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Abstract

A gaze concurrence is a point in 3D where the gaze directions of two or more
people intersect. It is a strong indicator of social saliency because the attention
of the participating group is focused on that point. In scenes occupied by large
groups of people, multiple concurrences may occur and transition over time. In
this paper, we present a method to construct a 3D social saliency field and lo-
cate multiple gaze concurrences that occur in a social scene from videos taken by
head-mounted cameras. We model the gaze as a cone-shaped distribution emanat-
ing from the center of the eyes, capturing the variation of eye-in-head motion. We
calibrate the parameters of this distribution by exploiting the fixed relationship
between the primary gaze ray and the head-mounted camera pose. The result-
ing gaze model enables us to build a social saliency field in 3D. We estimate the
number and 3D locations of the gaze concurrences via provably convergent mode-
seeking in the social saliency field. Our algorithm is applied to reconstruct mul-
tiple gaze concurrences in several real world scenes and evaluated quantitatively
against motion-captured ground truth.

1 Introduction

Scene understanding approaches have largely focused on understanding the physical structure of a
scene: “what is where?” [1]. In social scenes, i.e., scenes occupied by people, this definition of
understanding needs to be expanded to include interpreting what is socially salient in that scene,
such as who people interact with, where they look, and what they attend to. While classic structural
scene understanding is an objective interpretation of the scene (e.g., 3D reconstruction [2], object
recognition [3], or human affordance identification [4]), social scene understanding is subjective as
it depends on the beholder and the particular group of people occupying the scene. For example,
when we first enter a foyer during a party, we quickly look at different people and the groups they
have formed, search for personal friends or acquaintances, and choose a group to join. Consider
instead, an artificial agent, such as a social robot, that enters the same room: how should it interpret
the social dynamics of the environment? The subjectivity of social environments makes the identi-
fication of quantifiable and measurable representations of social scenes difficult. In this paper, we
aim to recover a representation of saliency in social scenes that approaches objectivity through the
consensus of multiple subjective judgements.

Humans transmit visible social signals about what they find important and these signals are powerful
cues for social scene understanding [5]. For instance, humans spontaneously orient their gaze to the
target of their attention. When multiple people simultaneously pay attention to the same point in
three dimensional space, e.g., at an obnoxious customer at a restaurant, their gaze rays' converge to
a point that we refer to as a gaze concurrence. Gaze concurrences are foci of the 3D social saliency
field of a scene. It is an effective approximation because although an individual’s gaze indicates
what he or she is subjectively interested in, a gaze concurrence encodes the consensus of multiple
individuals. In a scene occupied by a larger number of people, multiple such concurrences may
emerge as social cliques form and dissolve. In this paper, we present a method to reconstruct a 3D
social saliency field and localize 3D gaze concurrences from videos taken by head-mounted cameras

'A gaze ray is a three dimensional ray emitted from the center of eyes and oriented to the point of regard as
shown in Figure 1(b).
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Figure 1: (a) In this paper, we present a method to reconstruct 3D gaze concurrences from videos
taken by head-mounted cameras. (b) The primary gaze ray is a fixed 3D ray with respect to the head
coordinate system and the gaze ray can be described by an angle with respect to the primary gaze
ray. (c) The variation of the eye orientation is parameterized by a Gaussian distribution of the points
on the plane, I, which is normal to the primary gaze ray, 1 at unit distance from p. (d) The gaze ray
model results in a cone-shaped distribution of the point of regard.

on multiple people (Figure 1(a)). Our method automatically finds the number and location of gaze
concurrences that may occur as people form social cliques in an environment.

Why head-mounted cameras? Estimating 3D gaze concurrences requires accurate estimates of
the gaze of people who are widely distributed over the social space. For a third person camera,
i.e., an outside camera looking into a scene, state-of-the-art face pose estimation algorithms cannot
produce reliable face orientation and location estimation beyond approximately 45 degrees of a head
facing the camera directly [6]. Furthermore, as they are usually fixed, third person views introduce
spatial biases (i.e., head pose estimates would be better for people closer to and facing the camera)
and limit the operating space. In contrast, head-mounted cameras instrument people rather than the
scene. Therefore, one camera is used to estimate each head pose. As a result, 3D pose estimation of
head-mounted cameras provides accurate and spatially unbiased estimates of the primary gaze ray>.

Head-mounted cameras are poised to broadly enter our social spaces and many collaborative teams
(such as search and rescue teams [8], police squads, military patrols, and surgery teams [9]) are
already required to wear them. Head-mounted camera systems are increasingly becoming smaller,
and will soon be seamlessly integrated into daily life [10].

Contributions The core contribution of this paper is an algorithm to estimate the 3D social saliency
field of a scene and its modes from head-mounted cameras, as shown in Figure 1(a). This is en-
abled by a new model of gaze rays that represents the variation due to eye-in-head motion via a
cone-shaped distribution. We present a novel method to calibrate the parameters of this model by
leveraging the fact that the primary gaze ray is fixed with respect to the head-mounted camera in 3D.
Given the collection of gaze ray distributions in 3D space, we automatically estimate the number
and 3D locations of multiple gaze concurrences via mode-seeking in the social saliency field. We
prove that the sequence of mode-seeking iterations converge. We evaluate our algorithm using mo-
tion capture data quantitatively, and apply it to real world scenes where social interactions frequently
occur, such as meetings, parties, and theatrical performances.

2 Related Work

Humans transmit and respond to many different social signals when they interact with others.
Among these signals, gaze direction is one of the most prominent visible signals because it usu-
ally indicates what the individual is interested in. In this context, gaze direction estimation has been
widely studied in robotics, human-computer interaction, and computer vision [6, 11-22]. Gaze di-
rection can be precisely estimated by the eye orientation. Wang and Sung [11] presented a system
that estimates the direction of the iris circle from a single image using the geometry of the iris.
Guestrin and Eizenman [12] and Hennessey and Lawrence [13] utilized corneal reflections and the
vergence of the eye to infer the eye geometry and its motion, respectively. A head-mounted eye
tracker is often used to determine the eye orientation [14, 15]. Although all these methods can es-
timate highly accurate gaze direction, either they can be used in a laboratory setting or the device
occludes the viewer’s field of view.

>The primary gaze ray is a fixed eye orientation with respect to the head. It has been shown that the
orientation is a unique pose, independent of gravity, head posture, horizon, and the fusion reflex [7].



While the eyes are the primary source of gaze direction, Emery [16] notes that the head orientation
is a strong indication of the direction of attention. For head orientation estimation, there are two
approaches: outside-in and inside-out [23]. An outside-in system takes, as input, a third person
image from a particular vantage point and estimates face orientation based on a face model. Murphy-
Chutorian and Trivedi [6] have summarized this approach. Geometric modeling of the face has been
used to orient the head by Gee and Cipolla [17] and Ballard and Stockman [18]. Rae and Ritter [19]
estimated the head orientation via neural networks and Robertson and Reid [20] presented a method
to estimate face orientation by learning 2D face features from different views in a low resolution
video. With these approaches, a large number of cameras would need to be placed to cover a space
large enough to contain all people. Also, the size of faces in these videos is often small, leading to
biased head pose estimation depending on the distance from the camera. Instead of the outside-in
approach, an inside-out approach estimates head orientation directly from a head-mounted camera
looking out at the environment. Munn and Pelz [22] and Takemura et al. [15] estimated the head-
mounted camera motion in 3D by feature tracking and visual SLAM, respectively. Pirri et al. [24]
presented a gaze calibration procedure based on the eye geometry using 4 head-mounted cameras.
We adopt an inside-out as it does not suffer from space limitations and biased estimation.

Gaze in a group setting has been used to identify social interaction or to measure social behavior.
Stiefelhagen [25] and Smith et al. [26] estimated the point of interest in a meeting scene and a
crowd scene, respectively. Bazzani et al. [27] introduced the 3D representation of the visual field
of view, which enabled them to locate the convergence of views. Cristani et al. [28] adopted the
F-formation concept that enumerates all possible spatial and orientation configurations of people to
define the region of interest. However, these methods rely on data captured from the third person
view point, i.e., outside-in systems and therefore, their capture space is limited and accuracy of head
pose estimation degrades with distance from the camera. Our method is not subject to the same
limitations. For an inside-out approach, Fathi et al. [29] present a method that uses a single first
person camera to recognize discrete interactions within the wearer’s immediate social clique. Their
method is a complementary approach to our method as it analyzes the faces within a single person’s
field of view. In contrast, our approach analyzes an entire environment where several social cliques
may form or dissolve over time.

3 Method

The videos from the head-mounted cameras are collected and reconstructed in 3D via structure from
motion. Each person wears a camera on the head and performs a predefined motion for gaze ray
calibration based on our gaze ray model (Section 3.1). After the calibration (Section 3.2), they may
move freely and interact with other people. From the reconstructed camera poses in conjunction with
the gaze ray model, we estimate multiple gaze concurrences in 3D via mode-seeking (Section 3.3).

Our camera pose registration in 3D is based on structure from motion as described in [2, 30, 31]. We
first scan the area of interest (for example, the room or the auditorium) with a camera to reconstruct
the reference structure. The 3D poses of the head-mounted cameras are recovered relative to the
reference structure using a RANSAC [32] embedded Perspective-n-Point algorithm [33]. When
some camera poses cannot be reconstructed because of lack of features or motion blur, we interpolate
the missing camera poses based on the epipolar constraint between consecutive frames.

3.1 Gaze Ray Model

We represent the direction of the viewer’s gaze as a 3D ray that is emitted from the center of the eyes
and is directed towards the point of regard, as shown in Figure 1(b). The center of the eyes is fixed
with respect to the head position and therefore, the orientation of the gaze ray in the world coordinate
system is a composite of the head orientation and the eye orientation (eye-in-head motion). A head-
mounted camera does not contain sufficient information to estimate the gaze ray because it can
capture only the head position and orientation but not the eye orientation. However, when the motion
of the point of regard is stabilized, i.e., when the point of regard is stationary or slowly moving with
respect to the head pose, the eye orientation varies by a small degree [34-36] from the primary gaze
ray. We represent the variation of the gaze ray with respect to the primary gaze ray by a Gaussian
distribution on a plane normal to the primary gaze ray. The point of regard (and consequently, the
gaze ray) is more likely to be near the primary gaze ray.
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Figure 2: (a) We parameterize our cone, C, with an apex, p, and ratio, &, of the radius, R, to the
height, H. (b) An apex can lie on the orange colored half line, i.e., behind pg. Otherwise some of the
points are invisible. (c) An apex can be parameterized as p = pg — av where a > 0. Equation (2)
allows us to locate the apex accurately.

Let us define the primary gaze ray 1 by the center of the eyes p € R?, and the unit direction vector,
v € R3 in the world coordinate system, W, as shown in Figure 1(b). Any point on the primary gaze
ray can be written as p + v where a > 0.

Let IT be a plane normal to the primary gaze ray 1 at unit distance from p, as shown in Figure 1(c).
The point d in IT can be written as d = d;vi +davy where vi- and v4 are two orthogonal vectors
to v and d; and d» are scalars drawn from a Gaussian distribution, i.e., d1, do ~ N(0, h?). This
point d corresponds to the ray 14 in 3D. Thus, the distribution of the points on the plane maps to the
distribution of the gaze ray by parameterizing the 3D ray as l4(p, vq) = p+avg where vq = v+d
and o > 0. The resulting distribution of 3D points of regard is a cone-shaped distribution whose
central axis is the primary gaze ray, i.e., a point distribution on any normal plane to the primary gaze
ray is a scaled Gaussian centered at the intersection between 1 and the plane as shown in Figure 1(d).

3.2 Gaze Ray Calibration Algorithm

When a person wears a head-mounted camera, it may not be aligned with the direction of the primary
gaze ray. In general, its center may not coincide with the center of the eyes either, as shown in
Figure 1(d). The orientation and position offsets between the head-mounted camera and the primary
gaze ray must be calibrated to estimate where the person is looking.

The relative transform between the primary gaze ray and the camera pose is constant across time
because the camera is, for the most part, stationary with respect to the head, C, as shown in Fig-
ure 1(d). Once the relative transform and camera pose have been estimated, the primary gaze ray
can be recovered. We learn the primary gaze ray parameters, p and v, with respect to the camera
pose and the standard deviation & of eye-in-head motion.

We ask people to form pairs and instruct each pair to look at each other’s camera. While doing so,
they are asked to move back and forth and side to side. Suppose two people A and B form a pair.
If the cameras from A and B are temporally synchronized and reconstructed in 3D simultaneously,
the camera center of B is the point of regard of A. Let y"V (the camera center of B) be the point of
regard of A and R and C be the camera orientation and the camera center of A, respectively. y"”
is represented in the world coordinate system, W. We can transform y"V to A’s camera centered
coordinate system, C, by y = RyW — RC. From {yi}i:L... .n where n is the number of the points
of regard, we can infer the primary gaze ray parameters with respect to the camera pose. If there is
no eye-in-head motion, all {y;};=1.... », will form a line which is the primary gaze ray. Due to the
eye-in-head motion, {y;};=1,... » Will be contained in a cone whose central axis is the direction of
the primary gaze ray, v, and whose apex is the center of eyes, p.

We first estimate the primary gaze line and then, find the center of the eye on the line to completely
describe the primary gaze ray. To estimate the primary gaze line robustly, we embed line estimation
by two points in the RANSAC framework [32]°. This enables us to obtain a 3D line, 1(pa, v) where
P. is the projection of the camera center onto the line and v is the direction vector of the line. The
projections of {y;}i=1,... , onto the line will be distributed on a half line with respect to p,. This
enables us to determine the sign of v. Given this line, we find a 3D cone, C(p, £), that encapsulates

3We estimate a 3D line by randomly selecting two points at each iteration and find the line that produces
the maximum number of inlier points.
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Figure 3: (a) X; is the projection of x onto the primary gaze ray, 1;, and d is a perspective distance
vector defined in Equation (4). (b) Our gaze ray representation results in the cone-shaped distribution
in 3D. (c) Two gaze concurrences are formed by seven gaze rays. High density is observed around
the intersections of rays. Note that the maximum intensity projection is used to visualize the 3D
density field. Our mean-shift algorithm allows any random points to converge to the highest density
point accurately.

all {y;}i=1,.. » where p is the apex and ¢ is the ratio of the radius, R, to height, H, as shown in
Figure 2(a).

The apex can lie on a half line, which originates from the closest point, pg, to the center of the eyes
and orients to —v direction, otherwise some y are invisible. In Figure 2(b), the apex must lie on the
orange half line. py can be obtained as follows:

Po = Pa +min{v' (y1 —pa), -, V' (yn — Pa)}Vv. (1)
Then, the apex can be written as p = pg — av where o > 0, as shown in Figure 2(c).

There are an infinite number of cones which contain all points, e.g., any apex behind all points and
& = oo can be a solution. Among these solutions, we want to find the tightest cone, where the
minimum of £ is achieved. This also leads a degenerate solution where £ = 0 and @ = co. We add
a regularization term to avoid the o = oo solution. The minimization can be written as,

minimize £ + A«
(0%

a; Vie1. ..
subject to  bite <& R A
a>0

2

where a; = H (I—vvh(y; — pO)H and b; = v' (y; — po) (Figure 2(c)), which are all known once
v and py are known. a;/(b; + ) < £ is the constraint that the cone encapsulates all points of regard
{yi}i=1,...n and @ > 0 is the condition that the apex must be behind py. A is a parameter that
controls how far the apex is from pg. Equation (2) is a convex optimization problem (see Appendix
in the supplementary material). Once the cone C(p,¢) is estimated from {y;};=1... », h is the
standard deviation of the distance, h = std{||d(1,y:)|/}i=1,..- n. and will be used in Equation (3)
as the bandwidth for the kernel density function.

3.3 Gaze Concurrence Estimation via Mode-seeking

3D gaze concurrences are formed at the intersections of multiple gaze rays, not at the intersection of
multiple primary gazes (see Figure 1(b)). If we knew the 3D gaze rays, and which of rays shared a
gaze concurrence, the point of intersection could be directly estimated via least squares estimation,
for example. In our setup, neither one of these are known, nor do we know the number of gaze
concurrences. With a head-mounted camera, only the primary gaze ray is computable; the eye-in-
head motion is an unknown quantity. This precludes estimating the 3D gaze concurrence by finding
a point of intersection, directly. In this section, we present a method to estimate the number and the
3D locations of gaze concurrences given primary gaze rays.

Our observations from head-mounted cameras are primary gaze rays. The gaze ray model discussed
in Section 3.1 produces a distribution of points of regard for each primary gaze ray. The superpo-
sition of these distributions yields a 3D social saliency field. We seek modes in this saliency field
via a mean-shift algorithm. The modes correspond to the gaze concurrences. The mean-shift algo-
rithm [37] finds the modes by evaluating the weights between the current mean and observed points.
We derive the closed form of the mean-shift vector directly from the observed primary gaze rays.
While the observations are rays, the estimated modes are points in 3D. This formulation differs from
the classic mean-shift algorithm where the observations and the modes lie in the same space.



For any point in 3D, x € R?, a density function (social saliency field), f, is generated by our gaze
ray model. f is the average of the Gaussian kernel density functions K which evaluate the distance
vector between the point, x, and the primary gaze rays 1; as follows:
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where NN is the number of gaze rays and h; is a bandwidth set to be the standard deviation of eye-in-
head motion obtained from the gaze ray calibration (Sectlon 3.2) for the i*" gaze ray. k is the profile
of the kernel density function, i.e., K(-) = ck(]| - ||*)/h and c is a scaling constant. d € R3 is a
perspective distance vector defined as
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where X; = p; + v/ (x — p;) vi, which is the projection of x onto the primary gaze ray as shown in
Figure 3(a). p; is the center of eyes and v; is the direction vector for the i*? primary gaze ray. Note
that when viT (x — p;) < 0, the point is behind the eyes, and therefore is not visible. This distance
vector directly captures the distance between 1 and 14 in the gaze ray model (Section 3.1) and there-
fore, this kernel density function yields a cone-shaped density field (Figure 1(d) and Figure 3(b)).
Figure 3(c) shows a social saliency field (density field) generated by seven gaze rays. The regions of
high density are the gaze concurrences. Note that the maximum intensity projection of the density
field is used to illustrate a 3D density field.

The updated mean is the location where the maximum density increase can be achieved from the
current mean. Thus, it moves along the gradient direction of the density function evaluated at the
current mean. The gradient of the density function, f(x), is
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and g(z) = —k(x). X; is the location that the gradient at x points to with respect to 1;, as shown
in Figure 3(a). Note that the gradient direction at x is perpendicular to the ray connecting x and p;.
The last term of Equation (5) is the difference between the current mean estimate and the weighted
mean. The new mean location, x?*1, can be achieved by adding the difference to the current mean
estimate, x7:
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Figure 3(c) shows how our mean-shift vector moves random initial points according to the gradient
information. The mean-shift algorithm always converges as shown in the following theorem.

(6)

Theorem 1 The sequence {f(x’)} j=1,2,-.. provided by Equation (6) converges to the local maxi-
mum of the density field.

See Appendix in the supplementary material for proof.

4 Result

We evaluate our algorithm quantitatively using a motion capture system to provide ground truth and
apply it to real world examples where social interactions frequently occur. We use GoPro HD Hero2
cameras (www.gopro.com) and use the head mounting unit provided by GoPro. We synchronize the
cameras using audio signals, e.g., a clap. In the calibration step, we ask people to form pairs, and
move back and forth and side to side at least three times to allow the gaze ray model to be accurately
estimated. For the initial points of the mean-shift algorithm, we sample several points on the primary
gaze rays. This sampling results in convergences of the mean-shift because the local maxima form
around the rays. If the weights of the estimated mode are dominated by only one gaze, we reject the
mode, i.e., more than one gaze rays must contribute to estimate a gaze concurrence.

6



4.1 Validation with Motion Capture Data

We compare the 3D gaze concurrences estimated by our result with ground truth obtained from
a motion capture system (capture volume: 8.3mx17.7mx4.3m). We attached several markers on
a camera and reconstructed the camera motion using structure from motion and the motion cap-
ture system simultaneously. From the reconstructed camera trajectory, we recovered the similarity
transform (scale, orientation, and translation) between two reconstructions. We placed two static
markers and asked six people to move freely while looking at the markers. Therefore, the 3D gaze
concurrences estimated by our algorithm should coincide with the 3D position of the static markers.

The top row in Figure 4(a) shows the trajectories of the gaze concurrences (solid lines) overlaid by
the static marker positions (dotted lines). The mean error is 10.1cm with 5.73cm standard deviation.
The bottom row in Figure 4(a) shows the gaze concurrences (orange and red points) with the ground
truth positions (green and blue points) and the confidence regions (pink region) where a high value
of the saliency field is achieved (region which has higher than 80% of the local maximum value).
The ground truth locations are always inside these regions.

4.2 Real World Scenes

We apply our method to reconstruct 3D gaze concurrences in three real world scenes: a meeting, a
musical, and a party. Figures 4(b), 5(a), and 5(b) show the reconstructed gaze concurrences and the
projections of 3D gaze concurrences onto the head-mounted camera plane (top row). 3D renderings
of the gaze concurrences (red dots) with the associated confidence region (salient region) are drawn
in the middle row and the cone-shaped gaze ray models are also shown. The trajectories of the gaze
concurrences are shown in the bottom row. The transparency of the trajectories encodes the timing.
Meeting scene: There were 11 people forming two groups: 6 for one group and 5 for the other
group as shown in Figure 4(b). The people in each group started to discuss among themselves at
the beginning (2 gaze concurrences). After a few minutes, all the people faced the presenter in the
middle (50th frame: 1 gaze concurrence), and then they went back to their group to discuss again
(445th frame: 2 gaze concurrences) as shown in Figure 4(b).

Musical scene: 7 audience members wore head-mounted cameras and watched the song, “Sum-
mer Nights” from the musical Grease. There were two groups of actors, “the pink ladies (women’s
group)” and “the T-birds (men’s group)” and they sang the song alternatingly as shown in Fig-
ure 5(a). In the figure, we show the reconstruction of two frames when the pink ladies sang (41st
frame) and when the T-birds sang (390th frame).

Party scene: there were 11 people forming 4 groups: 3 sat on couches, 3 talked to each other
at the table, 3 played table tennis, and 2 played pool (178th frame: 4 gaze concurrences) as
shown in Figure 5(b). Then, all moved to watch the table tennis game (710th frame: one gaze
concurrence). Our method correctly evaluates the gaze concurrences at the location where peo-
ple look. All results are best seen in the videos from the following project website (http:
//www.cs.cmu.edu/~hyunsoop/gaze_concurrence.html).

5 Discussion

In this paper, we present a novel representation for social scene understanding in terms of 3D gaze
concurrences. We model individual gazes as a cone-shaped distribution that captures the variation of
the eye-in-head motion. We reconstruct the head-mounted camera poses in 3D using structure from
motion and estimate the relationship between the camera pose and the gaze ray. Our mode-seeking
algorithm finds the multiple time-varying gaze concurrences in 3D. We show that our algorithm can
accurately estimate the gaze concurrences.

When people’s gaze rays are almost parallel, as in the musical scene (Figure 5(a)), the estimated gaze
concurrences become poorly conditioned. The confidence region is stretched along the direction of
the primary gaze rays. This is the case where the point of regard is very far away while people look
at the point from almost the same vantage point. For such a scene, head-mounted cameras from
different points of views can help to localize the gaze concurrences precisely.

Recognizing gaze concurrences is critical to collaborative activity. A future application of this work
will be to use gaze concurrence to allow artificial agents, such as robots, to become collabora-
tive team members that recognize and respond to social cues, rather than passive tools that require
prompting. The ability to objectively measure gaze concurrences in 3D will also enable new investi-
gations into social behavior, such as group dynamics, group hierarchies, and gender interactions, and
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Figure 4: (a) Top: the solid lines (orange and red) are the trajectories of the gaze concurrences
and the dotted lines (green and blue) are the ground truth marker positions. The colored bands are
one standard deviation wide and are centered at the trajectory means. Bottom: there are two gaze
concurrences with six people. (b) We reconstruct the gaze concurrences for the meeting scene. 11
head-mounted cameras were used to capture the scene. Top row: images with the reprojection of
the gaze concurrences, middle row: rendering of the 3D gaze concurrences with cone-shaped gaze
models, bottom row: the trajectories of the gaze concurrences.
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Figure 5: (a) We reconstruct the gaze concurrences from musical audiences. 7 head-mounted cam-
eras were used to capture the scene. (b) We reconstruct the gaze concurrences for the party scene.
11 head-mounted cameras were used to capture the scene. Top row: images with the reprojection of
the gaze concurrences, bottom row: rendering of the 3D gaze concurrences with cone-shaped gaze
models.

research into behavioral disorders, such as autism. We are interested in studying the spatiotemporal
characteristics of the birth and death of gaze concurrences and how they relate to the groups in the
scene.
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