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Abstract

In this work we study how the stimulus distribution influences the optimal coding
of an individual neuron. Closed-form solutions to the optimal sigmoidal tuning
curve are provided for a neuron obeying Poisson statistics under a given stimulus
distribution. We consider a variety of optimality criteria, including maximizing
discriminability, maximizing mutual information and minimizing estimation er-
ror under a general Lp norm. We generalize the Cramer-Rao lower bound and
show how the Lp loss can be written as a functional of the Fisher Information
in the asymptotic limit, by proving the moment convergence of certain functions
of Poisson random variables. In this manner, we show how the optimal tuning
curve depends upon the loss function, and the equivalence of maximizing mutual
information with minimizing Lp loss in the limit as p goes to zero.

1 Introduction

A neuron represents sensory information via its spike train. Rate coding maps an input stimulus to
a spiking rate via the neuron’s tuning. Previous work in computational neuroscience has tried to
explain this mapping via optimality criteria. An important factor determining the optimal shape of
the tuning curve is the input statistics of the stimulus. It has previously been observed that environ-
mental statistics can influence the neural tuning curves of sensory neurons [1, 2, 3, 4, 5]. However,
most theoretical analysis has usually assumed the input stimulus distribution to be uniform. Only
recently, theoretical work has been demonstrating how non-uniform prior distributions will affect
the optimal shape of the neural tuning curves [6, 7, 8, 9, 10].

An important factor in determining the optimal tuning curve is the optimality criterion [11]. Most
previous work used local Fisher Information [12, 13, 14], the estimation square loss or discrim-
inability (discrimax) [15, 16] or the mutual information (infomax) [9, 17] to evaluate neural codes.
It has been shown that both the square loss and the mutual information are related to the Fisher Infor-
mation via lower bounds: the lower bound of estimation square loss is provided by the Cramer-Rao
lower bound [18, 19] and the mutual information can be lower bounded by a functional of Fisher
Information as well [7]. It has also been proved that both lower bounds can be attained on the con-
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dition that the encoding time is long enough and the estimator behaves well in the asymptotic limit.
However, there has been no previous study to integrate those two lower bounds into a more general
framework.

In this paper, we ask the question what tuning curve is optimally encoding a stimulus with an ar-
bitrary prior distribution such that the Lp estimation lost is minimized. We are able to provide
analytical solutions to the above question. With the asymptotic analysis of the maximum likelihood
estimator (MLE), we can show how the Lp loss converges to a functional of Fisher Information in
the limit of long encoding time. The optimization of such functional can be conducted for arbitrary
stimulus prior and for all p ≥ 0 in general. The special case of p = 2 and the limit p → 0 cor-
responds to discrimax and infomax, respectively. The general result offers a framework to help us
understand the infomax problem in a new point of view: maximizing mutual information is equiva-
lent to minimizing the expected L0 loss.

2 Model and Methods

2.1 Encoding and Decoding Model

Throughout this paper we denote s as the scalar stimulus. The stimulus follows an arbitrary prior
distribution π(s). The encoding process involves a probabilistic mapping from stimulus to a random
number of spikes. For each s, the neuron will fire at a predetermined firing rate h(s), representing the
neuron’s tuning curve. The encoded information will contain some noise due to neural variability.
According to the conventional Poisson noise model, if the available coding time is T , then the
observed spike count N has a Poisson distribution with parameter λ = h(s)T

P[N = k] =
1

k!
(h(s)T )

k
e−h(s)T (1)

The tuning curve h(s) is assumed to be sigmoidal, i.e. monotonically increasing, but limited to
a certain range hmin ≤ h(s) ≤ hmax due to biological constraints. The decoding process is the
reverse process of encoding. The estimator ŝ = ŝ(N) should be a function of observed count N .
One conventional choice is to use the MLE estimator. First the MLE estimator λ̂ for mean firing rate
is λ̂ = N/T . There for the MLE estimator for stimulus s is simply ŝ = h−1(λ̂).

2.2 Fisher Information and Reversal Formula

The Fisher Information can be used to describe how well one can distinguish a specific distribution
from its neighboring distributions within the same family of distributions. For a family of distribu-
tion with scalar parameter s, the Fisher Information is defined as

I(s) =

∫ (
∂

∂s
logP(N |s)

)2

P(N |s) dN. (2)

For tuning function h(s) with Poisson spiking model, the Fisher Information is (see [12, 7])

Ih(s) = T
h′(s)2

h(s)
(3)

Further with the sigmoidal assumption, by solving the above ordinary differential equation, we can
derive the inverse formula in Eq.(4) and an equivalent constraint on Fisher Information in Eq.(5)

h(s) =

(√
hmin +

1

2
√
T

∫ s

−∞

√
Ih(t) dt

)2

(4)∫ s

−∞

√
Ih(t) dt ≤ 2

√
T
(√

hmax −
√
hmin

)
(5)

This constraint is closely related to the Jeffrey’s prior, which claims that π∗(s) ∝
√
I(s) is the least

informative prior. The above inequality means that the normalization factor of the Jeffrey’s prior is
finite, as long as the range of firing rate is limited hmin ≤ h(s) ≤ hmax.
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3 Two Bounds on Loss Function via Fisher Information

3.1 Cramer-Rao Bound

The Cramer-Rao Bound [18] for unbiased estimators is

E[(ŝ− s)2|s] ≥ 1

I(s)
(6)

We can achieve maximum discriminability δ−1 by minimizing the mean asymptotic squared error
(MASE), defined in [15] as

δ2 = E[(ŝ− s)2] ≥
∫

π(s)

Ih(s)
ds, (7)

Even if Eq.(7) is only a lower bound, it is attained by the MLE of s asymptotically. In order to
optimize the right side of Eq.(7) under the constraints Eq.(5), variation method can be applied and
the optimal condition and the optimal solution can be written as

Ih(s) ∝ π(s)2/3, h2(s) =

(√
hmin +

(√
hmax −

√
hmin

) ∫ s
−∞ π(t)1/3 dt∫∞
−∞ π(t)1/3 dt

)2

(8)

3.2 Mutual Information Bound

Similar as the Cramer-Rao Bound, Brunel and Nadal [7] gave an upper bound of the mutual infor-
mation between the MLE ŝ and the environmental stimulus s

Imutual(ŝ, s) ≥ Hπ −
1

2

∫
π(s) log

(
2πe

Ih(s)

)
ds, (9)

where Hπ is the entropy of the stimulus prior π(s). Although this is an lower bound on the mutual
information which we want to maximize, the equality holds asymptotically by the MLE of s as
stated in [7]. To maximize the mutual information, we can maximize the right side of Eq.(9) under
the constraint of Eq.(5) by variation method again and obtain the optimal condition and optimal
solution as

Ih(s) ∝ π2(s), h0(s) =

(√
hmin +

(√
hmax −

√
hmin

) ∫ s
−∞ π(t) dt∫∞
−∞ π(t) dt

)2

(10)

To see the connection between solutions in Eq.(8) and Eq.(10), we need the result of the following
section.

4 Asymptotic Behavior of Estimators

In general, minimizing the lower bound does not imply that the measures of interest, e.g. the left
side of Eq.(7) and Eq.(9), is minimized. In order to make the lower bounds useful, we need to know
the conditions for which there exist ”good” estimators that can reach these theoretical lower bounds.

First we will introduce some definitions of estimator properties. Let T be the encoding time for a
neuron with Poisson noise, and ŝT be the MLE at time T . If we denote Y ′T =

√
T (ŝT − s) and

Z ′ ∼ N (0, T/I(s)), then the notions we have mentioned above are defined as below

E[Y ′T ]→ 0 (asymptotic consistency) (11)

Var[Y ′T ]→ T/I(s) (asymptotic efficiency) (12)

Y ′T
D→Z ′ (asymptotic normality) (13)

E[|Y ′T |p]→ E[|Z ′|p] (p-th moment convergence) (14)

Generally the above four conditions are listed from the weakest to the strongest, top to bottom.
To have the equality in Eq.(7) hold, we need the asymptotic consistent and asymptotic efficient
estimators. To have the equality in (9) hold, we need the asymptotic normal estimators (see [7]). If
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we want to generalize the problem even further, i.e. finding the tuning curve which minimizes the
Lp estimation loss, then we need the moment convergent estimator for all p-th moments.

Here we will give two theorems to prove that the MLE ŝ of the true stimulus s would satisfy all the
above four properties in Eq.(11)-(14). Let h(s) be the tuning curve of a neuron with Poisson spiking
noise. The the MLE of s is given by ŝ = h−1(λ̂). We will show that the limiting distribution of√
T (ŝT − s) is a Gaussian distribution with mean 0 and variance h(s)/h′(s)2. We will also show

that any positive p-norm of
√
T (ŝT − s) will converge the p-norm of the corresponding Gaussian

distribution. The proof of Theorem 1 and 2 will be provided in Appendix A.

Theorem 1. LetXi be i.i.d. Poisson distributed random variables with mean λ. Let Sn =
∑n
i=1Xi

be the partial sum. Then

(a) Sn has Poisson distribution with mean nλ.

(b) Yn =
√
n(Sn/n− λ) converges to Z ∼ N (0, λ) in distribution.

(c) The p-th moment of Yn converges, and limn→∞Eλ[|Yn|p] = E[|Z|p] for all p > 0.

One direct application of this theorem is that, if the tuning curve h(s) = s for (s > 0) and the
encoding time is T , then the estimator ŝ = N/T is asymptotically efficient since as T → ∞,
Var[ŝ]→ E[|Zλ/

√
T |2] = s/T = 1/I(s).

Theorem 2. Let Xi, Sn be defined as in Theorem 1. Let g(x) be any function with bounded deriva-
tive |g′(x)| ≤M . Then

(a) Y ′n =
√
n(g(Sn/n)− g(λ)) converges to Z ′ ∼ N (0, λg′(λ)2) in distribution.

(b) The p-th moment of Y ′n converges, and limn→∞Eλ[|Y ′n|p] = E[|Z ′|p] for all p > 0.

Theorem 1 indicates that we can always estimate the firing rate λ = h(s) efficiently by the estimator
λ̂ = N/T . Theorem 2 indicates, however, that we can also estimate a smooth transformation of
the firing rate efficiently in the asymptotic limit T → ∞. Now, if we go back to the conventional
setting of the tuning curve λ = h(s), we can estimate the stimulus by the estimator ŝ = h−1(λ̂).
To meet the need of boundedness of g: |g′(λ)| ≤ M , we have 1/g′(λ) = h′(s) ≥ 1/M hence this
theory only works for stimulus from a compact set s ∈ [−M,M ], although the M can be chosen as
large as possible. The larger the M is, the longer encoding time T will be necessary to observe the
asymptotic normality and the convergence of moments.

The estimator ŝ = h−1(λ̂) is biased for finite T , but it is asymptotically unbiased and efficient. This
is because as T →∞

Es[
√
T (ŝT − s)]→ E[Z ′] = 0 (15)

Vars[
√
T (ŝT − s)]→ E[|Z ′|2] = λ(h−1)′(λ)2 =

h(s)

h′(s)2
=

T

I(s)
(16)

From the above analysis we can see that the property of Lp(ŝ, s) = Es[|ŝT − s|p] saturating the
lower bound fully relies upon the asymptotic normality. With asymptotic normality, we can do more
than just optimizing Imutual(N, s) and Lp(ŝ, s). In general we can find the optimal tuning curve
which minimizes the expected Lp loss Lp(ŝ, s) since as T →∞

E
[∣∣∣√T (ŝT − s)

∣∣∣p]→ E
[
|Z ′|p

]
(17)

where Z ′ = χ/
√
I(s)/T , χ ∼ N (0, 1). To calculate the right side of the above limit, we can use

the fact that for any p ≥ 0,

K(p) = E [|χ|p] =
(√

2
)p Γ

(
p+1
2

)
Γ
(
1
2

) (18)

where Γ(·) is the gamma function

Γ(z) =

∫ ∞
0

e−ttz−1 dt (19)

4



The general conclusion is that (Cramer-Rao Lower bound is a special case with p = 2)

Es

[∣∣∣√T (ŝT − s)
∣∣∣p]→ E

[
|Z ′|p

]
=

K(p)

(I(s)/T )p/2
(20)
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Figure 1: (A) Illustration of Lp-loss as a function of |ŝ−s| for different values of p. When p = 2 the
loss is the squared loss and when p → 0, the Lp loss converges to 0-1 loss pointwise. (B) The plot
of p-th absolute moments K(p) = E[|χ|p] of standard Gaussian random variable χ for p ∈ [0, 4].

5 Optimal Tuning Curves: Infomax, Discrimax and More

With the asymptotic normality and moment convergence, we know the asymptotic expected Lp loss
will approach E[|Z ′|p] for each s. Hence

E [|ŝ− s|p]→
∫
π(s)Es

[
|Z ′|p

]
ds = K(p)

∫
π(s)

I(s)p/2
ds. (21)

To obtain the optimal tuning curve for the Lp loss, we need to solve a simple variation problem

minimize
h

∫
π(s)f(Ih(s)) ds (22)

subject to
∫ √

Ih(s) ds ≤ const (23)

with f ′p(x) = −x−p/2−1. To solve this variational problem, the Euler-Lagrange equation and the
Lagrange multiplier method can be used to derive the optimal condition

0 =
∂

∂Ih

(
π(s)fp(Ih(s))− λ

√
Ih
)

= π(s)f ′p (Ih(s))− λ

2
Ih(s)−1/2 (24)

⇒
√
Ih(s) ∝ π(s)1/(p+1) (25)

Therefore the fp-optimal tuning curve, which minimizes the asymptoticLp loss, is given by equation
below, followed from (4) and (25). For some examples of Lp optimal tuning curves, see Fig. 2.

hp(s) =

(√
hmin +

(√
hmax −

√
hmin

) ∫ s
−∞ π(t)1/(p+1) dt∫∞
−∞ π(t)1/(p+1) dt

)2

(26)

Ip(s) = 4T
(√

hmax −
√
hmin

)2 π(s)2/(p+1)(∫
π(t)1/(p+1) dt

)2 (27)

Following from (21) and (27), the optimal expected Lp loss is

E [|ŝ− s|p] = K(p) · (4T )−p/2
(√

hmax −
√
hmin

)−p(∫
π(t)1/(p+1) dt

)p+1

(28)
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A very interesting observation is that, by taking the limit p → 0, we will end up with the infomax
tuning curve. This shows that the infomax tuning curve simultaneously optimizes the mutual infor-
mation as well as the expected L0 norm of the error ŝ − s. The L0 norm can be considered as the
0-1 loss, i.e. L(ŝ, s) = 0 if ŝ = s and L(ŝ, s) = 1 otherwise. To put this in a different approach, we
may consider the natural log function as a limit of power function:

log z = lim
p→0

1− z−p/2
p/2

(29)

⇒
∫
π(s) log I(s) ds = lim

p→0

2

p

(
1−

∫
π(s)I(s)−p/2 ds

)
(30)

and we can conclude that minimizing
∫
π(s)I(s)−p/2ds in the limit of p→ 0 (L0 loss) is the same

as maximizing
∫
π(s) log I(s)ds and the mutual information.
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Figure 2: For stimulus with standard Gaussian prior distribution (inset figure) and various values of
p, (A) shows the optimal allocation of Fisher Information Ip(s) and (B) shows the fp-optimal tuning
curve hp(s). When p = 2 the f2-optimal (discrimax) tuning curve minimizes the squared loss and
when p = 0 the f0-optimal (infomax) tuning curve maximizes the mutual information.

6 Simulation Results

Numerical simulations were performed in order to validate our theory. In each iteration, a random
stimulus swas chosen from the standard Gaussian distribution or Exponential distribution with mean
one. A Poisson neuron was simulated to generate spikes in response to that stimulus. The difference
between the MLE ŝ and s is recorded to analyze the Lp loss. In one simple task, we compared the
numerical value vs. the theoretical value of Lp loss for fq-optimal tuning curve

E [|ŝ− s|p] = K(p) · (4T )−p/2
(√

hmax −
√
hmin

)−p(∫
π(t)1/(q+1) dt

)p(∫
π(s)1−

p
q+1 ds

)
(31)

The above theoretical prediction works well for distributions with compact support s ∈ [A,B]. It
also requires q > p−1 for any distribution with tail decaying faster than exponential: π(s) ≤ e−Cs,
such as e.g. a Gaussian or exponential distribution. Otherwise the integral in the last term will blow
up in general.

The numerical and theoretical prediction of Lp loss are plotted, for both Gaussian N (0, 1) prior
(Fig.3A) and Exp(1) prior (Fig.3B). The vertical axis shows 1/p · logE[|ŝ− s|p] so all p-norms are
displayed at the same unit.
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Figure 3: The comparison between numerical result (solid curves) and theoretical prediction (dashed
curves). (A) For standard Gaussian prior. (B) For exponential prior with parameter 1.

7 Discussion

In this paper we have derived a closed form solution for the optimal tuning curve of a single neuron
given an arbitrary stimulus prior π(s) and for a variety of optimality. Our work offers a principled
explanation for the observed non-linearity in neuron tuning: Each neuron should adapt their tuning
curves to reallocate the limited amount of Fisher information they can carry and minimize the Lp
error. We have shown in section 2 that each sigmoidal tuned neuron with Poisson spiking noise has
an upper bound for the integral of square root of Fisher information and the fp-optimal tuning curve
has the form

hp(s) =

(√
hmin +

(√
hmax −

√
hmin

) ∫ s
−∞ π(t)1/(p+1) dt∫∞
−∞ π(t)1/(p+1) dt

)2

(32)

where the fp-optimal tuning curve minimizes the estimation Lp loss E[|ŝ − s|p] of the decoding
process in the limit of long encoding time T . Two special and well known cases are maximum
mutual information (p = 0) and maximum discriminant (p = 2).

To obtain this result, we established two theorems regarding the asymptotic behavior of the MLE
ŝ = h−1(λ̂). Asymptotically, the MLE converges to a standard Gaussian not only with regard to
its distribution, but also in terms of its p-th moment for arbitrary p > 0. By calculating the p-th
moments for the Gaussian random variable, we can predict the Lp loss of the encoding-decoding
process and optimize the tuning curve by minimizing the attainable limit. The Cramer-Rao lower
bound and the mutual information lower bound proposed by [7] are special cases with p = 2 or
p = 0 respectively.

So far, we have put our focus on a single neuron with sigmoidal tuning curve. However, the conclu-
sions in Theorem 1 and 2 still hold for the case of neuronal populations with bell-shaped neurons,
with correlated or uncorrelated noise. The optimal condition for Fisher information can be cal-
culated, regardless of the tuning curve(s) format. According to the assumption on the number of
neurons and the shape of the tuning curves, the optimized Fisher information can be inverted to
derive the optimal tuning curve via the same type of analysis as we presented in this paper.

One theoretic limitation of our method is that we only addressed the problem for long encoding
times, which is usually not the typical scenario in real sensory systems. Though the long encoding
time limit can be replaced by short encoding time with many identical tuned neurons. It is still an
interesting problem to find out the optimal tuning curve for arbitrary prior, in the sense of Lp loss
function. Some work [16, 20] has been done to maximize mutual information or L2 for uniformly
distributed stimuli. Another problem is that the asymptotic behavior is not uniformly true if the space
of stimulus is not compact. The asymptotic behavior will take longer to be observed if the slop of
the tuning function is too close to zero. In Theorem 2 we made the assumption that |g′(s)| ≤ M
and that is the reason we cannot evaluate the estimation error for s with large absolute value hence
we do not have a perfect match for low p values in the simulation section (see Fig. 3).

7



A Proof of Theorems in Section 4

Proof. of Theorem 1

(a) Immediately follows from Poisson distribution. Use induction on n.

(b) Apply Central Limit Theorem. Notice that E[Xi] = Var[Xi] = λ for Poisson random variables.

(c) In general, convergence in distribution does not imply convergence in p-th moment. However in
our case, we do have the convergence property for all p-th moments. To show this, we need to show
for all p > 0, |Yn|p is uniformly integrable i.e. for any ε, there exist a K such that

E[|Yn|p · 1{|Yn|≥K}] ≤ ε (33)

This is obvious with Cauchy-Schwartz inequality and Markov inequality(
E[|Yn|p · 1{Yn≥K}]

)2 ≤ E[|Yn|2p] ·P[|Yn| ≥ K] ≤ E[|Yn|2p]
E[|Yn|]
K

→ 0 (34)

To see the last limit, we use the fact that for all p > 0, supnE[|Yn|p] <∞. According to [21],

E[|Sn − nλ|p] =

p∑
a=0

(nλ)aS2(p, a), (35)

where S2(p, a) denotes the number of partitions of a set of size n into a subsets with no singletons
(i.e. no subsets with only one element). For our purpose, notice that S2(p, a) = 0 for a > p/2 and
S2(p, a) ≤ pa. Therefore the supreme of E[|Yn|p] is bounded since

E[|Yn|p] = E[|√n(Sn/n− λ)|p] ≤ n−p/2
p/2∑
a=0

(nλ)apa ≤ n(λp)p/2+1

nλp− 1
≤ C(λp)p/2 (36)

For arbitrary q, choose any even number p such that p > q, and by Jensen’s inequality, E[|Yn|q] ≤
E[|Yn|p]q/p. Thus for all p > 0, n, E[|Yn|p] <∞.

Proof. of Theorem 2

(a) Denote λ̂n = Sn/n. Apply mean value theorem for g(x) near λ :

g(λ̂n)− g(λ) = g′(λ∗)(λ̂n − λ) (37)

for some λ∗ between λ̂n and λ. Therefore
√
n
(
g(λ̂n)− g(λ)

)
= g′(λ∗)

√
n(λ̂− λ)

D→ g′(λ)Z (38)

Note that λ̂n → λ in probability, λ∗ → λ in probability and g′(λ∗)→ g′(λ) in probability, together
with the fact that

√
n(λ̂n − λ)

D→Z, apply Slutsky’s theorem and the conclusion follows.

(b) Use Taylor’s expansion and Slutsky’s theorem again,∣∣∣√n(g(λ̂n)− g(λ)
)∣∣∣p =

∣∣∣g′(λ∗)√n(λ̂− λ)
∣∣∣p = |g′(λ∗)|p |Yn|p → |g′(λ)|p |Yn|p (39)

To see |Y ′n|p is uniformly integrable, notice that |Y ′n|p ≥ K ⇒ |Yn|p ≥ K ·M−p. The rest follows
in a similar manner as when proving Theorem 1(c).
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