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Abstract

Recent spiking network models of Bayesian inference and unsupervised learning
frequently assume either inputs to arrive in a special format or employ complex
computations in neuronal activation functions and synaptic plasticity rules. Here
we show in a rigorous mathematical treatment how homeostatic processes, which
have previously received little attention in this context, can overcome common
theoretical limitations and facilitate the neural implementation and performance of
existing models. In particular, we show that homeostatic plasticity can be under-
stood as the enforcement of a *balancing’ posterior constraint during probabilis-
tic inference and learning with Expectation Maximization. We link homeostatic
dynamics to the theory of variational inference, and show that nontrivial terms,
which typically appear during probabilistic inference in a large class of models,
drop out. We demonstrate the feasibility of our approach in a spiking Winner-
Take-All architecture of Bayesian inference and learning. Finally, we sketch how
the mathematical framework can be extended to richer recurrent network archi-
tectures. Altogether, our theory provides a novel perspective on the interplay of
homeostatic processes and synaptic plasticity in cortical microcircuits, and points
to an essential role of homeostasis during inference and learning in spiking net-
works.

1 Introduction

Experimental findings from neuro- and cognitive sciences have led to the hypothesis that humans
create and maintain an internal model of their environment in neuronal circuitry of the brain during
learning and development [1, 2, 3, 4], and employ this model for Bayesian inference in everyday
cognition [5, 6]. Yet, how these computations are carried out in the brain remains largely unknown.
A number of innovative models has been proposed recently which demonstrate that in principle,
spiking networks can carry out quite complex probabilistic inference tasks [7, 8, 9, 10], and even
learn to adapt to their inputs near optimally through various forms of plasticity [11, 12, 13, 14, 15].
Still, in network models for concurrent online inference and learning, most approaches introduce
distinct assumptions: Both [12] in a spiking Winner-take-all (WTA) network, and [15] in a rate based
WTA network, identified the limitation that inputs must be normalized before being presented to the
network, in order to circumvent an otherwise nontrivial (and arguably non-local) dependency of the
intrinsic excitability on all afferent synapses of a neuron. Nessler et al. [12] relied on population
coded input spike trains; Keck et al. [15] proposed feed-forward inhibition as a possible neural
mechanism to achieve this normalization. A theoretically related issue has been encountered by
Deneve [7, 11], in which inference and learning is realized in a two-state Hidden Markov Model by
a single spiking neuron. Although synaptic learning rules are found to be locally computable, the
learning update for intrinsic excitabilities remains intricate. In a different approach, Brea et al. [13]
have recently proposed a promising model for Bayes optimal sequence learning in spiking networks

*These authors contributed equally to this work.



in which a global reward signal, which is computed from the network state and synaptic weights,
modulates otherwise purely local learning rules. Also the recent innovative model for variational
learning in recurrent spiking networks by Rezende et al. [14] relies on sophisticated updates of
variational parameters that complement otherwise local learning rules.

There exists great interest in developing Bayesian spiking models which require minimal non-
standard neural mechanisms or additional assumptions on the input distribution: such models are
expected to foster the analysis of biological circuits from a Bayesian perspective [16], and to pro-
vide a versatile computational framework for novel neuromorphic hardware [17]. With these goals
in mind, we introduce here a novel theoretical perspective on homeostatic plasticity in Bayesian
spiking networks that complements previous approaches by constraining statistical properties of the
network response rather than the input distribution. In particular we introduce 'balancing’ posterior
constraints which can be implemented in a purely local manner by the spiking network through a
simple rule that is strongly reminiscent of homeostatic intrinsic plasticity in cortex [18, 19]. Im-
portantly, it turns out that the emerging network dynamics eliminate a particular class of nontrivial
computations that frequently arise in Bayesian spiking networks.

First we develop the mathematical framework for Expectation Maximization (EM) with homeostatic
posterior constraints in an instructive Winner-Take-all network model of probabilistic inference and
unsupervised learning. Building upon the theoretical results of [20], we establish a rigorous link
between homeostatic intrinsic plasticity and variational inference. In a second step, we sketch how
the framework can be extended to recurrent spiking networks; by introducing posterior constraints
on the correlation structure, we recover local plasticity rules for recurrent synaptic weights.

2 Homeostatic plasticity in WTA circuits as EM with posterior constraints

We first introduce, as an illustrative and representative example, a generative mixture model
p(z,y|V') with hidden causes z and binary observed variables y, and a spiking WTA network A/
which receives inputs y(t) via synaptic weights V. As shown in [12], such a network A/ can
implement probabilistic inference p(z|y, V') through its spiking dynamics, and maximum likeli-
hood learning through local synaptic learning rules (see Figure 1A). The mixture model comprises
K binary and mutually exclusive components z; € {0,1}, Zle zr = 1, each specialized on a
different N-dimensional input pattern:
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where o(x) = (1 + exp(—x))~! denotes the logistic function, and 7y; the expected activation of
input ¢ under the mixture component k. For simplicity and notational convenience, we will treat the
prior parameters by, as constants throughout the paper. Probabilistic inference of hidden causes zj
based on an observed input ¢ can be implemented by a spiking WTA network A of K neurons
which fire with the instantaneous spiking probability (for §t — 0),

ek (t)

Zj el (t)

with the input potential uy(t) = >, Viyi(t) — Ax + bi. Bach WTA neuron k receives spik-
ing inputs y; via synaptic weights Vj; and responds with an instantaneous spiking probability
which depends exponentially on its input potential u;, in accordance with biological findings [21].
Stochastic winner-take-all (soft-max) competition between the neurons is modeled via divisive
normalization (4) [22]. The input is defined as y;(¢) = 1 if input neuron 4 emitted a spike within the
last 7 milliseconds, and 0 otherwise, corresponding to a rectangular post-synaptic potential (PSP) of
length 7. We define 2, (t) = 1 at spike times ¢ of neuron k and zj(¢) = 0 otherwise.

p(zk spikes in [t,t + §t]) = 0t - Ty - x p(zr =1y, V) 4
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Figure 1: A. Spiking WTA network model. B. Input templates from MNIST database (digits 0-5)
are presented in random order to the network as spike trains (the input template switches after every
250ms, black/white pixels are translated to high/low firing rates between 20 and 90 Hz). C. Sketch
of intrinsic homeostatic plasticity maintaining a certain target average activation. D. Homeostatic
plasticity induces average firing rates (blue) close to target values (red). E. After a learning period,
each WTA neuron has specialized on a particular input motif. F. WTA output spikes during a test
phase before and after learning. Learning leads to a sparse output code.

In addition to the spiking input, each neuron’s potential uj, features an intrinsic excitability — Ay, +bg.

Note that, besides the prior constant by, this excitability depends on the normalizing term Ay, and
hence on all afferent synaptic weights through (3): WTA neurons which encode strong patterns
with high probabilities 7j; require lower intrinsic excitabilities, while neurons with weak patterns
require larger excitabilities. In the presence of synaptic plasticity, i.e., time-varying Vi, it is unclear
how biologically realistic neurons could communicate ongoing changes in synaptic weights from
distal synaptic sites to the soma. This critical issue was apparently identified in [12] and [15]; both
papers circumvent the problem (in similar probabilistic models) by constraining the input y (and
also the synaptic weights in [15]) in order to maintain constant and uniform values Aj across all
WTA neurons.

Here, we propose a different approach to cope with the nontrivial computations Ay, during inference
and learning in the network. Instead of assuming that the inputs y meet a normalization constraint,
we constrain the network response during inference, by applying homeostatic dynamics to the intrin-
sic excitabilities. This approach turns out to be beneficial in the presence of time-varying synaptic
weights, i.e., during ongoing changes of V};; and Ay,. The resulting interplay of intrinsic and synaptic
plasticity can be best understood from the standard EM lower bound [23],

F(V,q(zly)) = L(V)) = (KL (q(z|y) [| p(2|y, V) ) p- (4 — E-step ,  (5)
= <1ng(yv Z|V) >p* (y)a(zly) + <H(Q(z‘y)) >p* (y) — M-step , (6)

where L(V') = (log p(y|V)) = () denotes the log-likelihood of the input under the model, KL (- || -)
the Kullback-Leibler divergence, and H (-) the entropy. The decomposition holds for arbitrary dis-
tributions ¢. In hitherto proposed neural implementations of EM [11, 12, 15, 24], the network
implements the current posterior distribution in the E-step, i.e., ¢ = p and KL (¢||p) = 0. In
contrast, by applying homeostatic plasticity, the network response will be constrained to implement
a variational posterior from a class of “homeostatic” distributions Q: the long-term average acti-
vation of each WTA neuron zj, is constrained to an a priori defined target value. Notably, we will
see that the resulting network response ¢* describes an optimal variational E-Step in the sense that
¢*(zly) = argmingeo KL (¢(z]y) || p(z]y, V)). Importantly, homeostatic plasticity fully regu-
lates the intrinsic excitabilities, and as a side effect eliminates the non-local terms Ay, in the E-step,



while synaptic plasticity of the weights V}; optimizes the underlying probabilistic model p(y, z| V)
in the M-step.

In summary, the network response implements ¢* as the variational E-step, the M-Step can be per-
formed via gradient ascent on (6) with respect to Vj;. As derived in section 2.1, this gives rise to
the following temporal dynamics and plasticity rules in the spiking network, which instantiate a
stochastic version of the variational EM scheme:

up(t) = Z Vieiys (t) + i bi(t) = 1 - (rnec - Mg — 321 (t) — 1)) @)
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where 40(-) denotes the Dirac delta function, and 7, 1y are learning rates (which were kept time-
invariant in the simulations with 1, = 10 - ny,). Note that (8) is a spike-timing dependent plasticity
rule (cf. [12]) and is non-zero only at post-synaptic spike times ¢, for which z(¢) = 1. The effect of
the homeostatic intrinsic plasticity rule (7) is illustrated in Figure 1C: it aims to keep the long-term
average activation of each WTA neuron k close to a certain target value my. More precisely, if ry is
a neuron’s long-term average firing rate, then homeostatic plasticity will ensure that ry /rpe &= my.
The target activations m;, € (0, 1) can be chosen freely with the obvious constraint that ) _, mj, = 1.
Note that (7) is strongly reminiscent of homeostatic intrinsic plasticity in cortex [18, 19].

We have implemented these dynamics in a computer simulation of a WTA spiking network N
Inputs y(t) were defined by translating handwritten digits 0-5 (Figure 1B) from the MNIST
dataset [25] into input spike trains. Figure 1D shows that, at the end of a 10*s learning period,
homeostatic plasticity has indeed achieved that r; =~ 1y - my. Figure 1E illustrates the patterns
learned by each WTA neuron after this period (shown are the 7g;). Apparently, the WTA neu-
rons have specialized on patterns of different intensity which correspond to different values of Ay.
Figure 1F shows the output spiking behavior of the circuit before and after learning in response to a
set of test patterns. The specialization to different patterns has led to a distinct sparse output code,
in which any particular test pattern evokes output spikes from only one or two WTA neurons. Note
that homeostasis forces all WTA neurons to participate in the competition, and thus prevents neurons
from becoming underactive if their synaptic weights decrease, and from becoming overactive if their
synaptic weights increase, much like the original A terms (which are nontrivial to compute for the
network). Indeed, the learned synaptic parameters and the resulting output behavior corresponds to
what would be expected from an optimal learning algorithm for the mixture model (1)-(3).!

2.1 Theory for the WTA model
In the following, we develop the three theoretical key results for the WTA model (1)-(3):
e Homeostatic intrinsic plasticity finds the network response distribution ¢*(z|y) € Q clos-

est to the posterior distribution p(z|y, V'), from a set of “homeostatic” distributions Q.

e The interplay of homeostatic and synaptic plasticity can be understood from the perspective
of variational EM.

e The critical non-local terms Ay, defined by (3) drop out of the network dynamics.

E-step: variational inference with homeostasis

The variational distribution ¢(z|y) we consider for the model (1)-(3) is a 2%V - K’ dimensional object.
Since g describes a conditional probability distribution, it is non-negative and normalized for all y.
In addition, we constrain ¢ to be a “homeostatic” distribution ¢ € Q such that the average activation
of each hidden variable (neuron) z; equals an a-priori specified mean activation my, under the input
statistics p*(y). This is sketched in Figure 2. Formally we define the constraint set,

Q= {q : <Zk?>p*(y)q(z"y) =my, forallk=1... K} s with ka =1. 9
k

"Without adaptation of intrinsic excitabilities, the network would start performing erroneous inference,
learning would reinforce this erroneous behavior, and performance would quickly break down. We have verified
this in simulations for the present WTA model: Consistently across trials, a small subset of WTA neurons
became dominantly active while most neurons remained silent.
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Figure 2: A. Homeostatic posterior constraints in the WTA model: Under the variational distri-
bution g, the average activation of each variable z; must equal m. B. For each set of synaptic
weights V there exists a unique assignment of intrinsic excitabilities b, such that the constraints are
fulfilled. C. Theoretical decomposition of the intrinsic excitability by, into — Ay, ?)k and Gy. D. Dur-
ing variational EM the by predominantly “track” the dynamically changing non-local terms — Ay
(relative comparison between two WTA neurons from Figure 1).

The constrained maximization problem ¢*(z|y) = argmax,co F(V, ¢(z|y)) can be solved with
the help of Lagrange multipliers (cf. [20]). We find that the ¢* which maximizes the objective
function F' during the E-step (and thus minimizes the KL-divergence to the posterior p(z|y, V'))
has the convenient form ¢*(z|y) o p(z|y, V') - exp(>_,. G5 2x) with some 3;;. Hence, it suffices to
consider distributions of the form,

qp(z|y) exp(; Zk(; Viiti + b — A + Br)) (10)
:2bk

for the maximization problem. We identify [y as the variational parameters which remain to be
optimized. Note that any distribution of this form can be implemented by the spiking network N
if the intrinsic excitabilities are set to by, = —A, + l;k + Bk. The optimal variational distribution
¢*(z|ly) = gp-(z|y) then has B8 = argmaxg ¥(3), i.e. the variational parameter vector which
maximizes the dual [20],

= Bumi, —{log Y p(zly, V) exp(d_ Buzk))p(v) - (10
k z k

Due to concavity of the dual, a unique global maximizer 3* exists, and thus also the corresponding
optimal intrinsic excitabilities b = — Ay, +b+ B, are unique. Hence, the posterior constraint g € Q
can be illustrated as in Figure 2B: For each synaptic weight configuration V' there exists, under
a particular input distribution p*(y), a unique configuration of intrinsic excitabilities b such that
the resulting network output fulfills the homeostatic constraints. The theoretical relation between
the intrinsic excitabilities by, the original nontrivial term — Ay and the variational parameters (3
is sketched in Figure 2C. Importantly, while by is implemented in the network, Ay, Or and Bk
are not explicitly represented in the implementation anymore. Finding the optimal b in the dual
perspective, i.e. those intrinsic excitabilities which fulfill the homeostatic constraints, amounts to
gradient ascent 3 ¥ (3) on the dual, which leads to the following homeostatic learning rule for the
intrinsic excitabilities,

Aby o< 05, ¥(B) = my — <Zk>p*(y)q(2\y) : a2

Note that the intrinsic homeostatic plasticity rule (7) in the network corresponds to a sample-based
stochastic version of this theoretically derived adaptation mechanism (12). Hence, given enough
time, homeostatic plasticity will automatically install near-optimal intrinsic excitabilities b ~ b* and
implement the correct variational distribution ¢* up to stochastic fluctuations in b due to the non-
zero learning rate 7,. The non-local terms Ay have entirely dropped out of the network dynamics,
since the intrinsic excitabilities by can be arbitrarily initialized, and are then fully regulated by the
local homeostatic rule, which does not require knowledge of Ay.

As a side remark, note that although the variational parameters (3; are not explicitly present
in the implementation, they can be theoretically recovered from the network at any point, via
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Figure 3: A. Input templates from MNIST dataset (digits 0,3 at a ratio 2:1, and digits 0,3,4 at a ratio
1:1:1) used during the first and second learning period, respectively. B. Learned patterns at the end
of each learning period. C. Network performance converges in the course of learning. F' is a tight
lower bound to L. D. Illustration of pattern learning and re-learning dynamics in a 2-D projection in
the input space. Each black dot corresponds to the pattern 7j; of one WTA neuron k. Colored dots
are input samples from the training set (blue/green/red < digits 0/3/4).

Bk = bx, + Ay — bi. Notably, in all our simulations we have consistently found small absolute val-
ues of 3, corresponding to a small KL-divergence between ¢* and p.> Hence, a major effect of the
local homeostatic plasticity rule during learning is to dynamically track and effectively implement
the non-local terms —Ay. This is shown in Figure 2D, in which the relative excitabilities of two
WTA neurons b, — b; are plotted against the corresponding non-local A;, — A; over the course of
learning in the first simulation (Figure 1).

M-step: interplay of synaptic and homeostatic intrinsic plasticity

During the M-step, we aim to increase the EM lower bound F' in (6) w.r.t. the synaptic parameters V.
Gradient ascent yields,

v, F(V,q(2]y)) = (0w, 1og (Y, 2IV))p (w)a(2lw) (13)
= (2 - (Y5 — (V&) )p* (w)a(zly) (14)

where ¢ is the variational distribution determined during the E-step, i.e., we can set ¢ = ¢*. Note the
formal correspondence of (14) with the network synaptic learning rule (8). Indeed, if the network
activity implements ¢*, it can be shown easily that the expected update of synaptic weights due to
the synaptic plasticity (8) is proportional to (14), and hence implements a stochastic version of the
theoretical M-step (cf. [12]).

2.2 Dynamical properties of the Bayesian spiking network with homeostasis

To highlight a number of salient dynamical properties emerging from homeostatic plasticity in the
considered WTA model, Figure 3 shows a simulation of the same network A/ with homeostatic
dynamics as in Figure 1, only with different input statistics presented to the network, and uniform
my = % During the first 5000s, different writings of 0’s and 3’s from the MNIST dataset were
presented, with 0’s occurring twice as often as 3’s. Then the input distribution p*(y) abruptly
switched to include also 4’s, with each digit occurring equally often. The following observations
can be made: Due to the homeostatic constraint, each neuron responds on average to my, - 1" out of T'
presented inputs. As a consequence, the number of neurons which specialize on a particular digit is

2This is assuming for simplicity uniform prior parameters by. Note that a small KL-divergence is in fact
often observed during variational EM since F', which contains the negative KL-divergence, is being maximized.



directly proportional to the frequency of occurrence of that digit, i.e. 8:4 and 4:4:4 after the first and
second learning period, respectively (Figure 3B). In general, if uniform target activations my, are
chosen, output resources are allocated precisely in proportion to input frequency. Figure 3C depicts
the time course of the EM lower bound F' as well as the average likelihood L (assuming uniform br)
under the model during a single simulation run, demonstrating both convergence and tightness of
the lower bound. As expected due to the stabilizing dynamics of homeostasis, we found variability
in performance among different trials to be small (not shown). Figure 3D illustrates the dynamics
of learning and re-learning of patterns 7y; in a 2D projection of input patterns onto the first two
principal components.

3 Homeostatic plasticity in recurrent spiking networks

The neural model so far was essentially a feed-forward network, in which every postsynaptic spike
can directly be interpreted as one sample of the instantaneous posterior distribution [12]. The lateral
inhibition served only to ensure the normalization of the posterior. We will now extend the concept
of homeostatic processes as posterior constraints to the broader class of recurrent networks and
sketch the utility of the developed framework beyond the regulation of intrinsic excitabilities.

Recently it was shown in [9, 10] that recurrent networks of stochastically spiking neurons can in
principle carry out probabilistic inference through a sampling process. At every point in time, the
joint network state z(t) represents one sample of a posterior. However, [9] and [10] did not consider
unsupervised learning on spiking input streams.

For the following considerations, we divide the definition of the probabilistic model in two parts.
First, we define a Boltzmann distribution,

p(z) = exp Zbkzk—k Zijzkz])/norm , (15)
J;ﬁk

with ij = ij as “prior” for the hidden variables z which will be represented by a recurrently

connected network of K spiking neurons. For the purpose of this section, we treat by and ij as
constants. Secondly, we define a conditional distribution in the exponential-family form [23],

p(ylz, V) = exp(fo(y +kazz;€f1 A(z,V)) (16)

that specifies the likelihood of observable inputs y, given a certain network state z. This defines the
generative model p(y, z|V') = p(z) p(y|z, V).

We map this probabilistic model to the spiking network and define that for every & and every point
in time ¢ the variable zj(¢) has the value 1, if the corresponding neuron has fired within the time
window (¢ — 7, ¢]. In accordance with the neural sampling theory, in order for a spiking network to
sample from the correct posterior p(z|y, V') « p(z) p(y|z, V') given the input y, each neuron must
compute in its membrane potential the log-odd [9],

p 2k = 1 z Ll 7 ol
uy, = log ( 2\, V Zmez Ae(V) + b+ (= Ak (V) + Wiy) 2z —

p(zk = 02\, V oyt
N —  intr. excitability 7 recurrent weight
feedforward drive
a7
where 2\, = (21, 2k—1, 2k 415 - - - 2k )7. The Ay, Ag;, ... are given by the decomposition of
A(z, V) along the binary combinations of z as,
A(Z V +ZZkAk ZZijAk‘j(V) + ... (18)

J#k

Note, that we do not aim at this point to give learning rules for the prior parameters by, and W), ;. In-
stead we proceed as in the last section and specify a-priori desired properties of the average network
response under the input distribution p*(y),

ki = (2625) p (y)a(zly) and  my = (2k)p(y)a(zly) - (19)



Let us explore some illustrative configurations for my, and c;;. One obvious choice is closely re-

lated to the goal of maximizing the entropy of the output code by fixing (z) to & and (z;2;)

to (2;)(z;) = 7=, thus enforcing second order correlations to be zero. Another intuitive choice

would be to set all (zz;) very close to zero, which excludes that two neurons can be active si-
multaneously and thus recovers the function of a WTA. It is further conceivable to assign positive
correlation targets to groups of neurons, thereby creating populations with redundant codes. Finally,
with a topographical organization of neurons in mind, all three basic ideas sketched above might
be combined: one could assign positive correlations to neighboring neurons in order to create lo-
cal cooperative populations, mutual exclusion at intermediate distance, and zero correlation targets
between distant neurons.

With this in mind, we can formulate the goal of learning for the network in the context of EM
with posterior constraints: we constrain the E-step such that the average posterior fulfills the chosen
targets, and adapt the forward weights V' in the M-step according to (6). Analogous to the first-order
case, the variational solution of the E-step under these constraints takes the form,

1
98w (2lY) o p(2ly, V) -exp | D Brar + 5 Zwkakzj : (20)
k j#k
with symmetric wy; = wj as variational parameters. A neural sampling network A with input
weights Vj,; will sample from ¢g , if the intrinsic excitabilities are set to by, = — Ay, + by, + B, and

the symmetric recurrent synaptic weights to Wj,; = —Ay; + ij +wy;. The variational parameters
B, w (and hence also b, W) which optimize the dual problem ¥ (b,w) are uniquely defined and
can be found iteratively via gradient ascent. Analogous to the last section, this yields the intrinsic
plasticity rule (12) for by. In addition, we obtain for the recurrent synapses Wy,

AWy o< crj = (z625)p (w)a(zly) @)
which translates to an anti-Hebbian spike-timing dependent plasticity rule in the network implemen-
tation.

For any concrete instantiation of fo(y), fi(y) and A(z, V') in (16) it is possible to derive learning
rules for V; for the M-step via 9y, , F(V, ¢). Of course not all models entail local synaptic learning
rules. In particular it might be necessary to assume conditional independence of the inputs y given
the network state z, i.e., p(y|z, V) = [[, p(vi|z, V). Furthermore, in order to fulfill the neural
computability condition (17) for neural sampling [9] with a recurrent network of point neurons, it
might be necessary to choose A(z, V') such that terms of order higher than 2 vanish in the decompo-
sition. This can be shown to hold, for example, in a model with conditionally independent Gaussian
distributed inputs y;. It is ongoing work to find further biologically realistic network models in the
sense of this theory and to assess their computational capabilities through computer experiments.

4 Discussion

Complex and non-local computations, which appear during probabilistic inference and learning, ar-
guably constitute one of the cardinal challenges in the development of biologically realistic Bayesian
spiking network models. In this paper we have introduced homeostatic plasticity, which to the best
of our knowledge had not been considered before in the context of EM in spiking networks, as a
theoretically grounded approach to stabilize and facilitate learning in a large class of network mod-
els. Our theory complements previously proposed neural mechanisms and provides, in particular,
a simple and biologically realistic alternative to the assumptions on the input distribution made in
[12] and [15]. Indeed, our results challenge the hypothesis of [15] that feedforward inhibition is
critical for correctly learning the structure of the data with biologically plausible plasticity rules.
More generally, it turns out that the enforcement of a balancing posterior constraint often simplifies
inference in recurrent spiking networks by eliminating nontrivial computations. Our results suggest
a crucial role of homeostatic plasticity in the Bayesian brain: to constrain activity patterns in cortex
to assist the autonomous optimization of an internal model of the environment.
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