
Clustering Aggregation as
Maximum-Weight Independent Set

Nan Li Longin Jan Latecki
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
{nan.li,latecki}@temple.edu

Abstract

We formulate clustering aggregation as a special instance of Maximum-Weight
Independent Set (MWIS) problem. For a given dataset, an attributed graph is con-
structed from the union of the input clusterings generated by different underlying
clustering algorithms with different parameters. The vertices, which represent the
distinct clusters, are weighted by an internal index measuring both cohesion and
separation. The edges connect the vertices whose corresponding clusters over-
lap. Intuitively, an optimal aggregated clustering can be obtained by selecting an
optimal subset of non-overlapping clusters partitioning the dataset together. We
formalize this intuition as the MWIS problem on the attributed graph, i.e., finding
the heaviest subset of mutually non-adjacent vertices.
This MWIS problem exhibits a special structure. Since the clusters of each in-
put clustering form a partition of the dataset, the vertices corresponding to each
clustering form a maximal independent set (MIS) in the attributed graph. We pro-
pose a variant of simulated annealing method that takes advantage of this special
structure. Our algorithm starts from each MIS, which is close to a distinct local
optimum of the MWIS problem, and utilizes a local search heuristic to explore its
neighborhood in order to find the MWIS. Extensive experiments on many chal-
lenging datasets show that: 1. our approach to clustering aggregation automati-
cally decides the optimal number of clusters; 2. it does not require any parameter
tuning for the underlying clustering algorithms; 3. it can combine the advantages
of different underlying clustering algorithms to achieve superior performance; 4.
it is robust against moderate or even bad input clusterings.

1 Introduction

Clustering is a fundamental problem in data analysis, and has extensive applications in statistics, data
mining, computer vision and even in social sciences. The goal is to partition the data objects into
a set of groups (clusters) such that objects in the same group are similar, while objects in different
groups are dissimilar.

In the past two decades, many different clustering algorithms have been developed. Some popular
ones include K-means, DBSCAN, Ward’s algorithm, EM-clustering and so on. However, there are
potential shortcomings for each of the known clustering algorithms. For instance, K-means [7]
and its variations have difficulty detecting the ”natural” clusters, which have non-spherical shapes
or widely different sizes or densities. Furthermore, in order to achieve good performance, they
require an appropriate number of clusters as the input parameter, which is usually very hard to
specify. DBSCAN [8], a density-based clustering algorithm, can detect clusters of arbitrary shapes
and sizes. However, it has trouble with data which have widely varying densities. Also, DBSCAN
requires two input parameters specified by the user: the radius, Eps, to define the neighborhood of
each data object, and the minimum number, minPts, of data objects required to form a cluster.

1

Consensus clustering, also called clustering aggregation or clustering ensemble, refers to a kind of
methods which try to find a single (consensus) superior clustering from a number of input clus-
terings obtained by different algorithms with different parameters. The basic motivation of these
methods is to combine the advantages of different clustering algorithms and overcome their respec-
tive shortcomings. Besides generating stable and robust clusterings, consensus clustering methods
can be applied in many other scenarios, such as categorical data clustering, ”privacy-preserving”
clustering and so on. Some representative methods include [1, 2, 9, 11, 12, 13, 14]. [2] formulates
clustering ensemble as a combinatorial optimization problem in terms of shared mutual information.
That is, the relationship between each pair of data objects is measured based on their cluster labels
from the multiple input clusterings, rather than the original features. Then a graph representation is
constructed according to these relationships, and finding a single consolidated clustering is reduced
to a graph partitioning problem. Similarly, in [1], a number of deterministic approximation algo-
rithms are proposed to find an ”aggregated” clustering which agrees as much as possible with the
input clusterings. [9] also applies a similar idea to combine multiple runs of K-means algorithm.
[11] proposes to capture the notion of agreement using an measure based on a 2D string encoding.
They derive a nonlinear optimization model to maximize the new agreement measure and transform
it into a strict 0-1 Semidefinite Program. [12] presents three iterative EM-like algorithms for the
consensus clustering problem.

A common feature of these consensus clustering methods is that they usually do not access to the
original features of the data objects. They utilize the cluster labels in different input clusterings as
the new features of each data object to find an optimal clustering. Consequently, the success of these
consensus clustering methods heavily relies on a premise that the majority of the input clusterings
are reasonably good and consistent, which is not often the case in practice. For example, given a new
challenging dataset, it is probable that only some few of the chosen underlying clustering algorithms
can generate good clusterings. Many moderate or even bad input clustering can mislead the final
”consensus”. Furthermore, even if we choose the appropriate underlying clustering algorithms, in
order to obtain good input clusterings, we still have to specify the appropriate input parameters.
Therefore, it is desired to devise new consensus clustering methods which are more robust and do
not need the optimal input parameters to be specified.

In this paper, our definition of ”clustering aggregation” is different. Informally, for each of the
clusters in the input clusterings, we evaluate its quality with some internal indices measuring both
the cohesion and separation. Then we select an optimal subset of clusters, which partition the
dataset together and have the best overall quality, as the ”aggregated clustering”. (We give a formal
statement of our ”clustering aggregation” problem in Sec. 2). In this framework, ideally, we can
find the optimal ”aggregated clustering” even if only a minority of the input clusterings are good
enough. Therefore, we only need to specify an appropriate range of the input parameters, rather
than the optimal values, for the underlying clustering algorithms.

We formulate this ”clustering aggregation” problem as a special instance of Maximum-Weight In-
dependent Set (MWIS) problem. An attributed graph is constructed from the union of the input
clusterings. The vertices, which represent the distinct clusters, are weighted by an internal index
measuring both cohesion and separation. The edges connect the vertices whose corresponding clus-
ters overlap (In practice, we may tolerate a relatively small amount of overlap for robustness). Then
selecting an optimal subset of non-overlapping clusters partitioning the dataset together can be for-
mulated as seeking the MWIS of the attributed graph, which is the heaviest subset of mutually
non-adjacent vertices. Moreover, this MWIS problem exhibits a special structure. Since the clusters
of each input clustering form a partition of the dataset, the vertices corresponding to each clustering
form a maximal independent set (MIS) in the attributed graph.

The most important source of motivation for our work is [3]. In [3], image segmentation is formulat-
ed as a MWIS problem. Specifically, given an image, they first segment it with different bottom-up
segmentation schemes to get an ensemble of distinct superpixels. Then they select a subset of the
most ”meaningful” non-overlapping superpixels to partition the image. This selection procedure is
formulated as solving a MWIS problem. In this respect, our work is very similar to [3]. The only
difference is that our work applies the MWIS formulation to a more general problem, clustering
aggregation.

MWIS problem is known to be NP-hard. Many heuristic approaches are proposed to find approx-
imate solutions. As we mentioned before, in the context of clustering aggregation, the formulated

2

MWIS problem exhibits a special structure. That is, the vertices corresponding to each clustering
form a maximal independent set (MIS) in the attributed graph. This special structure is valuable
for finding good approximations to the MWIS because, although these MISs may not be the global
optimum of the MWIS, they are close to distinct local optimums. We propose a variant of simulat-
ed annealing method that takes advantage of this special structure. Our algorithm starts from each
MIS and utilizes a local search heuristic to explore its neighborhood in order to find better approx-
imations to the MWIS. The best solution found in this process is returned as the final approximate
MWIS. Since the exploration for each MIS is independent, our algorithm is suitable for parallel
computation.

Finally, since the selected clusters may not be able to cover the entire dataset, our approach performs
a post-processing to assign the missing data objects to their nearest clusters.

Extensive experiments on many challenging datasets show that: 1. our approach to clustering ag-
gregation automatically decides the optimal number of clusters; 2. it does not require any parameter
tuning for the underlying clustering algorithms; 3. it can combine the advantages of different under-
lying clustering algorithms to achieve superior performance; 4. it is robust against moderate or even
bad input clusterings.

Paper Organization In Sec. 2, we present the formal statement of the clustering aggregation prob-
lem and its formulation as a special instance of MWIS problem. In Sec. 3, we present our algorithm.
The experimental evaluations and conclusion are given in Sec. 4 and Sec. 5 respectively.

2 MWIS Formulation of Clustering Aggregation

Consider a set of n data objects D = {d1, d2, ..., dn}. A clustering Ci of D is obtained by applying
an exclusive clustering algorithm with a specific set of input parameters on D. The disjoint clusters
ci1, ci2, ..., cik of Ci are a partition of D, i.e.

⋃k
j=1 cij = D and cip ∩ ciq = ∅ for all p 6= q.

With different clustering algorithms and different parameters, we can obtain a set of m different
clusterings of D: C1, C2, ..., Cm. For each cluster cij in the union of these m clusterings, we
evaluate its quality with an internal index measuring both cohesion and separation.

We use the average silhouette coefficient of a cluster as such an internal index in this paper. The
silhouette coefficient is defined for an individual data object. It is a measure of how similar that data
object is to data objects in its own cluster compared to data objects in other clusters. Formally, the
silhouette coefficient for the tth data object, St, is defined as

St =
bt − at

max(at, bt)
(1)

where at is the average distance from the tth data object to the other data objects in the same cluster
as t, and bt is the minimum average distance from the tth data object to data objects in a different
cluster, minimized over clusters.

Silhouette coefficient ranges from -1 to +1 and a positive value is desirable. The quality of a par-
ticular cluster cij can be evaluated with the average of the silhouette coefficients of the data objects
belonging to it.

ASCcij =

∑
t∈cij St

|cij |
(2)

where St is the silhouette coefficient of the tth data object in cluster cij , |cij | is the cardinality of
cluster cij .

We select an optimal subset of non-overlapping clusters from the union of all the clusterings, which
partition the dataset together and have the best overall quality, as the ”aggregated clustering”. The
selection of clusters is formulated as a special instance of the Maximum-Weight Independent Set
(MWIS) problem.

Formally, consider an undirected and weighted graph G = (V,E), where V = {1, 2, ..., n} is
the vertex set and E ⊆ V × V is the edge set. For each vertex i ∈ V , a positive weight wi is
associated with i. A = (aij)n×n is the adjacency matrix of G, where aij = 1 if (i, j) ∈ E is an

3

edge of G, and aij = 0 if (i, j) /∈ E. A subset of V can be represented by an indicator vector
x = (xi) ∈ {0, 1}n, where xi = 1 means that i is in the subset, and xi = 0 means that i is not in the
subset. An independent set is a subset of V , whose elements are pairwise nonadjacent. Then finding
a maximum-weight independent set, denoted as x∗ can be posed as the following:

x∗ = argmaxxw
Tx,

s.t. ∀i ∈ V : xi ∈ {0, 1}, xTAx = 0
(3)

The weight wi on vertex i is defined as:

wi = ASCci × |ci| (4)

where ci is the cluster represented by vertex i,ASCci and |ci| are its quality measure and cardinality
respectively.

Our problem (3) is a special instance of MWIS problem, since graph G exhibits an additional struc-
ture, which we will unitize in the proposed algorithm. The vertex set V can be partitioned into
disjoint subsets P = {P1, P2, ..., Pm}, where Pi corresponds to the clustering Ci, such that each Pi
is also a maximal independent set (MIS), which means it is not a subset of any other independent
set. This follows from the fact that each clustering Ci is a partition of the dataset D. Formally,

m⋃
i=1

Pi = V, Pi ∩ Pj = ∅, i 6= j, and Pi is MIS, ∀ i, j ∈ {1, 2, ...,m} (5)

3 Our Algorithm

The basic idea of our algorithm is to explore the neighborhood of each known MIS Pi independently
with a local search heuristic in order to find better solutions. The proposed algorithm is an instance
of simulated annealing methods [10] with multiple initializations.

Our algorithm starts with a particular MIS Pi, denoted by x0. xt+1, which is a neighbor of xt, is
obtained by replacing some lower-weight vertices in xt with higher-weight vertices under the con-
straint of always being an independent set. Specifically, we first reduce xt by removing a proportion
q of lower-weight vertices. Here we remove a proportion, rather than a fixed number, of vertices in
order to make the reduction adaptive with respect to the number s of vertices in xt. In practice, we
use ceil(s× q) to make sure at least one vertex will be removed. Note that this step is probabilistic,
rather than deterministic. The probability that a vertex i will be retained is proportional to its WD
value, which is defined as follows.

WDi =
wi∑

j∈Ni
wj

(6)

where Ni is the set of vertices which are connected with vertex i in G.

Intuitively, larger WD value indicates larger weight, less conflict with other vertices or both. There-
fore, the obtained x′t is likely to contain vertices with large weights and have large potential room
for improvement. The parameter of proportion q is used to control the ”radius” of the neighborhood
to be explored.

Then our algorithm iteratively improves x′t by adding compatible vertices one by one. In each
iteration, it first identifies all the vertices compatible with the existing ones in current x′t, called
candidates. Then a ”local” measure WD′ is calculated to evaluate each of these candidates:

WD′i =
wi∑

j∈N ′
i
wj

(7)

where N ′i is the set of candidate vertices which are connected with vertex i.

The large value of WD′i indicates that candidate i either can bring large improvement this time
(numerator) or has small conflict with further improvements (denominator) or both.

The candidate with the largest WD′ value is added to x′t. In next iteration, this new x′t will be
further improved. This iterative procedure continues until x′t cannot be further improved. We obtain
x′t as a randomized neighbor of xt.

4

Algorithm 1:
Input: Graph G, weights w, adjacency matrix A, the known MIS P = {P1, P2, ..., Pm}
Output: An approximate solution to MWIS

1 Calculate WD for each vertex;
2 for Each MIS Pi do
3 Initialize x0 with Pi;
4 for t = 1, 2, ..., n do
5 Reduce xt to x′t probabilistically by removing a proportion q of vertices with relatively

lower WD values;
6 repeat
7 Identify candidate vertices compatible with current x′t;
8 Calculate WD′ for each candidate;
9 Update x′t by adding the candidate with the largest WD′;

10 until x′t cannot be further improved;
11 Calculate α = min[1, e(W (x′

t)−W (xt))/β
t

];
12 Update xt+1 as x′t with probability α, otherwise xt+1 = xt;
13 end
14 end
15 return the best solution found in the process;

Now our algorithm calculates the acceptance ratio α = e(W (x′
t)−W (xt))/β

t

, where W (x) = wTx;
0 < β < 1 is a constant which is usually picked to be close to 1. If α ≥ 1, then x′t is accepted as
xt+1. Otherwise, it is accepted with probability α.

This exploration starting from Pi continues for a number of iterations, or until xt converges. The
best solution encountered in this process is recorded. After exploring the neighborhood for all the
known MISs, the best solution is returned. A formal description can be found in Algorithm 1.

Our algorithm is essentially a variant of simulated annealing method [10], since the maximization of
W (x) = wTx is equivalent to the minimization of the energy function E(x) = −W (x) = −wTx.
Lines 5 to 10 in Alg. 1 define a randomized ”moving” procedure of making a transition from xt to its
neighbor x′t. When calculating the acceptance ratio α = e(W (x′

t)−W (xt))/β
t

, suppose T0 = 1 (initial
temperature), then it is equivalent to α = e(−(W (xt)−W (x′

t)))/(β
t) = e(−(E(x′

t)−E(xt)))/(β
t). Hence

Algorithm 1 is a variant of simulated annealing. Therefore, our algorithm converges in theory.

In practice, the convergence of our algorithm is fast. In all the experiments presented in next section,
our algorithm converges in less than 100 iterations. The reason is that our algorithm takes advantage
of that the known MISs are close to distinct local maximum. Also, the local search heuristic of our
algorithm is effective to find better candidate in the neighborhood.

The parameter q controls the ”radius” of the neighborhood to be explored in each iteration. Small
q means small ”radius” and results in more iterations to converge. On the other side, using large q
will take less advantage of the known MISs. Unstable exploration also results in more iterations to
converge.

Since our algorithm explores the neighborhood of each known MIS independently, its efficiency can
be further improved by using parallel computation.

4 Results

We evaluate the performance of our approach with three experiments. In these experiments, for the
underlying clustering algorithms, including K-means, single linkage, complete linkage and Ward’s
clustering, we use the implementations in MATLAB. Unless specified explicitly, the parameters
are MATLAB’s defaults. For example, when using K-means, we only specify the number K of
desired clusters. The default ”Squared Euclidean distance” is used as the distance measure. When
calculating silhouette coefficients, we use MATLAB’s function ”silhouette(X,clust)” and the default
metric ”Squared Euclidean distance”. For robustness in our experiments, we tolerate slight overlap

5

between clusters. That is, for the adjacency matrixA = (aij)n×n, aij = 1 if |ci∩cj |
min(|ci|,|cj |) > 0.1, and

aij = 0 otherwise. In these experiments, the parameters of our local search algorithm are: q = 0.3;
β = 0.999; iteration number n = 100. We test different combinations of q = 0.1 : 0.1 : 0.5 and
n = 100 : 100 : 1000. The results are almost the same.

In the first experiment, we evaluate our approach’s ability to achieve good performance without
specifying the optimal input parameters for the underlying clustering algorithms. We use the dataset
from [6]. This dataset consists of 4 subsets (S1, S2, S3, S4) of synthetic 2-d data points. Each subset
contains 5000 vectors in 15 Gaussian clusters, but with different degree of cluster overlapping. We
choose K-means as the underlying clustering algorithm and vary the parameter K = 5 : 1 : 25,
which is the desired number of clusters. Since different runs of K-means starting from random
initialization of centroids typically produce different clustering results, we run K-means 5 times for
each value of K. That is, there are a total of 21 × 5 = 105 different input clusterings. Note that,
in order to show the performance of our approach clearly, we do not perform the post-processing of
assigning the missing data points to their nearest clusters.

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S1

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S2

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S3

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S4

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S1

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S2

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S3

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S4

Figure 1: Clustering aggregation without parameter tuning. (top row) Original data. (bottom row)
Clustering results of our approach. Best viewed in color.

As shown in Fig. 1, on each of the four subsets, the aggregated clustering obtained by our approach
has the correct number (15) of clusters and near-perfect structure. Only a very small portion of
data points is not assigned to any cluster. These results confirm that our approach can automatically
decide the optimal number of clusters without any parameter tuning for the underlying clustering
algorithms.

In the second experiment, we evaluate our approach’s ability of combining the advantages of differ-
ent underlying clustering algorithms and canceling out the errors introduced by them. The dataset is
from [1]. As shown in the fifth panel of Fig. 2, this synthetic dataset consists of 7 distinct groups of
2-d data points, which have significantly different shapes and sizes. There are also some ”bridges”
between different groups of data points. Consequently, this dataset is very challenging for any single
clustering algorithm. In this experiment, we use four different underlying clustering algorithms im-
plemented in MATLAB: single linkage, complete linkage, Ward’s clustering and K-means. The first
two are both agglomerative bottom-up algorithms. The only difference between them is that when
merging pairs of clusters, single linkage is based on the minimum distance, while complete linkage
is based on maximum distance. The third one, Ward’s clustering algorithm, is also an agglomerative
bottom-up algorithm. In each merging step, it chooses the pair of clusters which minimize the sum
of the square of distances from each point to the mean of the two clusters. The fourth algorithm is
K-means.

6

For each of the underlying clustering algorithms, we vary the input parameter of desired number of
clusters as 4 : 1 : 10. That is, we have a total of 7× 4 = 28 input clusterings.

Note that, unlike [1], we do not use the average linkage clustering algorithm, because by specifying
the correct number of clusters, it can generate near-perfect clustering by itself. We abandon the
best algorithm here in order to show the performance of our approach clearly. But, in practice,
by utilizing good underlying clustering algorithms, it can significantly increase the chance for our
approach to obtain superior aggregated clusterings. Like experiment 1, we do not perform the post-
processing in this experiment.

0 10 20 30 40
0

10

20

30
Single Linkage

0 10 20 30 40
0

10

20

30
Complete Linkage

0 10 20 30 40
0

10

20

30
Ward's clustering

0 10 20 30 40
0

10

20

30
K-means

0 10 20 30 40
0

10

20

30
Original data

0 10 20 30 40
0

10

20

30
Our result

Figure 2: Clustering aggregation on four different input clusterings. Best viewed in color.

In the first four panels of Fig. 2, we show the clustering results obtained by the four underlying
clustering algorithms with the number of clusters set to be 7. Obviously, even with the optimal input
parameters, the results of these algorithms are far from being correct. The ground truth and the result
of our approach are shown in the fifth and sixth panels, respectively. As we can see, our aggregated
clustering is almost perfect, except for the three green data points in the ”bridge” between the cyan
and green ”balls”. These results confirm that our approach can effectively combine the advantages
of different clustering algorithms and cancel out the errors introduced by them. Also, in contrast to
the other consensus clustering algorithms, such as [1], our aggregated clustering is obtained without
specifying the optimal input parameters for any of the underlying clustering algorithm. This is a
very desirable feature in practice.

In the third experiment, we compare our approach with some other popular consensus clustering
algorithms, including Cluster-based Similarity Partitioning Algorithm (CSPA) [2], HyperGraph Par-
titioning Algorithm (HGPA) [2], Meta-Clustering Algorithm (MCLA) [2], the Furthest (Furth) al-
gorithm [1], the Agglomerative (Agglo) [1] algorithm and the Balls (Balls) algorithm [1].

The performance is evaluated on three datasets: 8D5K [2] , Iris [4] and Pen-Based Recognition of
Handwritten Digits (PENDIG) [5]. 8D5K is an artificial dataset. It contains 1000 points from five
multivariate Gaussian distributions (200 points each) in 8D space. Iris is a real dataset. It consists
of 150 instances of three classes (50 each). There are four numeric attributes for each instance.
PENDIG is also a real dataset. It contains a total of 7494 + 3498 = 10992 instances in 10 classes.
Each instance has 16 integer attributes.

For our approach and all those consensus clustering algorithms, we choose K-means and Ward’s
algorithm as the underlying clustering algorithms. The multiple clusterings for each dataset are
obtained by varying the desired number of clusters for both K-means and Ward’s algorithm. Specif-

7

ically, for the test on 8D5K, we set the desired numbers of clusters as 3:1:7. Consequently, there
are 5 × 2 = 10 different input clusterings. For Iris and PENDIG, the numbers are 3:1:7 and 8:1:12
respectively. So there are also 10 different input clusterings for each of them.

In this paper, we use Jaccard coefficient to measure the quality of clusterings.

Jaccard Coefficient =
f11

f01 + f10 + f11
(8)

where f11 is the number of object pairs which are in the same class and in the same cluster; f01 and
is the number of object pairs which are in different classes but the same cluster; f10 is the number
of object pairs which are in the same class but in different cluster.

Figure 3: Results of comparative experiments on different datasets. Best viewed in color.

As shown in Fig. 3, the performance of our approach is better than those of the other consensus
clustering algorithms. The main reason is that, with a range of different input parameters, most
clusterings generated by the underlying clustering algorithms are not good enough. The ”consensus”
based on these moderate or even bad input clusterings and much less good ones cannot be good.
In contrast, by selecting an optimal subset of the clusters, our approach can still achieve superior
performance as long as there are good clusters in the input clusterings. Therefore, our approach is
much more robust, as confirmed by the results of this experiment.

5 Conclusion

The contribution of this paper is twofold: 1. We formulate clustering aggregation as a MWIS prob-
lem with a special structure. 2. We propose a novel variant of simulated annealing method, which
takes advantage of the special structure, for solving this special MWIS problem. Experimental re-
sults confirm that: 1. our approach to clustering aggregation automatically decides the optimal
number of clusters; 2. it does not require any parameter tuning for the underlying clustering algo-
rithms; 3. it can combine the advantages of different underlying clustering algorithms to achieve
superior performance; 4. it is robust against moderate or even bad input clusterings.

Acknowledgments

This work was supported by US Department of Energy Award 71498-001-09 and by US National
Science Foundation Grants IIS-0812118, BCS-0924164, OIA-1027897.

8

References

[1] Gionis, A. & Mannila, H. & Tsaparas, P. (2005) ”Clustering aggregation”. Proceedings of the 21st ICDE

[2] Strehl, A. & Ghosh, J. (2003) ”Cluster ensembles—a knowledge reuse framework for combining multiple
partitions”. The Journal of Machine Learning Research (3):583-617.

[3] Brendel, W. & Todorovic, S. (2010) ”Segmentation as maximum-weight independent set”. Neural Informa-
tion Processing Systems

[4] Fisher, R.A. (1936) ”The use of multiple measurements in taxonomic problems”. Annual Eugenics (7) Part
II: 179-188

[5] Alimoglu, F. & Alpaydin, E. (1996) ”Methods of Combining Multiple Classifiers Based on Different Rep-
resentations for Pen-based Handwriting Recognition”. Proceedings of the Fifth Turkish Artificial Intelligence
and Artificial Neural Networks Symposium (TAINN 96)

[6] Franti, P. & Virmajoki, O. (2006) ”Iterative shrinking method for clustering problems”. Pattern Recognition
39 (5), 761-765

[7] Lloyd, S. P. (1982) ”Least squares quantization in PCM”. IEEE Transactions on Information Theory 28 (2):
129-137

[8] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu (1996) ”A density-based algorithm for discov-
ering clusters in large spatial databases with noise”. Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96)

[9] Fred, A.L.N. & Jain, A.K. (2002) ”Data clustering using evidence accumulation”. Proceedings of the
International Conference on Pattern Recognition(ICPR) 276-280

[10] Kirkpatrick, S. & Gelatt, C. D. & Vecchi, M. P. (1983). ”Optimization by Simulated Annealing”. Science
220 (4598): 671C680

[11] Vikas Singh & Lopamudra Mukherjee & Jiming Peng & Jinhui Xu (2008) ”Ensemble Clustering using
Semidefinite Programming”. Advances in Neural Information Processing Systems 20: 1353–1360

[12] Nguyen, N. & Caruana, R. (2007) ”Consensus clusterings”. IEEE International Conference on Data
Mining ICDM 2007 607–612

[13] X. Z. Fern & C. E. Brodley (2004) ”Solving cluster ensemble problems by bipartite graph partitioning”.
Proc. of International Conference on Machine Learning page 36

[14] Topchy, A. & Jain, A.K. & Punch, W. (2003) ”Combining multiple weak clusterings”. IEEE International
Conference on Data Mining, ICDM 2003 331–338

9

