest to find ε(N, δ) as a mono-
tonically decreasing function in both N and δ ∈ (0, 1) such that the solution xN+1 satisfies
Pr (φ(xN+1)− φ(x∗) ≥ ε(N, δ)) ≤ δ. In other words, we want to show that with probability
at least 1 − δ, φ(xN+1) − φ(x∗) < ε(N, δ). According to Markov inequality, for any ε > 0,
Pr(φ(xN+1) − φ(x∗) ≥ ε) ≤ E(φ(xN+1)−φ(x∗))

ε . Therefore, we have ε(N, δ) = Eφ(xN+1)−φ(x∗)
δ .

Under the basic assumption in Eq.(3), namely Eξ(‖G(x, ξ) − f ′(x)‖2∗) ≤ σ2, and according to

Corollary 1 and 2, ε(N, δ) = O
(

(σ+M)
√
V (x∗,x0)√
Nδ

)
for convex f(x), and ε(N, δ) = O

(
σ2+M2

µNδ

)
for strongly convex f(x).

However, the above bounds are quite loose. To obtain tighter bounds, we strengthen the basic
assumption of the stochastic subgradient in Eq. (3) to the “light-tail” assumption [14]. In particular,
we assume that E

(
exp

{
‖G(x, ξ)− f ′(x)‖2∗/σ2

})
≤ exp{1}, ∀x ∈ X . By further making the

boundedness assumption (‖x∗ − ẑt‖ ≤ D) and utilizing a technical lemma from [3], we obtain a

much tighter high probability bound with ε(N, δ) = O
(√

ln(1/δ)Dσ√
N

)
for both convex and strongly

convex f(x). The details are presented in Appendix.

4 Multi-stage ORDA for Stochastic Strongly Convex Optimization

As we show in Section 3.1, for convex f(x), ORDA achieves the uniformly-optimal rate. How-
ever, for strongly convex f(x), although the dominating term of the convergence rate in Eq.(8) is
optimal, the overall rate is not uniformly-optimal. Inspired by the multi-stage stochastic approx-
imation methods [7, 9, 11], we propose the multi-stage extension of ORDA in Algorithm 2 for
stochastic strongly convex optimization. For each stage 1 ≤ k ≤ K, we run ORDA in Algorithm
1 as a sub-routine for Nk iterations with the parameter γt = c(t + 1)3/2 + τΓ with c = 0 and
Γ = Λk + L. Roughly speaking, we set Nk = 2Nk−1 and Λk = 4Λk−1. In other words, we double
the number of iterations for the next stage but reduce the step-size. The multi-stage ORDA has
achieved uniformly-optimal convergence rate as shown in Theorem 2 with the proof in Appendix.
The proof technique follows the one in [11]. Due this specialized proof technique, instead of show-
ing E(φ(xN ))− φ(x∗) ≤ ε(N) as in ORDA, we show the number of iterations N(ε) to achieve the
ε-accurate solution: E(φ(xN(ε)))− φ(x∗) ≤ ε. But the two convergence rates are equivalent.
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Algorithm 2 Multi-stage ORDA for Stochastic Strongly Convex Optimization
Initialization: x0 ∈ X , a constant V0 ≥ φ(x0)− φ(x∗) and the number of stages K.
Iterate for k = 1, 2, . . . ,K:

1. Set Nk = max
{

4
√

τL
µ ,

2k+9τ(σ2+M2)
µV0

}
2. Set Λk = N

3/2
k

√
2k−1µ(σ2+M2)

τV0

3. Generate x̃k by calling the sub-routine ORDA(x̃k−1, Nk,Γ = Λk + L, c = 0)

Output: x̃K

Theorem 2 If we run multi-stage ORDA for K stages with K = log2

(V0
ε

)
for any given ε, we have

E(φ(x̃K))− φ(x∗) ≤ ε and the total number of iterations is upper bounded by:

N =

K∑
k=1

Nk ≤ 4

√
τL

µ
log2

(
V0
ε

)
+

1024τ(σ2 +M2)

µε
. (9)

5 Related Works

In the last few years, a number of stochastic gradient methods [6, 5, 8, 12, 14, 21, 10, 11, 7, 4, 3] have
been developed to solve Eq.(1), especially for a sparsity-inducing h(x). In Table 1, we compare the
proposed ORDA and its multi-stage extension with some widely used stochastic gradient methods
using the following metrics. For the ease of comparison, we assume f(x) is smooth with M = 0.

1. The convergence rate for solving (non-strongly) convex f(x) and whether this rate has
achieved the uniformly-optimal (Uni-opt) rate.

2. The convergence rate for solving strongly convex f(x) and whether (1) the dominating
term of rate is optimal, i.e., O

(
σ2

µ̃N

)
and (2) the overall rate is uniformly-optimal.

3. Whether the final solution x̂, on which the results of convergence are built, is generated
from the weighted average of previous iterates (Avg) or from the proximal mapping (Prox).
For sparsity-inducing regularizers, the solution directly from the proximal mapping is often
sparser than the averaged solution.

4. Whether an algorithm allows to use a general Bregman divergence in proximal mapping or
it only allows the Euclidean distance V (x, y) = 1

2‖x− y‖
2
2 .

In Table 1, the algorithms in the first 7 rows are stochastic approximation algorithms where only
the current stochastic gradient is used at each iteration. The last 4 rows are dual averaging methods
where all past subgradients are used. Some algorithms in Table 1 make a more restrictive assumption
on the stochastic gradient: ∃G > 0,E‖G(x, ξ)‖2∗ ≤ G2,∀x ∈ X . It is easy to verify that this
assumption implies our basic assumption in Eq.(3) by Jensen’s inequality.

As we can see from Table 1, the proposed ORDA possesses all good properties except that the
convergence rate for strongly convex f(x) is not uniformly-optimal. Multi-stage ORDA further
improves this rate to be uniformly-optimal. In particular, SAGE [8] achieves a nearly optimal rate
since the parameter D in the convergence rate is chosen such that E

(
‖xt − x∗‖22

)
≤ D for all t ≥ 0

and it could be much larger than V ≡ V (x∗, x0). In addition, SAGE requires the boundedness of the
domain X , the smoothness of f(x), and only allows the Euclidean distance in proximal mapping.
As compared to AC-SA [10] and multi-stage AC-SA [11], our methods do not require the final
averaging step; and as shown in our experiments, ORDA has better empirical performances due
to the usage of all past stochastic subgradients. Furthermore, we improve the rates of RDA and
extend AC-RDA to an optimal algorithm for both convex and strongly convex f(x). Another highly
relevant work is [9]. Juditsky et al. [9] proposed multi-stage algorithms to achieve the optimal
strongly convex rate based on non-accelerated dual averaging methods. However, the algorithms in
[9] assume that φ(x) is a Lipschitz continuous function, i.e., the subgradient of φ(x) is bounded.
Therefore, when the domain X is unbounded, the algorithms in [9] cannot be directly applied.
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Convex f(x) Strongly Convex f(x) Final x̂ BregmanRate Uni-opt Rate Opt Uni-opt

FOBOS [6] O
(
G
√
V√
N

)
NO O

(
G2 logN
µ̃N

)
NO NO Prox NO

COMID [5] O
(
G
√
V√
N

)
NO O

(
G2 logN
µ̃N

)
NO NO Prox YES

SAGE [8] O
(
σ
√
D√
N

+ LD
N2

)
NEARLY O

(
σ2

µ̃N
+ LD

N2

)
YES NO Prox NO

AC-SA [10] O
(
σ
√
V√
N

+ LV
N2

)
YES O

(
σ2

µ̃N
+ LV

N2

)
YES NO Avg YES

M-AC-SA [11] NA NA O

(
σ2

µ̃N
+ exp{−

√
µ̃
L
N}
)

YES YES Avg YES

Epoch-GD [7] NA NA O
(
G2

µ̃N

)
YES NO Avg NO

RDA [21] O
(
G
√
V√
N

)
NO O

(
G2 logN
µ̃N

)
NO NO Avg YES

AC-RDA [21] O
(
σ
√
V√
N

+ LV
N2

)
YES NA NA NA Avg YES

ORDA O
(
σ
√
V√
N

+ LV
N2

)
YES O

(
σ2

µ̃N
+ LV

N2

)
YES NO Prox YES

M-ORDA NA NA O

(
σ2

µ̃N
+ exp{−

√
µ̃
L
N}
)

YES YES Prox YES

Table 1: Summary for different stochastic gradient algorithms. V is short for V (x∗, x0); AC for “accelerated”;
M for “multi-stage” and NA stands for either “not applicable” or “no analysis of the rate”.

Recently, the paper [18] develops another stochastic gradient method which achieves the rateO( G
2

µ̃N )

for strongly convex f(x). However, for non-smooth f(x), it requires the averaging of the last a few
iterates and this rate is not uniformly-optimal.

6 Simulated Experiments

In this section, we conduct simulated experiments to demonstrate the performance of ORDA and
its multi-stage extension (M ORDA). We compare our ORDA and M ORDA (only for strongly
convex loss) with several state-of-the-art stochastic gradient methods, including RDA and AC-RDA
[21], AC-SA [10], FOBOS [6] and SAGE [8]. For a fair comparison, we compare all different
methods using solutions which have expected convergence guarantees. For all algorithms, we tune
the parameter related to step-size (e.g., c in ORDA for convex loss) within an appropriate range and
choose the one that leads to the minimum objective value.

In this experiment, we solve a sparse linear regression problem: minx∈Rn f(x)+h(x) where f(x) =
1
2Ea,b((a

Tx− b)2) + ρ
2‖x‖

2
2 and h(x) = λ‖x‖1. The input vector a is generated from N(0, In×n)

and the response b = aTx∗ + ε, where x∗i = 1 for 1 ≤ i ≤ n/2 and 0 otherwise and the noise
ε ∼ N(0, 1). When ρ = 0, th problem is the well known Lasso [19] and when ρ > 0, it is known
as Elastic-net [22]. The regularization parameter λ is tuned so that a deterministic solver on all the
samples can correctly recover the underlying sparsity pattern. We set n = 100 and create a large
pool of samples for generating stochastic gradients and evaluating objective values. The number
of iterations N is set to 500. Since we focus on stochastic optimization instead of online learning,
we could randomly draw samples from an underlying distribution. So we construct the stochastic
gradient using the mini-batch strategy [2, 1] with the batch size 50. We run each algorithm for 100
times and report the mean of the objective value and the F1-score for sparsity recovery performance.
F1-score is defined as 2 precision·recall

precision+recall where precision =
∑p
i=1 1{x̂i=1,x∗

i =1}/
∑p
i=1 1{x̂i=1} and

recall =
∑p
i=1 1{x̂i=1,x∗

i =1}/
∑p
i=1 1{x∗

i =1}. The higher the F1-score is, the better the recovery
ability of the sparsity pattern. The standard deviations for both objective value and the F1-score in
100 runs are very small and thus omitted here due to space limitations.

We first set ρ = 0 to test algorithms for (non-strongly) convex f(x). The result is presented in
Table 2 (the first two columns). We also plot the decrease of the objective values for the first 200
iterations in Figure 1. From Table 2, ORDA performs the best in both objective value and recovery
ability of sparsity pattern. For those optimal algorithms (e.g., AC-RDA, AC-SA, SAGE, ORDA),
they achieve lower final objective values and the rates of the decrease are also faster. We note that
for dual averaging methods, the solution generated from the (first) proximal mapping (e.g., zt in
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ρ = 0 ρ = 1

Obj F1 Obj F1
RDA 20.87 0.67 21.57 0.67
AC-RDA 20.67 0.67 21.12 0.67
AC-SA 20.66 0.67 21.01 0.67
FOBOS 20.98 0.83 21.19 0.84
SAGE 20.65 0.82 21.09 0.73
ORDA 20.56 0.92 20.97 0.87
M ORDA N.A. N.A. 20.98 0.88

Table 2: Comparisons in objective
value and F1-score.
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Figure 1: Obj for Lasso.
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Figure 2: Obj for Elastic-Net.

ORDA) has almost perfect sparsity recovery performance. However, since here is no convergence
guarantee for that solution, we do not report results here.
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Figure 3: ORDA v.s. M ORDA.

Then we set ρ = 1 to test algorithms for solving
strongly convex f(x). The results are presented
in Table 2 (the last two columns) and Figure
2 and 3. As we can see from Table 2, ORDA
and M ORDA perform the best. Although
M ORDA achieves the theoretical uniformly-
optimal convergence rate, the empirical per-
formance of M ORDA is almost identical to
that of ORDA. This observation is consistent
with our theoretical analysis since the improve-
ment of the convergence rate only appears on
the non-dominating term. In addition, ORDA,
M ORDA, AC-SA and SAGE with the conver-
gence rate O( 1

µ̃N ) achieve lower objective val-
ues as compared to other algorithms with the
rate O( logN

µ̃N ) . For better visualization, we do
not include the comparison between M ORA and ORDA in Figure 2. Instead, we present the com-
parison separately in Figure 3. From Figure 3, the final objective values of both algorithms are very
close. An interesting observation is that, for M ORDA, each time when a new stage starts, it leads
to a sharp increase in the objective value following by a quick drop.

7 Conclusions and Future Works

In this paper, we propose a new dual averaging method which achieves the optimal rates for solving
stochastic regularized problems with both convex and strongly convex loss functions. We further
propose a multi-stage extension to achieve the uniformly-optimal convergence rate for strongly con-
vex loss.

Although we study stochastic optimization problems in this paper, our algorithms can be easily
converted into online optimization approaches, where a sequence of decisions {xt}Nt=1 are generated
according to Algorithm 1 or 2. We often measure the quality of an online learning algorithm via the
so-called regret, defined as RN (x∗) =

∑N
t=1

(
(F (xt, ξt) + h(xt)) − (F (x∗, ξt) + h(x∗))

)
. Given

the expected convergence rate in Corollary 1 and 2, the expected regret can be easily derived. For
example, for strongly convex f(x): ERN (x∗) ≤

∑N
t=1 (E(φ(xt))− φ(x∗)) ≤

∑N
t=1O( 1

t ) =
O(lnN). However, it would be a challenging future work to derive the regret bound for ORDA
instead of the expected regret. It would also be interesting to develop the parallel extensions of
ORDA (e.g., combining the distributed mini-batch strategy in [21] with ORDA) and apply them to
some large-scale real problems.
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