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Abstract

We study consistency properties of surrogate loss functions for general multiclass
classification problems, defined by a general loss matrix. We extend the notion
of classification calibration, which has been studied for binary and multiclass 0-1
classification problems (and for certain other specific learning problems), to the
general multiclass setting, and derive necessary and sufficient conditions for a
surrogate loss to be classification calibrated with respect to a loss matrix in this
setting. We then introduce the notion of classification calibration dimension of a
multiclass loss matrix, which measures the smallest ‘size’ of a prediction space
for which it is possible to design a convex surrogate that is classification cali-
brated with respect to the loss matrix. We derive both upper and lower bounds on
this quantity, and use these results to analyze various loss matrices. In particular,
as one application, we provide a different route from the recent result of Duchi
et al. (2010) for analyzing the difficulty of designing ‘low-dimensional’ convex
surrogates that are consistent with respect to pairwise subset ranking losses. We
anticipate the classification calibration dimension may prove to be a useful tool in
the study and design of surrogate losses for general multiclass learning problems.

1 Introduction
There has been significant interest and progress in recent years in understanding consistency of
learning methods for various finite-output learning problems, such as binary classification, multi-
class 0-1 classification, and various forms of ranking and multi-label prediction problems [1–15].
Such finite-output problems can all be viewed as instances of a general multiclass learning problem,
whose structure is defined by a loss function, or equivalently, by a loss matrix. While the studies
above have contributed to the understanding of learning problems corresponding to certain forms
of loss matrices, a framework for analyzing consistency properties for a general multiclass learning
problem, defined by a general loss matrix, has remained elusive.

In this paper, we analyze consistency of surrogate losses for general multiclass learning problems,
building on the results of [3, 5–7] and others. We start in Section 2 with some background and
examples that will be used as running examples to illustrate concepts throughout the paper, and for-
malize the notion of classification calibration with respect to a general loss matrix. In Section 3, we
derive both necessary and sufficient conditions for classification calibration with respect to general
multiclass losses; these are both of independent interest and useful in our later results. Section 4 in-
troduces the notion of classification calibration dimension of a loss matrix, a fundamental quantity
that measures the smallest ‘size’ of a prediction space for which it is possible to design a convex sur-
rogate that is classification calibrated with respect to the loss matrix. We derive both upper and lower
bounds on this quantity, and use these results to analyze various loss matrices. As one application,
in Section 5, we provide a different route from the recent result of Duchi et al. [10] for analyzing
the difficulty of designing ‘low-dimensional’ convex surrogates that are consistent with respect to
certain pairwise subset ranking losses. We conclude in Section 6 with some future directions.
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2 Preliminaries, Examples, and Background

Setup. We are given training examples (X1, Y1), . . . , (Xm, Ym) drawn i.i.d. from a distribution D
on X ×Y , where X is an instance space and Y = [n] = {1, . . . , n} is a finite set of class labels. We
are also given a finite set T = [k] = {1, . . . , k} of target labels in which predictions are to be made,
and a loss function � : Y × T →[0,∞), where �(y, t) denotes the loss incurred on predicting t ∈ T
when the label is y ∈ Y . In many common learning problems, T = Y , but in general, these could
be different (e.g. when there is an‘abstain’ option available to a classifier, in which case k = n+1).

We will find it convenient to represent the loss function � as a loss matrix L ∈ Rn×k
+ (here R+ =

[0,∞)), and for each y ∈ [n], t ∈ [k], will denote by �yt the (y, t)-th element of L, �yt = (L)yt =
�(y, t), and by �t the t-th column of L, �t = (�1t, . . . , �nt)

� ∈ Rn. Some examples follow:

Example 1 (0-1 loss). Here Y = T = [n], and the loss incurred is 1 if the predicted label t is
different from the actual class label y, and 0 otherwise: �0-1(y, t) = 1(t �= y) , where 1(·) is 1 if the
argument is true and 0 otherwise. The loss matrix L0-1 for n = 3 is shown in Figure 1(a).
Example 2 (Ordinal regression loss). Here Y = T = [n], and predictions t farther away from the
actual class label y are penalized more heavily, e.g. using absolute distance: �ord(y, t) = |t − y| .
The loss matrix Lord for n = 3 is shown in Figure 1(b).
Example 3 (Hamming loss). Here Y = T = [2r] for some r ∈ N, and the loss incurred on
predicting t when the actual class label is y is the number of bit-positions in which the r-bit binary
representations of t− 1 and y− 1 differ: �Ham(y, t) =

�r
i=1 1((t− 1)i �= (y− 1)i) , where for any

z ∈ {0, . . . , 2r − 1}, zi ∈ {0, 1} denotes the i-th bit in the r-bit binary representation of z. The loss
matrix LHam for r = 2 is shown in Figure 1(c). This loss is used in sequence labeling tasks [16].
Example 4 (‘Abstain’ loss). Here Y = [n] and T = [n+1], where t = n+1 denotes ‘abstain’. One
possible loss function in this setting assigns a loss of 1 to incorrect predictions in [n], 0 to correct
predictions, and 1

2 for abstaining: �(?)(y, t) = 1(t �= y)1(t ∈ [n]) + 1
21(t = n + 1) . The loss

matrix L(?) for n = 3 is shown in Figure 1(d).

The goal in the above setting is to learn from the training examples a function h : X→[k] with low
expected loss on a new example drawn from D, which we will refer to as the �-risk of h:

er�D[h]
�
= E(X,Y )∼D�(Y, h(X)) = EX

n�

y=1

py(X)�(y, h(X)) = EXp(X)��h(X) , (1)

where py(x) = P(Y = y | X = x) under D, and p(x) = (p1(x), . . . , pn(x))
� ∈ Rn denotes the

conditional probability vector at x. In particular, the goal is to learn a function with �-risk close to
the optimal �-risk, defined as

er�,∗D

�
= inf

h:X→[k]
er�D[h] = inf

h:X→[k]
EXp(X)��h(X) = EX min

t∈[k]
p(X)��t . (2)

Minimizing the discrete �-risk directly is typically difficult computationally; consequently, one usu-
ally employs a surrogate loss function ψ : Y × �T →R+ operating on a surrogate target space
�T ⊆ Rd for some appropriate d ∈ N,1 and minimizes (approximately, based on the training sample)
the ψ-risk instead, defined for a (vector) function f : X→�T as

erψD[f ]
�
= E(X,Y )∼Dψ(Y, f(X)) = EX

n�

y=1

py(X)ψ(y, f(X)) . (3)

The learned function f : X→�T is then used to make predictions in [k] via some transformation pred :
�T →[k]: the prediction on a new instance x ∈ X is given by pred(f(x)), and the �-risk incurred is
er�D[pred◦ f ]. As an example, several algorithms for multiclass classification with respect to 0-1 loss
learn a function of the form f : X→Rn and predict according to pred(f(x)) = argmaxt∈[n]ft(x).

Below we will find it useful to represent the surrogate loss function ψ via n real-valued functions
ψy : �T →R+ defined as ψy(t̂) = ψ(y, t̂) for y ∈ [n], or equivalently, as a vector-valued function
ψ : �T →Rn

+ defined as ψ(t̂) = (ψ1(t̂), . . . , ψn(t̂))
�. We will also define the sets

Rψ
�
=
�
ψ(t̂) : t̂ ∈ �T

�
and Sψ

�
= conv(Rψ) , (4)

where for any A ⊆ Rn, conv(A) denotes the convex hull of A.
1Equivalently, one can define ψ : Y × Rd→R̄+, where R̄+ = R+ ∪ {∞} and ψ(y, t̂) = ∞ ∀t̂ /∈ �T .
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Figure 1: Loss matrices corresponding to Examples 1-4: (a) L0-1 for n = 3; (b) Lord for n = 3; (c)
LHam for r = 2 (n = 4); (d) L(?) for n = 3.

Under suitable conditions, algorithms that approximately minimize the ψ-risk based on a training
sample are known to be consistent with respect to the ψ-risk, i.e. to converge (in probability) to the
optimal ψ-risk, defined as

erψ,∗
D

�
= inf

f :X→�T
erψD[f ] = inf

f :X→�T
EXp(X)�ψ(f(X)) = EX inf

z∈Rψ

p(X)�z = EX inf
z∈Sψ

p(X)�z .

(5)
This raises the natural question of whether, for a given loss �, there are surrogate losses ψ for which
consistency with respect to the ψ-risk also guarantees consistency with respect to the �-risk, i.e.
guarantees convergence (in probability) to the optimal �-risk (defined in Eq. (2)). This question has
been studied in detail for the 0-1 loss, and for square losses of the form �(y, t) = ay1(t �= y), which
can be analyzed similarly to the 0-1 loss [6, 7]. In this paper, we consider this question for general
multiclass losses � : [n] × [k]→R+, including rectangular losses with k �= n. The only assumption
we make on � is that for each t ∈ [k], ∃p ∈ Δn such that argmint�∈[k]p

��t� = {t} (otherwise the
label t never needs to be predicted and can simply be ignored).2

Definitions and Results. We will need the following definitions and basic results, generalizing
those of [5–7]. The notion of classification calibration will be central to our study; as Theorem 3
below shows, classification calibration of a surrogate loss ψ w.r.t. � corresponds to the property that
consistency w.r.t. ψ-risk implies consistency w.r.t. �-risk. Proofs of these results are straightforward
generalizations of those in [6, 7] and are omitted.

Definition 1 (Classification calibration). A surrogate loss function ψ : [n] × �T →R+ is said to be
classification calibrated with respect to a loss function � : [n]× [k]→R+ over P ⊆ Δn if there exists
a function pred : �T →[k] such that

∀p ∈ P : inf
t̂∈�T :pred(t̂)/∈argmintp��t

p�ψ(t̂) > inf
t̂∈�T

p�ψ(t̂) .

Lemma 2. Let � : [n] × [k]→R+ and ψ : [n] × �T →R+. Then ψ is classification calibrated with
respect to � over P ⊆ Δn iff there exists a function pred� : Sψ→[k] such that

∀p ∈ P : inf
z∈Sψ :pred�(z)/∈argmintp��t

p�z > inf
z∈Sψ

p�z .

Theorem 3. Let � : [n] × [k]→R+ and ψ : [n] × �T →R+. Then ψ is classification calibrated with
respect to � over Δn iff ∃ a function pred : �T →[k] such that for all distributions D on X × [n] and
all sequences of random (vector) functions fm : X→�T (depending on (X1, Y1), . . . , (Xm, Ym)),3

erψD[fm]
P−→ erψ,∗

D implies er�D[pred ◦ fm]
P−→ er�,∗D .

Definition 4 (Positive normals). Let ψ : [n] × �T →R+. For each point z ∈ Sψ , the set of positive
normals at z is defined as4

NSψ
(z)

�
=
�
p ∈ Δn : p�(z− z�) ≤ 0 ∀z� ∈ Sψ

�
.

Definition 5 (Trigger probabilities). Let � : [n] × [k]→R+. For each t ∈ [k], the set of trigger
probabilities of t with respect to � is defined as

Q�
t
�
=
�
p ∈ Δn : p�(�t − �t�) ≤ 0 ∀t� ∈ [k]

�
=
�
p ∈ Δn : t ∈ argmint�∈[k]p

��t�
�
.

Examples of trigger probability sets for various losses are shown in Figure 2.
2HereΔn denotes the probability simplex in Rn,Δn = {p ∈ Rn : pi ≥ 0 ∀ i ∈ [n],

�n
i=1 pi = 1}.

3Here P−→ denotes convergence in probability.
4The set of positive normals is non-empty only at points z in the boundary of Sψ .
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Q0-1
1 = {p ∈ Δ3 : p1 ≥ max(p2, p3)}

Q0-1
2 = {p ∈ Δ3 : p2 ≥ max(p1, p3)}

Q0-1
3 = {p ∈ Δ3 : p3 ≥ max(p1, p2)}

(a)

Qord
1 = {p ∈ Δ3 : p1 ≥ 1

2}
Qord

2 = {p ∈ Δ3 : p1 ≤ 1
2 , p3 ≤ 1

2}
Qord

3 = {p ∈ Δ3 : p3 ≥ 1
2}

(b)

Q
(?)
1 = {p ∈ Δ3 : p1 ≥ 1

2}
Q
(?)
2 = {p ∈ Δ3 : p2 ≥ 1

2}
Q
(?)
3 = {p ∈ Δ3 : p3 ≥ 1

2}
Q
(?)
4 = {p ∈ Δ3 : max(p1, p2, p3) ≤ 1

2}

(c)
Figure 2: Trigger probability sets for (a) 0-1 loss �0-1; (b) ordinal regression loss �ord; and (c) ‘ab-
stain’ loss �(?); all for n = 3, for which the probability simplex can be visualized easily. Calculations
of these sets can be found in the appendix. We note that such sets have also been studied in [17,18].

3 Necessary and Sufficient Conditions for Classification Calibration

We start by giving a necessary condition for classification calibration of a surrogate loss ψ with
respect to any multiclass loss � overΔn, which requires the positive normals of all points z ∈ Sψ to
be ‘well-behaved’ w.r.t. � and generalizes the ‘admissibility’ condition used for 0-1 loss in [7]. All
proofs not included in the main text can be found in the appendix.

Theorem 6. Let ψ : [n] × �T →R+ be classification calibrated with respect to � : [n] × [k]→R+

over Δn. Then for all z ∈ Sψ , there exists some t ∈ [k] such that NSψ
(z) ⊆ Q�

t .

We note that, as in [7], it is possible to give a necessary and sufficient condition for classification
calibration in terms of a similar property holding for positive normals associated with projections of
Sψ in lower dimensions. Instead, below we give a different sufficient condition that will be helpful
in showing classification calibration of certain surrogates. In particular, we show that for a surrogate
loss ψ to be classification calibrated with respect to � overΔn, it is sufficient for the above property
of positive normals to hold only at a finite number of points in Rψ , as long as their positive normal
sets jointly cover Δn:

Theorem 7. Let � : [n]×[k]→R+ and ψ : [n]× �T →R+. Suppose there exist r ∈ N and z1, . . . , zr ∈
Rψ such that

�r
j=1 NSψ

(zj) = Δn and for each j ∈ [r], ∃t ∈ [k] such that NSψ
(zj) ⊆ Q�

t . Then
ψ is classification calibrated with respect to � over Δn.

Computation of NSψ
(z). The conditions in the above results both involve the sets of positive

normals NSψ
(z) at various points z ∈ Sψ . Thus in order to use the above results to show that a

surrogate ψ is (or is not) classification calibrated with respect to a loss �, one needs to be able to
compute or characterize the setsNSψ

(z). Here we give a method for computing these sets for certain
surrogate losses ψ and points z ∈ Sψ .

Lemma 8. Let �T ⊆ Rd be a convex set and let ψ : �T →Rn
+ be convex.5 Let z = ψ(t̂) for some

t̂ ∈ �T such that for each y ∈ [n], the subdifferential of ψy at t̂ can be written as ∂ψy(t̂) =
conv({wy

1 , . . . ,w
y
sy}) for some sy ∈ N and wy

1 , . . . ,w
y
sy ∈ Rd.6 Let s =

�n
y=1 sy , and let

A =
�
w1

1 . . .w
1
s1w

2
1 . . .w

2
s2 . . . . . .w

n
1 . . .wn

sn

�
∈ Rd×s ; B = [byj ] ∈ Rn×s ,

where byj is 1 if the j-th column of A came from {wy
1 , . . . ,w

y
sy} and 0 otherwise. Then

NSψ
(z) =

�
p ∈ Δn : p = Bq for some q ∈ Null(A) ∩Δs

�
,

where Null(A) ⊆ Rs denotes the null space of the matrix A.
5A vector function is convex if all its component functions are convex.
6Recall that the subdifferential of a convex function φ : Rd→R̄+ at a point u0 ∈ Rd is defined as

∂φ(u0) =
�
w ∈ Rd : φ(u)− φ(u0) ≥ w�(u− u0) ∀u ∈ Rd

�
and is a convex set in Rd (e.g. see [19]).
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We give an example illustrating the use of Theorem 7 and Lemma 8 to show classification calibration
of a certain surrogate loss with respect to the ordinal regression loss �ord defined in Example 2:

Example 5 (Classification calibrated surrogate for ordinal regression loss). Consider the ordinal
regression loss �ord defined in Example 2 for n = 3. Let �T = R, and let ψ : {1, 2, 3} × R→R+ be
defined as (see Figure 3)

ψ(y, t̂) = |t̂− y| ∀y ∈ {1, 2, 3}, t̂ ∈ R . (6)

Thus Rψ =
�
ψ(t̂) =

�
|t̂ − 1|, |t̂ − 2|, |t̂ − 3|

��
: t̂ ∈ R

�
. We will show there are 3 points in Rψ

satisfying the conditions of Theorem 7. Specifically, consider t̂1 = 1, t̂2 = 2, and t̂3 = 3, giving
z1 = ψ(t̂1) = (0, 1, 2)�, z2 = ψ(t̂2) = (1, 0, 1)�, and z3 = ψ(t̂3) = (2, 1, 0)� in Rψ . Observe
that �T here is a convex set and ψ : �T →R3 is a convex function. Moreover, for t̂1 = 1, we have

Figure 3: The surrogate ψ

∂ψ1(1) = [−1, 1] = conv({+1,−1}) ;
∂ψ2(1) = {−1} = conv({−1}) ;
∂ψ3(1) = {−1} = conv({−1}) .

Therefore, we can use Lemma 8 to compute NSψ
(z1). Here

s = 4, and

A = [ +1 −1 −1 −1 ] ; B =

�
1 1 0 0
0 0 1 0
0 0 0 1

�
.

This gives
NSψ

(z1) =
�
p ∈ Δ3 : p = (q1 + q2, q3, q4) for some q ∈ Δ4, q1 − q2 − q3 − q4 = 0

�

=
�
p ∈ Δ3 : p = (q1 + q2, q3, q4) for some q ∈ Δ4, q1 = 1

2

�

=
�
p ∈ Δ3 : p1 ≥ 1

2

�

= Qord
1 .

A similar procedure yields NSψ
(z2) = Qord

2 and NSψ
(z3) = Qord

3 . Thus, by Theorem 7, we get that
ψ is classification calibrated with respect to �ord over Δ3.

We note that in general, computational procedures such as Fourier-Motzkin elimination [20] can be
helpful in computing NSψ

(z) via Lemma 8.

4 Classification Calibration Dimension

We now turn to the study of a fundamental quantity associated with the property of classification
calibration with respect to a general multiclass loss �. Specifically, in the above example, we saw
that to develop a classification calibrated surrogate loss w.r.t. the ordinal regression loss for n = 3,
it was sufficient to consider a surrogate target space �T = R, with dimension d = 1; in addition, this
yielded a convex surrogate ψ : R→R3

+ which can be used in developing computationally efficient
algorithms. In fact the same surrogate target space with d = 1 can be used to develop a similar
convex, classification calibrated surrogate loss w.r.t. the ordinal regression loss for any n ∈ N.
However not all losses � have such ‘low-dimensional’ surrogates. This raises the natural question
of what is the smallest dimension d that supports a convex classification calibrated surrogate for a
given multiclass loss �, and leads us to the following definition:

Definition 9 (Classification calibration dimension). Let � : [n]× [k]→R+. Define the classification
calibration dimension (CC dimension) of � as

CCdim(�)
�
= min

�
d ∈ N : ∃ a convex set �T ⊆ Rd and a convex surrogate ψ : �T →Rn

+

that is classification calibrated w.r.t. � over Δn

�
,

if the above set is non-empty, and CCdim(�) = ∞ otherwise.

From the above discussion, CCdim(�ord) = 1 for all n. In the following, we will be interested in
developing an understanding of the CC dimension for general losses �, and in particular in deriving
upper and lower bounds on this.
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4.1 Upper Bounds on the Classification Calibration Dimension

We start with a simple result that establishes that the CC dimension of any multiclass loss � is finite,
and in fact is strictly smaller than the number of class labels n.

Lemma 10. Let � : [n]× [k]→R+. Let �T =
�
t̂ ∈ Rn−1

+ :
�n−1

j=1 t̂j ≤ 1
�
, and for each y ∈ [n], let

ψy : �T →R+ be given by

ψy(t̂) = 1(y �= n) (t̂y − 1)2 +
�

j∈[n−1],j �=y

t̂j
2 .

Then ψ is classification calibrated with respect to � over Δn. In particular, since ψ is convex,
CCdim(�) ≤ n− 1.

It may appear surprising that the convex surrogate ψ in the above lemma is classification calibrated
with respect to all multiclass losses � on n classes. However this makes intuitive sense, since in
principle, for any multiclass problem, if one can estimate the conditional probabilities of the n
classes accurately (which requires estimating n−1 real-valued functions onX ), then one can predict
a target label that minimizes the expected loss according to these probabilities. Minimizing the above
surrogate effectively corresponds to such class probability estimation. Indeed, the above lemma can
be shown to hold for any surrogate that is a strictly proper composite multiclass loss [21].

In practice, when the number of class labels n is large (such as in a sequence labeling task, where n
is exponential in the length of the input sequence), the above result is not very helpful; in such cases,
it is of interest to develop algorithms operating on a surrogate target space in a lower-dimensional
space. Next we give a different upper bound on the CC dimension that depends on the loss �, and
for certain losses, can be significantly tighter than the general bound above.

Theorem 11. Let � : [n]× [k]→R+. Then CCdim(�) ≤ rank(L), the rank of the loss matrix L.

Proof. Let rank(L) = d. We will construct a convex classification calibrated surrogate loss ψ for �
with surrogate target space �T ⊆ Rd.

Let �t1 , . . . , �td be linearly independent columns of L. Let {e1, . . . , ed} denote the standard basis
in Rd. We can define a linear function ψ̃ : Rd→Rn by

ψ̃(ej) = �tj ∀j ∈ [d] .

Then for each z in the column space of L, there exists a unique vector u ∈ Rd such that ψ̃(u) = z.
In particular, there exist unique vectors u1, . . . ,uk ∈ Rd such that for each t ∈ [k], ψ̃(ut) = �t.
Let �T = conv({u1, . . . ,uk}), and define ψ : �T →Rn

+ as

ψ(t̂) = ψ̃(t̂) ;

we note that the resulting vectors are always in Rn
+, since by definition, for any t̂ =

�k
t=1 αtut for

α ∈ Δk,ψ(t̂) =
�k

t=1 αt�t, and �t ∈ Rn
+ ∀t ∈ [k]. The functionψ is clearly convex. To showψ is

classification calibrated w.r.t. � over Δn, we will use Theorem 7. Specifically, consider the k points
zt = ψ(ut) = �t ∈ Rψ for t ∈ [k]. By definition ofψ, we have Sψ = conv({�1, . . . , �k}); from the
definitions of positive normals and trigger probabilities, it then follows that NSψ

(zt) = NSψ
(�t) =

Q�
t for all t ∈ [k]. Thus by Theorem 7, ψ is classification calibrated w.r.t. � over Δn.

Example 6 (CC dimension of Hamming loss). Consider the Hamming loss �Ham defined in Example
3, for n = 2r. For each i ∈ [r], define σi ∈ Rn as

σiy =

�
+1 if (y − 1)i, the i-th bit in the r-bit binary representation of (y − 1), is 1
−1 otherwise.

Then the loss matrix LHam satisfies

LHam =
r

2
ee� − 1

2

r�

i=1

σiσi
� ,

where e is the n × 1 all ones vector. Thus rank(LHam) ≤ r + 1, giving us CCdim(�Ham) ≤ r + 1.
For r ≥ 3, this is a significantly tighter upper bound than the bound of 2r − 1 given by Lemma 10.
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We note that the upper bound of Theorem 11 need not always be tight: for example, for the ordinal
regression loss, for which we already know CCdim(�ord) = 1, the theorem actually gives an upper
bound of n, which is even weaker than that implied by Lemma 10.

4.2 Lower Bound on the Classification Calibration Dimension

In this section we give a lower bound on the CC dimension of a loss function � and illustrate it by
using it to calculate the CC dimension of the 0-1 loss. Section 5 we will explore consequences of
the lower bound for classification calibrated surrogates for certain types of ranking losses. We will
need the following definition:

Definition 12. The feasible subspace dimension of a convex set C at p ∈ C, denoted by µC(p), is
defined as the dimension of the subspace FC(p) ∩ (−FC(p)), where FC(p) is the cone of feasible
directions of C at p.7

The following gives a lower bound on the CC dimension of a loss � in terms of the feasible subspace
dimension of the trigger probability sets Q�

t at certain points p ∈ Q�
t:

Theorem 13. Let � : [n]× [k]→R+. Then for all p ∈ relint(Δn) and t ∈ argmint� p
��t� (i.e. such

that p ∈ Q�
t):

8

CCdim(�) ≥ n− µQ�
t
(p)− 1 .

The proof requires extensions of the definition of positive normals and the necessary condition of
Theorem 6 to sequences of points in Sψ and is quite technical. In the appendix, we provide a proof
in the special case when p ∈ relint(Δn) is such that infz∈Sψ

p�z is achieved in Sψ , which does not
require these extensions. Full proof details will be provided in a longer version of the paper. Both
the proof of the lower bound and its applications make use of the following lemma, which gives a
method to calculate the feasible subspace dimension for certain convex sets C and points p ∈ C:
Lemma 14. Let C =

�
u ∈ Rn : A1u ≤ b1,A2u ≤ b2,A3u = b3

�
. Let p ∈ C be such that

A1p = b1, A2p < b2. Then µC(p) = nullity
��

A1

A3

��
, the dimension of the null space of

�
A1

A3

�
.

The above lower bound allows us to calculate precisely the CC dimension of the 0-1 loss:

Example 7 (CC dimension of 0-1 loss). Consider the 0-1 loss �0-1 defined in Example 1. Take
p = ( 1n , . . . ,

1
n )

� ∈ relint(Δn). Then p ∈ Q0-1
t for all t ∈ [k] = [n] (see Figure 2); in particular,

we have p ∈ Q0-1
1 . Now Q0-1

1 can be written as

Q0-1
1 =

�
q ∈ Δn : q1 ≥ qy ∀y ∈ {2, . . . , n}

�

=
�
q ∈ Rn :

�
−en−1 In−1

�
q ≤ 0,−q ≤ 0, e�nq = 1} ,

where en−1, en denote the (n − 1) × 1 and n × 1 all ones vectors, respectively, and In−1 denotes
the (n−1)× (n−1) identity matrix. Moreover, we have

�
−en−1 In−1

�
p = 0,−p < 0. Therefore,

by Lemma 14, we have

µQ0-1
1

(p) = nullity
��−en−1 In−1

e�n

��
= nullity







−1 1 0 . . . 0
−1 0 1 . . . 0

...
−1 0 0 . . . 1
1 1 1 . . . 1







= 0 .

Thus by Theorem 13, we get CCdim(�0-1) ≥ n − 1. Combined with the upper bound of Lemma 10,
this gives CCdim(�0-1) = n− 1.

7For a set C ⊆ Rn and point p ∈ C, the cone of feasible directions of C at p is defined as
FA(p) = {v ∈ Rn : ∃�0 > 0 such that p+ �v ∈ C ∀� ∈ (0, �0)}.

8Here relint(Δn) denotes the relative interior ofΔn: relint(Δn) = {p ∈ Δn : py > 0 ∀y ∈ [n]}.
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5 Application to Pairwise Subset Ranking

We consider an application of the above framework to analyzing certain types of subset ranking
problems, where each instance x ∈ X consists of a query together with a set of r documents (for
simplicity, r ∈ N here is fixed), and the goal is to learn a predictor which given such an instance will
return a ranking (permutation) of the r documents [8]. Duchi et al. [10] showed recently that for
certain pairwise subset ranking losses �, finding a predictor that minimizes the �-risk is an NP-hard
problem. They also showed that several common pairwise convex surrogate losses that operate on
�T = Rr (and are used to learn scores for the r documents) fail to be classification calibrated with
respect to such losses �, even under some low-noise conditions on the distribution, and proposed
an alternative convex surrogate, also operating on �T = Rr, that is classification calibrated under
certain conditions on the distribution (i.e. over a strict subset of the associated probability simplex).

Here we provide an alternative route to analyzing the difficulty of obtaining consistent surrogates for
such pairwise subset ranking problems using the classification calibration dimension. Specifically,
we will show that even for a simple setting of such problems, the classification calibration dimension
of the underlying loss � is greater than r, and therefore no convex surrogate operating on �T ⊆ Rr

can be classification calibrated w.r.t. such a loss over the full probability simplex.

Formally, we will identify the set of class labels Y with a set G of ‘preference graphs’, which are
simply directed acyclic graphs (DAGs) over r vertices; for each directed edge (i, j) in a preference
graph g ∈ G associated with an instance x ∈ X , the i-th document in the document set in x is
preferred over the j-th document. Here we will consider a simple setting where each preference
graph has exactly one edge, so that |Y| = |G| = r(r − 1); in this setting, we can associate each
g ∈ G with the edge (i, j) it contains, which we will write as g(i,j). The target labels consist of
permutations over r objects, so that T = Sr with |T | = r!. Consider now the following simple
pairwise loss �pair : Y × T →R+:

�pair(g(i,j), σ) = 1
�
σ(i) > σ(j)

�
. (7)

Let p = ( 1
r(r−1) , . . . ,

1
r(r−1) )

� ∈ relint(Δr(r−1)), and observe that p��pairσ = 1
2 for all σ ∈ T .

Thus p�(�pairσ − �pairσ� ) = 0 ∀σ, σ� ∈ T , and so p ∈ Qpair
σ ∀σ ∈ T .

Let (σ1, . . . , σr!) be any fixed ordering of the permutations in T , and consider Qpair
σ1 , defined by

the intersection of r! − 1 half-spaces of the form q�(�pairσ1
− �pairσt

) ≤ 0 for t = 2, . . . , r! and
the simplex constraints q ∈ Δr(r−1). Moreover, from the above observation, p ∈ Qpair

σ1 satisfies
p�(�pairσ1

− �pairσt
) = 0 ∀t = 2, . . . , r!. Therefore, by Lemma 14, we get

µQpair
σ1
(p) = nullity

��
(�pairσ1

− �pairσ2
), . . . , (�pairσ1

− �pairσr!
), e
���

, (8)

where e is the r(r − 1)× 1 all ones vector. It is not hard to see that the set {�pairσ : σ ∈ T } spans a
r(r−1)

2 dimensional space, and hence the nullity of the above matrix is at most r(r−1)−
� r(r−1)

2 −1
�
.

Thus by Theorem 13, we get that CCdim(�pair) ≥ r(r − 1)−
� r(r−1)

2 + 1
�
− 1 = r(r−1)

2 − 2 . In
particular, for r ≥ 5, this gives CCdim(�pair) > r, and therefore establishes that no convex surrogate
ψ operating on a surrogate target space �T ⊆ Rr can be classification calibrated with respect to �pair

on the full probability simplex Δr(r−1).

6 Conclusion

We developed a framework for analyzing consistency for general multiclass learning problems de-
fined by a general loss matrix, introduced the notion of classification calibration dimension of a
multiclass loss, and used this to analyze consistency properties of surrogate losses for various gen-
eral multiclass problems. An interesting direction would be to develop a generic procedure for
designing consistent convex surrogates operating on a ‘minimal’ surrogate target space according to
the classification calibration dimension of the loss matrix. It would also be of interest to extend the
results here to account for noise conditions as in [9, 10].
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