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Abstract

We introduce a new discrepancy score between two distributions that gives an indi-
cation on their similarity. While much research has been done to determine if two
samples come from exactly the same distribution, much less research considered
the problem of determining if two finite samples come from similar distributions.
The new score gives an intuitive interpretation of similarity; it optimally perturbs
the distributions so that they best fit each other. The score is defined between
distributions, and can be efficiently estimated from samples. We provide conver-
gence bounds of the estimated score, and develop hypothesis testing procedures
that test if two data sets come from similar distributions. The statistical power of
this procedures is presented in simulations. We also compare the score’s capacity
to detect similarity with that of other known measures on real data.

1 Introduction

The question of similarity between two sets of examples is common to many fields, including statis-
tics, data mining, machine learning and computer vision. For example, in machine learning, a
standard assumption is that the training and test data are generated from the same distribution. How-
ever, in some scenarios, such as Domain Adaptation (DA), this is not the case and the distributions
are only assumed similar. It is quite intuitive to denote when two inputs are similar in nature, yet the
following question remains open: given two sets of examples, how do we test whether or not they
were generated by similar distributions? The main focus of this work is providing a similarity score
and a corresponding statistical procedure that gives one possible answer to this question.

Discrepancy between distributions has been studied for decades, and a wide variety of distance
scores have been proposed. However, not all proposed scores can be used for testing similarity.
The main difficulty is that most scores have not been designed for statistical testing of similarity
but equality, known as the Two-Sample Problem (TSP). Formally, let P and Q be the generating
distributions of the data; the TSP tests the null hypothesisH0 : P = Q against the general alternative
H1 : P �= Q. This is one of the classical problems in statistics. However, sometimes, like in DA,
the interesting question is with regards to similarity rather than equality. By design, most equality
tests may not be transformed to test similarity; see Section 3 for a review of representative works.

In this work, we quantify similarity using a new score, the Perturbed Variation (PV). We propose
that similarity is related to some predefined value of permitted variations. Consider the gait of two
male subjects as an example. If their physical characteristics are similar, we expect their walk to
be similar, and thus assume the examples representing the two are from similar distributions. This
intuition applies when the distribution of our measurements only endures small changes for people
with similar characteristics. Put more generally, similarity depends on what “small changes” are in
a given application, and implies that similarity is domain specific. The PV, as hinted by its name,
measures the discrepancy between two distributions while allowing for some perturbation of each
distribution; that is, it allows small differences between the distributions. What accounts for small
differences is a parameter of the PV, and may be defined by the user with regard to a specific domain.
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Figure 1: X and O identify samples from two distributions, doted circles denote allowed perturbations.
Samples marked in red are matched with neighbors, while the unmatched samples indicate the PV discrepancy.

Figure 1 illustrates the PV. Note that, like perceptual similarity, the PV turns a blind eye to variations
of some rate.

2 The Perturbed Variation

The PV on continuous distributions is defined as follows:

Definition 1. Let P and Q be two distributions on a Banach space X , and let M(P,Q) be the set
of all joint distributions on X × X with marginals P and Q. The PV, with respect to a distance
function d : X × X → R and �, is defined by

PV(P,Q, �,d) .= inf
µ∈M(P,Q)

Pµ[d(X,Y ) > �], (1)

over all pairs (X,Y ) ∼ µ, such that the marginal of X is P and the marginal of Y is Q.

Put into words, Equation (1) defines the joint distribution µ that couples the two distributions such
that the probability of the event of a pair (X,Y ) ∼ µ being within a distance grater than � is
minimized.

The solution to (1) is a special case of the classical mass transport problem of Monge [1] and its
version by Kantorovich: infµ∈M(P,Q)

�
X×X c(x, y)dµ(x, y),where c : X ×X → R is a measurable

cost function. When c is a metric, the problem describes the 1st Wasserstein metric. Problem (1)
may be rephrased as the optimal mass transport problem with the cost function c(x, y) = 1[d(x,y)>�],
and may be rewritten as infµ

��
1[d(x,y)>�]µ(y|x)dy P (x)dx. The probability µ(y|x) defines the

transportation plan of x to y. The PV optimal transportation plan is obtained by perturbing the mass
of each point x in its � neighborhood so that it redistributes to the distribution of Q. These small
perturbations do not add any cost, while transportation of mass to further areas is equally costly.
Note that when P = Q the PV is zero as the optimal plan is simply the identity mapping. Due to
its cost function, the PV it is not a metric, as it is symmetric but does not comply with the triangle
inequality and may be zero for distributions P �= Q. Despite this limitation, this cost function fully
quantifies the intuition that small variations should not be penalized when similarity is considered.
In this sense, similarity is not unique by definition, as more than one distribution can be similar to a
reference distribution.

The PV is also closely related to the Total Variation distance (TV) that may be written, using a
coupling characterization, as TV (P,Q) = infµ∈M(P,Q) Pµ [X �= Y ] [2]. This formulation argues
that any transportation plan, even to a close neighbor, is costly. Due to this property, the TV is
known to be an overly sensitive measure that overestimates the distance between distributions. For
example, consider two distributions defined by the dirac delta functions δ(a) and δ(a+ �). For any
�, the TV between the two distributions is 1, while they are intuitively similar. The PV resolves this
problem by adding perturbations, and therefore is a natural extension of the TV. Notice, however,
that the � used to compute the PV need not be infinitesimal, and is defined by the user.

The PV can be seen as a conciliatory between the Wasserstein distance and the TV. As explained, it
relaxes the sensitivity of the TV; however, it does not “over optimize” the transportation plan. Specif-
ically, distances larger than the allowed perturbation are discarded. This aspect also contributes to
the efficiency of estimation of the PV from samples; see Section 2.2.
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Figure 2.1: Illustration of the PV score between discrete distributions.

2.1 The Perturbed Variation on Discrete Distributions

It can be shown that for two discrete distributions Problem (1) is equivalent to the following problem.

Definition 2. Let µ1 and µ2 be two discrete distributions on the unified support {a1, ..., aN}. Define
the neighborhood of ai as ng(ai, �) = {z ; d(z, ai) ≤ �}. The PV(µ1, µ2, �,d) between the two
distributions is:

min
wi≥0,vi≥0,Zij≥0

1

2

N�

i=1

wi +
1

2

N�

j=1

vj (2)

s.t.
�

aj∈ng(ai,�)

Zij + wi = µ1(ai), ∀i

�

ai∈ng(aj ,�)

Zij + vj = µ2(aj), ∀j

Zij = 0 , ∀(i, j) �∈ ng(ai, �).

Each row in the matrix Z ∈ RN×N corresponds to a point mass in µ1, and each column to a point
mass in µ2. For each i, Z(i, :) is zero in columns corresponding to non neighboring elements, and
non-zero only for columns j for which transportation between µ2(aj) → µ1(ai) is performed. The
discrepancies between the distributions are depicted by the scalarswi and vi that count the “leftover”
mass in µ1(ai) and µ2(aj). The objective is to minimize these discrepancies, therefore matrix Z
describes the optimal transportation plan constrained to �-perturbations. An example of an optimal
plan is presented in Figure 2.1.

2.2 Estimation of the Perturbed Variation

Typically, we are given samples from which we would like to estimate the PV. Given two sam-
ples S1 = {x1, ..., xn} and S2 = {y1, ..., ym}, generated by distributions P and Q respectively,
�PV(S1, S2, �, d) is:

min
wi≥0,vi≥0,Zij≥0

1

2n

n�

i=1

wi +
1

2m

m�

j=1

vj (3)

s.t.
�

yj∈ng(xi,�)

Zij + wi = 1,
�

xi∈ng(yj ,�)

Zij + vj = 1, ∀i, j

Zij = 0 , ∀(i, j) �∈ ng(xi, �),

where Z ∈ Rn×m. When n = m, the optimization in (3) is identical to (2), as in this case the
samples define a discrete distribution. However, when n �= m Problem (3) also accounts for the
difference in the size of the two samples.

Problem (3) is a linear program with constraints that may be written as a totally unimodular matrix.
It follows that one of the optimal solutions of (3) is integral [3]; that is, the mass of each sample
is transferred as a whole. This solution may be found by solving the optimal assignment on an
appropriate bipartite graph [3]. Let G = (V = (A,B), E) define this graph, with A = {xi, wi ; i =
1, ..., n} and B = {yj , vj ; j = 1, ...,m} as its bipartite partition. The vertices xi ∈ A are linked
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Algorithm 1 Compute �PV(S1, S2, �,d)

Input: S1 = {x1, ..., xn} and S2 = {y1, ..., ym}, � rate, and distance measure d.
1. Define Ĝ = (V̂ = (Â, B̂), Ê): Â = {xi ∈ S1}, B̂ = {yj ∈ S2},

Connect an edge eij ∈ Ê if d(xi, yj) ≤ �.

2. Compute the maximum matching on Ĝ.
3. Define Sw and Sv as number of unmatched edges in sets S1 and S2 respectively.
Output: �PV (S1, S2, �, d) = 1

2 (
Sw

n + Sv

m ).

with edge weight zero to yj ∈ ng(xi) and with weight ∞ to yj �∈ ng(xi). In addition, every vertex
xi (yj) is linked with weight 1 to wi (vj). To make the graph complete, assign zero cost edges
between all vertices xi and wk for k �= i (and vertices yj and vk for k �= j).

We note that the Earth Mover Distance (EMD) [4], a sampled version of the transportation problem,
is also formulated by a linear program that may be solved by optimal assignment. For the EMD and
other typical assignment problems, the computational complexity is more demanding, for example
using the Hungarian algorithm it has anO(N3) complexity, whereN = n+m is the number of ver-
tices [5]. Contrarily, graph G, which describes �PV, is a simple bipartite graph for which maximum
cardinality matching, a much simpler problem, can be applied to find the optimal assignment. To
find the optimal assignment, first solve the maximum matching on the partial graph between vertices
xi, yj that have zero weight edges (corresponding to neighboring vertices). Then, assign vertices xi
and yj for whom a match was not found with wi and vj respectively; see Algorithm 1 and Figure
1 for an illustration of a matching. It is easy to see that the solution obtained solves the assignment
problem associated with �PV.
The complexity of Algorithm 1 amounts to the complexity of the maximal matching step and of
setting up the graph, i.e., additional O(nm) complexity of computing distances between all points.
Let k be the average number of neighbors of a sample, then the average number of edges in the
bipartite graph Ĝ is |Ê| = n × k. The maximal cardinality matching of this graph is obtained in
O(kn

�
(n+m)) steps, in the worst case [5].

3 Related Work

Many scores have been defined for testing discrepancy between distributions. We focus on represen-
tative works for nonparametric tests that are most related to our work. First, we consider statistics for
the Two Sample Problem (TSP), i.e., equality testing, that are based on the asymptotic distribution of
the statistic conditioned on the equality. Among these tests is the well known Kolmogorov-Smirnov
test (for one dimensional distributions), and its generalization to higher dimensions by minimal
spanning trees [6]. A different statistic is defined by the portion of k-nearest neighbors of each sam-
ple that belongs to different distributions; larger portions mean the distributions are closer [7]. These
scores are well known in the statistical literature but cannot be easily changed to test similarity, as
their analysis relies on testing equality.

As discussed earlier, the 1st Wasserstein metric and the TV metric have some relation to the PV. The
EMD and histogram based L1 distance are the sample based estimates of these metrics respectively.
In both cases, the distance is not estimated directly on the samples, but on a higher level partition
of the space: histogram bins or signatures (cluster centers). It is impractical to use the EMD to
estimate the Wasserstein metric between the continuous distributions, as convergence would require
the number of bins to be exponentially dependent on the dimension. As a result, it is commonly
used to rate distances and not for statistical testing. Contrarily, the PV is estimated directly on the
samples and converges to its value between the underlying continuous distributions. We note that
after a good choice of signatures, the EMD captures perceptual similarity, similar to that of the PV. It
is possible to consider the PV as a refinement of the EMD notion of similarity; instead of clustering
the data to signatures and moving the signatures, it perturbs each sample. In this manner, it captures
a finer notion of similarity better suited for statistical testing.
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Figure 2: Two distributions on R: The PV captures the perceptual similarity of (a),(b) against the disimilarity
in (c). The L1

1 = 1 on I1 = {(0, 0.1), (0.1, 0.2), ...} for all cases; on I2 = {(0, 0.2), (0.2, 0.4), ...} it is
L2

1(Pa, Qa) = 0, L2
1(Pb, Qb) = 1, L2

1(Pc, Qc) = 1; and on I3 = {(0, 0.3), (0.3, 0.6), ...} it isL3
1(Pa, Qa) =

0, L3
1(Pb, Qb) = 0, L3

1(Pc, Qc) = 0.

The partition of the support to bins allows some relaxation of the TV notion. Therefore, instead
of the TV, it may be interesting to consider the L1 as a similarity distance on the measures after
discretization. The example in Figure (2) shows that this relaxation is quite rigid and that there is no
single partition that captures the perceptual similarity. In general, the problem would remain even
if bins with varying width were permitted. Namely, the problem is the choice of a single partition
to measure similarity of a reference distribution to multiple distributions, while choosing multiple
partitions would make the distances incomparable. Also note that defining a “good” partition is a
difficult task, which is exasperated in higher dimensions.

The last group of statistics are scores established in machine learning: the dA distance presented by
Kifer et al. that is based on the maximum discrepancy on a chosen subset of the support [8], and
Maximum Mean Discrepancy (MMD) by Gretton et al., which define discrepancy after embeddings
the distributions to a Reproducing Kernel Hilbert Space (RKHS)[9]. These scores have correspond-
ing statistical tests for the TSP; however, since their analysis is based on finite convergence bounds,
in principle they may be modified to test similarity. The dA captures some intuitive notion of simi-
larity, however, to our knowledge, it is not known how to compute it for a general subset class 1. The
MMD captures the distance between the samples in some RKHS. The MMD may be used to define
a similarity test, yet this would require defining two parameters, σ and the similarity rate, whose
dependency is not intuitive. Namely, for any similarity rate the result of the test is highly dependent
on the choice of σ, but it is not clear how it should be made. Contrarily, the PV’s parameter � is
related to the data’s input domain and may be chosen accordingly.

4 Analysis

We present sample rate convergence analysis of the PV. The proofs of the theorems are provided in
the supplementary material. When no clarity is lost, we omit d from the notation. Our main theorem
is stated as follows:
Theorem 3. Suppose we are given two i.i.d. samples S1 = {x1, ..., xn} ∈ Rd and S2 =
{y1, ..., ym} ∈ Rd generated by distributions P and Q, respectively. Let the ground distance be
d = � · �∞ and let N (�) be the cardinality of a disjoint cover of the distributions’ support. Then,

for any δ ∈ (0, 1), N = min(n,m), and η =

�
2(log(2(2N(�)−2))+log(1/δ))

N we have that

P
�����PV (S1, S2, �)− PV (P,Q, �)

��� ≤ η
�
≥ 1− δ.

The theorem is defined using � · �∞, but can be rewritten for other metrics (with a slight change of
constants). The proof of the theorem exploits the form of the optimization Problem 3. We use the
bound of Theorem 3 construct hypothesis tests. A weakness of this bound is its strong dependency
on the dimension. Specifically, it is dependent onN (�), which for �·�∞ isO((1/�)d): the number of
disjoint boxes of volume �d that cover the support. Unfortunately, this convergence rate is inherent;
namely, without making any further assumptions on the distribution, this rate is unavoidable and is
an instance of the “curse of dimensionality”. In the following theorem, we present a lower bound on
the convergence rate.

1Most work with the dA has been with the subset of characteristic functions, and approximated by the error
of a classifier.
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Theorem 4. Let P = Q be the uniform distribution on Sd−1, a unit (d − 1)–dimensional hyper-
sphere. Let S1 = {x1, ..., xN} ∼ P and S2 = {y1, ..., yN} ∼ Q be two i.i.d. samples. For

any �, ��, δ ∈ (0, 1), 0 ≤ η < 2/3 and sample size log(1/δ)
2(1−3η/2)2 ≤ N ≤ η

2 e
d(1− �2

2 )/2, we have
PV (P,Q, ��) = 0 and

P(�PV (S1, S2, �) > η) ≥ 1− δ. (4)

For example, for δ = 0.01, η = 0.5, for any 37 ≤ N ≤ 0.25ed(1−
�2

2 )/2 we have that �PV > 0.5 with
probability at least 0.99. The theorem shows that, for this choice of distributions, for a sample size
that is smaller than O(ed), there is a high probability that the value of �PV is far form PV.

It can be observed that the empirical estimate �PV is stable, that is, it is almost identical for two
data sets differing on one sample. Due to its stability, applying McDiarmid inequality yields the
following.
Theorem 5. Let S1 = {x1, ..., xn} ∼ P and S2 = {y1, ..., ym} ∼ Q be two i.i.d. samples. Let
n ≥ m, then for any η > 0

P
�
|�PV (S1, S2, �)− E[�PV (n,m, �)]| ≥ η

�
≤ e−η2m2/4n,

where E[�PV (n,m, �)] is the expectation of �PV for a given sample size.

This theorem shows that the sample estimate of the PV converges to its expectation without depen-
dence on the dimension. By combining this result with Theorem 3 it may be deduced that only the
convergence of the bias – the difference |E[�PV(n,m, �)]−PV(P,Q, �)| – may be exponential in the
dimension. This convergence is distribution dependent. However, intuitively, slow convergence is
not always the case, for example when the support of the distributions lies in a lower dimensional
manifold of the space. To remedy this dependency we propose a bootstrapping bias correcting tech-
nique, presented in Section 5. A different possibility is to project the data to one dimension; due
to space limitations, this extension of the PV is left out of the scope of this paper and presented in
Appendix A.2 in the supplementary material.

5 Statistical Inference

We construct two types of complementary procedures for hypothesis testing of similarity and dis-
similarity2. In the first type of procedures, given 0 ≤ θ < 1, we distinguish between the null
hypothesis H(1)

0 : PV(P,Q, �,d) ≤ θ, which implies similarity, and the alternative hypothesis
H(1)

1 : PV(P,Q, �,d) > θ. Notice that when θ = 0, this test is a relaxed version of the TSP. Using
PV(P,Q) = 0 instead of P = Q as the null, allows for some distinction between the distributions,
which gives the needed relaxation to capture similarity. In the second type of procedures, we test
whether two distributions are similar. To do so, we flip the role of the null and the alternative. Note
that there isn’t an equivalent of this form for the TSP, therefore we can not infer similarity using
the TSP test, but only reject equality. Our hypothesis tests are based on the finite sample analysis
presented in Section 4; see Appendix A.1 in the supplementary material for the procedures.

To provide further inference on the PV, we apply bootstrapping for approximations of Confidence
Intervals (CI). The idea of bootstrapping for estimating CIs is based on a two step procedure: ap-
proximation of the sampling distribution of the statistic by resampling with replacement from the
initial sample – the bootstrap stage – following, a computation of the CI based on the resulting dis-
tribution. We propose to estimate the CI by Bootstrap Bias-Corrected accelerated (BCa) interval,
which adjusts the simple percentile method to correct for bias and skewness [10]. The BCa is known
for its high accuracy; particularly, it can be shown, that the BCa interval converges to the theoretical
CI with rate O(N−1), where N is the sample size. Using the CI, a hypothesis test may be formed:
the nullH(1)

0 is rejected with significance α if the range [0, θ] �⊂ [CI,CI]. Also, for the second test,
we apply the principle of CI inclusion [11], which states that if [CI,CI] ⊂ [0, θ], dissimilarity is
rejected and similarity deduced.

2The two procedures are distinct, as, in general, lacking evidence to reject similarity is not sufficient to infer
dissimilarity, and vice versa.
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(c) Precision-Recall: Video clips.

6 Experiments

6.1 Synthetic Simulations

In our first experiment, we examine the effect of the choice of � on the statistical power of the test.
For this purpose, we apply significance testing for similarity on two univariate uniform distributions:
P ∼ U [0, 1] and Q ∼ U [Δ(�), 1 + Δ(�)], where Δ(�) is a varying size of perturbation. We
considered values of � = [0.1, 0.2, 0.3, 0.4, 0.5] and sample sizes up to 5000 samples from each
distribution. For each value ��, we test the null hypothesis H(1)

0 : PV (P,Q, ��) = 0 for ten equally
spaced values of Δ(��) in the range [0, 2��]. In this manner, we test the ability of the PV to detect
similarity for different sizes of perturbations. The percentage of times the null hypothesis was falsely
rejected, i.e. the type-1 error, was kept at a significance level α = 0.05. The percentage of times
the null hypothesis was correctly rejected, the power of the test, was estimated as a function of the
sample size and averaged over 500 repetitions. We repeated the simulation using the tests based on
the bounds as well as using BCa confidence intervals.

The results in Figure (3(a)) show the type-2 error of the bound based simulations. As expected,
the power of the test increases as the sample size grows. Also, when finer perturbations need to be
detected, more samples are needed to gain statistical power. For the BCa CI we obtained type-1
and type-2 errors smaller than 0.05 for all the sample sizes. This shows that the convergence of the
estimated PV to its value is clearly faster than the bounds. Note that, given a sufficient sample size,
any statistic for the TSP would have rejected similarity for any Δ > 0.

6.2 Comparing Distance Measures

Next, we test the ability of the PV to measure similarity on real data. To this end, we test the ranking
performance of the PV score against other known distributional distances. We compare the PV to
the multivariate extension of the Wald-Wolfowitz score of Friedman & Rafsky (FR) [6] , Schilling’s
nearest neighbors score (KNN) [7], and the MaximumMean Discrepancy score of Gretton et al. [9]
(MMD)3. We rank similarity for the applications of video retrieval and gait recognition.

The ranking performance of the methods was measured by precision-recall curves, and the Mean
Average Precision (MAP). Let r be the number of samples similar to a query sample. For each
1 ≤ i ≤ r of these observations, define ri ∈ [1, T − 1] as its similarity rank, where T is the total
number of observations. The Average Precision is: AP = 1/r

�
i i/ri, and the MAP is the average

of the AP over the queries. The tuning parameter for the methods – k for the KNN, σ for the MMD
(with RBF kernel), and � for the PV – were chosen by cross-validation. The Euclidian distance was
used in all methods.

In our first experiment, we tested raking for video-clip retrieval. The data we used was collected
and generated by [12], and includes 1,083 videos of commercials, each of about 1,500 frames (25
fps). Twenty unique videos were selected as query videos, each of which has one similar clip in

3Note that the statistical tests of these measures test equality while the PV tests similarity and therefore our
experiments are not of statistical power but of ranking similarity. Even in the case of the distances that may be
transformed for similarity, like the MMD, there is no known function between the PV similarity to other forms
of similarity. As a result, there is no basis on which to compare which similarity test has better performance.
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Table 1: MAP for Auslan, Video, and Gait data sets. Average MAP (± standard deviation) computed on a
random selection of 75% of the queries, repeated 100 times.

DATA SET �PV KNN MMD FR
VIDEO 0.758 ±0.009 0.741 ±0.014 0.689± 0.008 0.563± 0.019
GAIT 0.792±0.021 0.736± 0.014 0.722± 0.017 0.698± 0.017
GAIT-F 0.844±0.017 0.750± 0.015 0.729± 0.017 0.666± 0.016
GAIT-M 0.679± 0.024 0.712± 0.017 0.716± 0.031 0.799 ±0.016

the collection, to which 8 more similar clips were generated by different transformations: bright-
ness increased/decreased, saturation increased/decreased, borders cropped, logo inserted, randomly
dropped frames, and added noise frames. Lastly, each frame of a video was transformed to a 32-
RGB representation. We computed the similarity rate for each query video to all videos in the set,
and ranked the position of each video. The results show that the PV and the KNN score are invariant
to most of the transformations, and outperform the FR and MMDmethods (Table 1 and Figure 3(c)).
We found that brightness changes were most problematic for the PV. For this type of distortion, the
simple RGB representation is not sufficient to capture the similarity.

We also tested gait similarity of female and male subjects; same gender samples are assumed similar.
We used gait data that was recorded by a mobile phone, available at [13]. The data consists of two
sets of 15min walks of 20 individuals, 10 women and 10 men. As features we used the magnitude
of the triaxial accelerometer.We cut the raw data to intervals of approximately 0.5secs, without
identification of gait cycles. In this manner, each walk is represented by a collection of about 1500
intervals. An initial scaling to [0,1] was performed once for the whole set. The comparison was
done by ranking by gender the 39 samples with respect to a reference walk.

The precision-recall curves in Figure 3(b) show that the PV is able to retrieve with higher precision
in the mid-recall range. For the early recall points the PV did not show optimal performance; Inter-
estingly, we found that with a smaller �, the PV had better performance on early recall points. This
behavior reflects the flexibility of the PV: smaller � should be chosen when the goal is to find very
similar instances, and larger when the goal is to find higher level similarity. The MAP results pre-
sented in Table 1 show that the PV had better performance on the female subjects. From examination
of the subject information sheet we found that the range of weight and hight within the female group
is 50-77Kg and 1.6-1.8m, while within the male group it is 47-100Kg and 1.65-1.93m; that is, there
is much more variability in the male group. This information provides a reasonable explanation to
the PV results, as it appears that a subject from the male group may have a gait that is as dissimilar
to the gait of a female subject as it is to a different male. In the female group the subjects are more
similar and therefore the precision is higher.

7 Discussion

We proposed a new score that measures the similarity between two multivariate distributions, and
assigns to it a value in the range [0,1]. The sensitivity of the score, reflected by the parameter �,
allows for flexibility that is essential for quantifying the notion of similarity. The PV is efficiently
estimated from samples. Its low computational complexity relies on its simple binary classification
of points as neighbors or non-neighbor points, such that optimization of distances of faraway points
is not needed. In this manner, the PV captures only the essential information to describe similarity.
Although it is not a metric, our experiments show that it captures the distance between similar distri-
butions as well as well known distributional distances. Our work also includes convergence analysis
of the PV. Based on this analysis we provide hypothesis tests that give statistical significance to the
resulting score. While our bounds are dependent on the dimension, when the intrinsic dimension of
the data is smaller than the domains dimension, statistical power can be gained by bootstrapping.
In addition, the PV has an intuitive interpretation that makes it an attractive score for a meaningful
statistical testing of similarity. Lastly, an added value of the PV is that its computation also gives
insight to the areas of discrepancy; namely, the areas of the unmatched samples. In future work we
plan to further explore this information, which may be valuable on its own merits.
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