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Abstract

Graph cut optimization is one of the standard workhorses of image segmentation since for
binary random field representations of the image, it gives globally optimal results and there
are efficient polynomial time implementations. Often, the random field is applied over a
flat partitioning of the image into non-intersecting elements, such as pixels or super-pixels.
In the paper we show that if, instead of a flat partitioning, the image is represented by a
hierarchical segmentation tree, then the resulting energy combining unary and boundary
terms can still be optimized using graph cut (with all the corresponding benefits of global
optimality and efficiency). As a result of such inference, the image gets partitioned into a
set of segments that may come from different layers of the tree.
We apply this formulation, which we call the pylon model, to the task of semantic seg-
mentation where the goal is to separate an image into areas belonging to different semantic
classes. The experiments highlight the advantage of inference on a segmentation tree (over
a flat partitioning) and demonstrate that the optimization in the pylon model is able to flex-
ibly choose the level of segmentation across the image. Overall, the proposed system has
superior segmentation accuracy on several datasets (Graz-02, Stanford background) com-
pared to previously suggested approaches.

1 Introduction

Semantic segmentation (i.e. the task of assigning each pixel of a photograph to a semantic class label) is
often tackled via a “flat” conditional random field model [10, 29]. This model considers the subdivision
of an image into small non-overlapping elements (pixels or small superpixels). It then learns and evaluates
the likelihood of each element as belonging to one of the semantic classes (unary terms) and combine these
likelihoods with pairwise terms that encourage neighboring elements to take the same labels, and in this way
propagates the information from elements that are certain about their labels to uncertain ones. The appeal of
the flat CRF model is the availability of efficient MAP inference based on graph cut [7], which is exact for
two-label problems with submodular pairwise terms [4, 16] and gets very close to global optima for many
practical cases of multi-label segmentation [31].

The main limitation of the flat CRF model is that since each superpixel takes only one semantic label, super-
pixels have to be small, so that they do not straddle class boundaries too often. Thus, the amount of visual
information inside the superpixel is limited. The best performing CRF models therefore consider wider local
context around each superpixel, but as the object and class boundaries are not known in advance, the support
area over which such context information is aggregated is not adapted. For this reason, such context-based
descriptors have limited repeatability and may not allow reliable classification. This is, in fact, a manifesta-
tion of a well-known chicken-and-egg problem between segmentation and recognition (given spatial support
based on proper segmentation, recognition is easy [20], but to get the proper segmentation prior recognition
is needed).

Recently, several semantic segmentation methods that explicitly interleave segmentation and recognition have
been proposed. Such methods [8, 11, 18] consider a large pool of overlapping segments that are much bigger
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Figure 1: Pool-based binary segmentation. For binary semantic segmentation, the pylon model is able
to find a globally optimal subset of segments and their labels (bottom row), while optimizing unary and
boundary costs. Here we show a result of such inference for images from each of the Graz-02 [23] datasets
(people and bikes – left, cars – right).

than superpixels in flat CRF approaches. These methods then perform joint optimization over the choice of
several non-overlapping segments from the pool and the semantic labels of the chosen segments. As a result,
in the ideal case, a photograph is pieced from a limited number of large segments, each of which can be
unambiguously assigned to one of the semantic classes, based on the information contained in it. Essentially,
the photograph is then “explained” by these segments that often correspond to objects or their parts. Such
scene explanation can then be used as a basis for more high-level scene understanding than just semantic
segmentation.

In this work, we present a pylon model for semantic segmentation which largely follows the pool-based
semantic segmentation approach from [8, 11, 18]. Our goal is to overcome the main problem of existing
pool-based approaches, which is the fact that they all face very hard optimization problems and tackle them
with rather inexact and slow algorithms (greedy local moves for [11], loose LP relaxations in [8, 18]). Our
aim is to integrate the exact and efficient inference employed by flat CRF methods with the strong scene
interpretation properties of the pool-based approaches.

Like previous pool-based approaches, the pylon model “explains” each image as a union of non-intersecting
segments. We achieve the tractability of the inference by restricting the pool of segments to come from a
segmentation tree. Segmentation trees have been investigated for a long time, and several efficient algorithms
have been developed [1, 2, 38, 27]. Furthermore, any binary unsupervised algorithm (e.g. normalized cut
[28]) can be used to obtain a segmentation tree via iterative application. As segmentation trees reflect the
hierarchical nature of visual scenes, algorithms based on segmentation-trees achieved very impressive results
for visual-recognition tasks [13, 22, 34]. For our purpose, the important property of tree-based segment pool
is that each image region is covered by segments of very different sizes and there is a good chance that one
such segment does not straddle object boundaries but is still big enough to contain enough visual information
for a reliable class identification.

Inference in pylons optimizes the sum of the real-valued costs of the segments selected to explain the im-
age. Similarly to random field approaches, pylons also include spatial smoothness terms that encourage
the boundary compactness of the resulting segmentations (this could be e.g. the popular contrast-dependent
Potts-potentials). Such boundary terms often remedy the imperfections of segmentation trees by propagating
the information from big segments that fit within object boundaries to smaller ones that have to supplement
the big segments to fit class boundaries accurately.

The most important advantage of pylons over previous pool-based methods [8, 11, 18] is the tractability of
inference. Similarly to flat CRFs, in the two-class (e.g. foreground-background) case, the globally optimal
set of segments can be found exactly and efficiently via graph cut (Figure 1). Such inference can then be
extended to multi-label problems via an alpha-expansion procedure [7] that gives solutions close to a global
optimum. Effectively, inference in pylons is as “easy” as in the flat CRF approach. We then utilize such a
“free lunch” to achieve a better than state-of-the-art performance on several datasets (Graz-02 datasets[23]
for binary label segmentations, Stanford background dataset [11] for multi-label segmentation). At least
in part, the excellent performance of our system is explained by the fact that we can learn both unary and
boundary term parameters within a standard max-margin approach developed for CRFs [32, 33, 35], which is
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not easily achievable with the approximate and slow inference in previous pool-based methods [17]. We also
demonstrate that the pylon model achieves higher segmentation accuracy than flat CRFs, or non-loopy pylon
models without boundary terms, given the same features and the same learning procedure.

Other related work. The use of segmentation trees for semantic segmentation has a long history. The
older works of [5] and [9] as well as a recent work [22] use a sequence of top-down inference processes
on a segmentation tree to infer the class labels at the leaf level. Our work is probably more related to the
approaches performing MAP estimation in tree-structured/hierarchical random fields. For this, Awasthi et
al. [3], Reynolds and Murphy [25] and Plath et al. [24] use pure tree-based random fields without boundary
terms, while Schnitzspan et al. [26] and Ladicky et al. [19] incorporate boundary terms and perform semantic
segmentation at different levels of granularity. The weak consistency between levels is then enforced with
higher-order potentials. Overall, our philosophy is different from all these works as we obtain an explicit
scene interpretation as a union of few non-intersecting segments, while the tree-structured/hierarchical CRF
works assign class labels and aggregate unary terms over all segments in the tree/hierarchy. Our inference
however is similar to that of [19]. In fact, while below we demonstrate how inference in pylons can be
reduced to submodular pseudo-boolean quadratic optimization, it can also be reduced to the hierarchical
associative CRFs introduced in [19]. We also note that another interesting approach to joint segmentation
and classification based on this class of CRFs has been recently proposed by Singaraju and Vidal [30].

2 Random fields, Pool-based models, and Pylons

We now derive a joint framework covering the flat random field models, the preceding pool-based models,
and the pylon model introduced in this paper.

We consider a semantic segmentation problem for an image I and a set of K semantic classes, so that each
part of the image domain has to be assigned to one of the classes. Let S = {Si|i = 1 . . . N} be a pool of
segments, i.e. a set of sub-regions of the image domain. For a traditional (flat) random field approach, this
pool comes from an image partitioned into is a set of small non-intersecting segments (or pixels); in the case
of the pool-based models this is an arbitrary set of many segments coming from multiple flat segmentations
[18] or explored via local moves [11]. In the pylon case, S contains all segments in a segmentation tree
computed for an image I .

A segmentation f then assigns each Si an integer label fi within a range from 0 to K. A special label fi=0
means that the segment is not included into the segmentation, while the rest of the labels mean that the
segment participates in the explanation of the scene and is assigned to a semantic class fi. Not all labelings
are consistent and correspond to valid segmentations. First of all, the completeness constraint requires that
each image pixel p is covered by a segment with non-zero label:

∀p ∈ I, ∃i : Si 3 p, fi > 0 (1)
For the flat random field case, this means that zero labels are prohibited and each segment has to be assigned
some non-zero label. For pool-based methods and the pylon model, this is not the case as each pixels has a
multitude of segments in S covering it. Thus, zero labels are allowed. Furthermore, non-zero labels should
be controlled by the non-overlap constraint requiring that overlapping segments cannot take non-zero labels:

∀i 6= j : Si ∩ Sj 6= ∅ ⇒ fi · fj = 0 . (2)
Once again, the constraint (2) is not needed for flat CRFs as their pools do not contain overlapping segments.
It is, however, non-trivial for the existing pool-based models and for the pylon model, where overlapping
(nested) segments exist. Under the constraints (1) and (2), each pixel p in the image is covered by exactly
one segment with non-zero label and we define the number of this segment as i(p). The semantic label f(p)
of the pixel p is then determined as fi(p).

To formulate the energy function, we define the set of real-valued unary terms Ui(fi), where each Ui specifies
the cost of including a segment Si into the segmentation with the label fi > 0. Furthermore, we associate
the non-negative boundary cost Vpq with any pair of pixels adjacent in the image domain (p, q) ∈ N . For
any segmentation f we then define the boundary cost as the sum of boundary costs over the sets of adjacent
pixel pairs (p, q) that straddle the boundaries between classes induced by this segmentation (i.e. (p, q) ∈
N : f(p) 6= f(q)). In other words, the boundary terms are accumulated along the boundary between pool
segments that are assigned different non-zero semantic labels.

Overall, the energy that we are interested in, is defined as:

E(f) =
∑

i∈1..N |fi>0

Ui(fi) +
∑

(p,q)∈N :f(p)6=f(q)

Vpq (3)
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Figure 2: Inference in the Pylon model(best viewed in color.): a tree segmentation of an image (left) and
a corresponding graphical model for the 2-class pylon (right). Each pair of nodes in the graphical model
correspond to a segment in a segmentation tree, while each edge corresponds to the pairwise term in the
pseudo-boolean energy (9)–(10). Blue edges (4) enforce the segment cost potentials (U -terms) as well as
consistency of x (children of a shaded node have to be shaded). Red edges (6) and magenta edges (7)
enforce non-overlap and completeness. Green edges (8) encode boundary terms. Shading gives an example
valid labeling for x variables (xti=1 are shaded). Left – the corresponding semantic segmentation on the
segmentation tree consisting of three segments is highlighted.

and we wish to minimize this subject to the constraints (1) and (2). The energy (3) contains the contribution
of unary terms only from those segments that are selected to explain the image (fi > 0).

Note that the energy functional has the same form as that of a traditional random field (with weighted Potts
boundary terms). The pool-based model in [18] is also similar, but lacks the boundary terms. It is well-known
that for flat random fields, the optimal segmentation f in the binary case K = 2 with Vpq ≥ 0 can be found
with graph cut [7, 12, 16]. Furthermore, for K > 2 one can get very close to global optimum (within a factor
2 with guarantee [7], but much closer in practice [31]) by applying graph cut-based alpha-expansions [7].

For pylons as well as for the pool-based approaches [11, 18], the segment pool is much richer. As a con-
sequence, the constraints (1) and (2) that are trivial to enforce in the case of the flat random field, become
non-trivial. In the next section, we demonstrate that in the case of a tree-based pool of segments (pylon
model), one still can find the globally optimal f in the case K = 2 and Vpq ≥ 0, and use alpha-expansions in
the case K > 2.

1-class model. Before discussing the inference and learning in the pylon model, we briefly introduce a
modification of the generic model derived above, which we call a 1-class model. A 1-class model can be
used for semantic foreground-background segmentation tasks (e.g. segmenting out people in an image). The
2-class model defined in (1)–(3) for K = 2 can of course also be used for this purpose. The difference is
that the 1-class model treats the foreground and background in an asymmetric way. Namely, for 1-class case
the labels xi can only take the values of 0 or 1 (i.e. K=1) and the completeness constraint (1) is omitted. As
such, each segmentation f defines the foreground as a set of segments with fi=1 and the semantic label of
a pixel f(p) is defined to be 1 if p belongs to some segment Si with fi = 1 and f(p) = 0 otherwise. In a
1-class case, each segment has thus a single unary cost Ui = Ui(1) associated with it. The energy remains
the same as in (3).

For the flat random field case, the 1-class and 2-class models are equivalent (one can just define U 1class
i =

U 2class
i (2)− U 2class

i (1) to get the same energy upto an additive constant). For pool-based models and pylons,
this is no longer the case, and the 1-class model is non-trivially different from the 2-class model. Intuitively,
a 1-class model only “explains” the foreground as a union of segments, while leaving the background part
“unexplained”. As shown in our experiments, this may be beneficial e.g. when the visual appearance of
foreground is more repeatable than that of the background.

3 Inference in pylon models

Two-class case. We first demonstrate how the energy (3) can be globally minimized subject to (1)–(2) in the
case of a tree-based pool and K = 2. Later, we will outline inference in the case K > 2 and in the case of
a 1-class model K = 1. For each segment number i = 1..N we define p(i) to be the number of its parent
segment in a tree. We further assume that the first L segments correspond to leaves in the segmentation tree
and that the last segment SN is the root (i.e. the entire image).
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For each segment i, we introduce two binary variables x1i and x2i indicating whether the segment falls entirely
into the segment assigned to class 1 or 2. The exact semantic meaning and relation to variables f of these
labels is as follows: xti equals 1 if and only if one of its ancestors j up the tree (including the segment i
itself) has a label fj = t. We now re-express the constraints (1)–(2) and the energy (3) via a real valued (i.e.
pseudo-boolean) energy of the newly-introduced variables that involve pairwise terms only (Figure 2).

First of all, the definition of the x variables implies that if xti is zero, then xtp(i) has to be zero as well.
Furthermore, if xti = 1 and xtp(i) = 0 implies that the segment i has a label fi = t (incurring the cost Ui(t) in
(3)). These two conditions can be expressed with the bottom-up pairwise term on the variables xti and xtp(i)
(one term for each t = 1, 2):

Et
i (0, 0) = 0, Et

i (0, 1) = +∞, Et
i (1, 0) = Ui(t), E

t
i (1, 1) = 0 . (4)

These potentials express almost all unary terms in (3) except for the unary term for the root node, that can be
expressed as a sum of two unary terms on the new variables (one term for each t = 1, 2):

Et
N (0) = 0, Et

N (1) = UN (t) . (5)

The non-overlap constraint (2) can be enforced by demanding that at most one of x1i and x2i can be 1 at
the same time (as otherwise there are two segments with non-zero f -variables that overlap), introducing the
following exclusion pairwise term on the variables x1i and x2i :

EEXC
i (0, 0) = EEXC

i (0, 1) = EEXC
i (1, 0) = 0, EEXC

i (1, 1) = +∞ . (6)

The completeness constraint (1) can be expressed by demanding that each leaf segment is covered by either
an ancestor segment with label 1 or with label 2. Consequently, in the leaf node, at least one of x1i and x2i has
to be 1, hence the following pairwise completeness potential for all leaf segments i = 1..L:

ECPL
i (0, 0) = +∞, ECPL

i (0, 1) = ECPL
i (1, 0) = ECPL

i (1, 1) = 0 . (7)

Finally, the only unexpressed part of the optimization problem is the boundary term in (3). To express the
boundary term, we consider the set P of pairs of numbers of adjacent leaf segments. For each such pair (i, j)
of leaf segments (Si, Sj) we consider all pairs of adjacent pixels (p, q). The boundary cost Vij between Si

and Sj is then defined as the sum of pixel-level pairwise costs Vij =
∑
Vpq over all pairs of adjacent pixels

(p, q) ∈ N such that p ∈ Si and q ∈ Sj or vice versa (i.e. p ∈ Sj and q ∈ Si). The boundary terms can then
be expressed with pairwise terms over variables x1i and x1j for all (i, j) ∈ P:

EBND
ij (0, 0) = EBND

ij (1, 1) = 0, EBND
ij (0, 1) = EBND

ij (1, 0) = Vij . (8)

Overall, the constrained minimization problem (1)–(3) for the variables f , is expressed as the unconstrained
minimization of the following energy of boolean variables x1,x2:

E(x1,x2) =
∑
t=1,2

N−1∑
i=1

Et
i (x

t
i, x

t
p(i)) +

∑
t=1,2

Et
N (xtN ) +

∑
(i,j)∈P

EBND
i,j (x1i , x

1
j ) + (9)

N∑
i=1

EEXC
i (x1i , x

2
i ) +

L∑
i=1

ECPL
i (x1i , x

2
i ) (10)

The energy (9)–(10) contains two parts. The pairwise terms in the first part (9) involve only such pairs of
variables that both terms come either from x1 set or from x2 set. All the pairwise terms in (9) are submodular,
i.e. they obey E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0). The pairwise terms in the second part (10) involve
only such pairs of variables where one term comes from the x1 set and the other from the x2 set. All terms
in (10) are supermodular, i.e. obey E(0, 0) + E(1, 1) ≥ E(0, 1) + E(1, 0).

Thus, in the energy (9)–(10), submodular terms act within x1 and x2 sets of variables and supermodular
terms act only across the two sets. One can then perform a variable substitution x2 = 1 − x̃2, and get a
new energy function E(x1, x̃2). During the substitution, the terms (9) remain submodular, while the terms
(10) change from being supermodular to being submodular in the new variables. As a result, one gets a
pseudo-boolean pairwise energy with submodular terms only, which can therefore be minimized exactly and
in a low-polynomial in N time through the graph cut in a specially constructed graph [4, 6, 16]. Given the
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Figure 3: Several examples from the Stanford background dataset [11], where the ability of the pylon model
(middle row) to choose big enough segments allowed it to obtain better semantic segmentation compared to
a flat CRF defined on leaf segments (bottom row). Colors: grey=sky, olive=tree, purple=road, green=grass,
blue=water, red=building, orange=foreground.

optimal values for x1 and x̃2, it is trivial to infer the optimal values for x2 and ultimately for the f variables
(for the latter step one goes up the tree and set fi = t whenever xti = 1 and xtp(i) = 0).

One-class case. Inference in the one-class case is simpler that in the two-class case. As one may expect, it
is sufficient to introduce just a single set of binary variables {xi1} and omit the pairwise terms (6) and (7)
altogether. The resulting energy function is then:

E(x1) =

N−1∑
i=1

E1
i (x1i , x

1
p(i)) + E1

N (x1N ) +
∑

(i,j)∈P

EBND
i,j (x1i , x

1
j ) (11)

In this case, the non-overlap constraint is enforced by infinite terms within (4). The pseudo-boolean energy
(11) is submodular and, hence, can be optimized directly via graph cut.

Multi-class case. As in the flat CRF case, the alpha-expansion procedure [7] can be used to extend the 2-class
inference procedure to the case K > 2. Alpha-expansion is an iterative convergent process, where 2-class
inference is applied at each iteration. In our case, given the current labeling f , and a particular α ∈ 1 . . .K,
each segment has the following three options: (1a) a segment with the non-zero label can retain it (1b) a
segment with zero label can change it to the current non-zero label of its ancestor (if any), (2) label fi can
be changed to α, (3) label fi can be changed to 0 (or kept at 0 if already there). Thus, each step results in
the 2-class inference task, where U and V potentials of the 2-class inference are induced by the U and V
potentials of the multi-label problem (in fact, some boundary terms then become asymmetric if one of the
adjacent segments have the current label α. We do not detail this case here since it is handled in exactly the
same way as in [7]). Alpha-expansion then performs a series of 2-class inferences for α sweeping the range
1 . . .K multiple times until convergence.

4 Implementation and Experiments

Segmentation tree. For this paper, we used the popular segmentation tree approach [2] that is based on the
powerful pPb edge detector and is known to produce high-quality segmentation trees. The implementation
[2] is rather slow (orders of magnitude slower than our inference) and we plan to explore faster segmentation
tree approaches.

Features. We use the following features to describe a segment Si: (1) a histogram hSIFT
i of densely sampled

visual SIFT words computed with vl feat [36]. We use a codebook of size 512, and soft-assign each word
to the 5 nearest codewords via the locality-constrained linear coding [39]; (2) a histogram hCOL

i of RGB colors
(codebook size 128; hard-assignment); (3) a histogram hLOC

i of locations (where each pixel corresponds to a
number from 1 to 36 depending on its position in a uniform 6 × 6 grid; (4) the “contour shape” descriptor
hSHP
i from [13] (a binned histogram of oriented pPb edge detector responses). Each of the four histograms is
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then normalized and mapped by a non-linear coordinate-wise mapping H(·) to a higher-dimensional space,
where the inner product (linear kernel) closely approximates the χ2-kernel in the original space [37]. The
unary term U t

i is then computed as a scalar product of the stacked descriptor and the parameter weight vector
wt

U :
U t
i = si ·

[
H(hSIFT

i )T H(hCOL
i )T H(hLOC

i )T H(hSHP
i )T 1

]
· wt

U . (12)
Note, that each unary term is also multiplied by si, which is the size of the segment Si. Without such
multiplication, the inference process would be biased towards small segments (leaves in the segmentation
trees).

The boundary cost for a pair of pixel (p, q) ∈ N is set based on the local boundary strength ∆pq estimated
with gPb edge detector. The exact value of Vpq is then computed as a linear combination of exponentiated
∆pq with several bandwidths:

Vpq =

[
exp

(
−∆pq

10

)
exp

(
−∆pq

40

)
exp

(
−∆pq

100

)
1

]
· wV (13)

We discuss the learning of parameters w below. The meta-parameters (codebook sizes, number of words in
soft-assignment, number of bins for location and contour shape descriptors, bandwidths) were not tweaked
(we set them based on previous experience and have not tried other values).

Max-margin learning parameters. Denote by w = [w1
U , . . . , w

K
U , wV ], wV ≥ 0 the parameter of the

pylon model (x̂1(w), x̂2(w)), defined as the minimizer of the energy E(x1,x2) given in (9)–(10). The
goal is to find a parameter w such that (x̂1(w), x̂2(w)) has a small Hamming distance ∆(x̂1(w), x̂2(w))
to the segmentation x̄1, x̄2 of a training image. The Hamming distance is simply the number of pixels
incorrectly labeled. To obtain a convex optimization problem and regularize its solution, we use the large
margin formulation of [33, 14]. The first step is to rewrite the optimization task (9)–(10) as:

(x̂1(w), x̂2(w)) = argmax
x1,x2

−E(x1,x2) = argmax
x1,x2

F (x1,x2) + 〈Ψ(x1,x2),w〉, (14)

where Ψ(x1,x2) is a concatentation of the summed coefficients of (12) and (13) and F (x1,x2) accounts for
the terms of E(x1,x2) that do not depend on w. Then margin rescaling [14] is used to construct a convex
upper bound of the Hamming loss ∆(x̂1(w), x̂2(w)):

∆′(w) = max
x1,x2

∆(x1,x2) + F (x1,x2) − F (x̄1, x̄2) + 〈Ψ(x1,x2),w〉 − 〈Ψ(x̄1, x̄2),w〉 (15)

The function ∆′(w) is convex because it is the upper envelope of a family of planes, one for each set-
ting of x1,x2. This allows to learn the parameter w as the minimizer of the convex objective function
λ‖w‖2/2 + ∆′(w), where λ controls overfitting. Optimization uses the cutting plane algorithm described
in [14], which gradually approximates ∆′(w) by selecting a small representative subset of the exponential
number of planes that figure in (15). These representative planes are found by maximizing (15), which can
be done by the algorithm described in Sect. 3 after accounting for the loss ∆(x1,x2) in a suitable adjustment
of the potentials.

Datasets. We consider the three Graz-02 datasets [23] that to the best of our knowledge represent the
most challenging datasets for semantic binary (foreground-background) segmentation. Each Graz-02 dataset
has one class of interest (bicycles, cars, and people). The datasets are loosely annotated at the pixel level.
Previous methods reported performance for the fixed splits including 150 training and 150 testing images.
The customary performance measure is the equal recall-precision rate averaged over all pixels in the test
set. In general, when trained with Hamming loss, our method produces recall slightly lower than precision.
We therefore retrained our system with weighted Hamming loss (so that false negatives are penalized higher
than false positive), tuning the balancing constant to achieve approximately equal recall and precision (an
alternative would be to use parametric maxflow [15]).

We also consider the Stanford background dataset [11] containing 715 images of outdoor scenes with pixel-
accurate annotations into 8 semantic classes (sky, tree, road, grass, water, building, mountain, and foreground
object). Similar to previous approaches, we report the percentage of correctly labeled pixels on 5 random
splits of a fixed size (572 training, 143 testing).

Results. We compare the performance of our system with the state-of-the-art in Table 1. We note that our
approach performs considerably better than state-of-the-art including the CRF-based method [10], the pool-
based methods [11, 18], and the approach based on the same gPb-based tree [22]. There are probably three
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Graz-02 dataset [23] equal recall-precision
Method Bikes Cars People

Marszalek&Schmid [21] 53.8 44.1 61.8
Fulkerson et al. [10] 72.2 72.2 66.3

1-class pylon 83.4 84.9 81.5
2-class pylon 83.7 83.3 82.5

Stanford background dataset [11]
Method correct %

Gould et al. [11] 76.4± 1.22
Munoz et al. [22] 76.9

Kumar&Koller [18] 79.42± 1.41
8-class pylon 81.90± 1.09

Table 1: Comparison with state-of-the-art. Left – equal recall-precision on the Graz datasets (pylon models
were trained with class-weighted Hamming loss to achieve approximately equal recall-precision). Right
– percentage of correctly labelled pixels on the Stanford dataset. For all datasets, our systems achieves a
considerable improvement over the state-of-the-art.

Model Graz-02 Bikes Graz-02 Cars Graz-02 People Stanford background
rec. prec. Ham. rec. prec. Ham. rec. prec. Ham. mean diff. to full

1-class pylon 80.8 86.9 7.7 81.7 87.0 3.1 77.3 85.0 6.4 – –
2/8-class pylon 81.2 86.1 7.8 80.4 85.6 3.4 78.7 84.4 6.3 81.90 0.00± 0.00
Flat CRF – 0 79.4 83.8 8.8 80.7 86.8 3.3 73.7 79.8 7.9 80.07 −1.84± 0.15
Flat CRF – 20 81.3 84.6 8.2 81.1 83.7 3.6 76.7 80.7 7.3 81.13 −0.78± 0.42
Flat CRF – 40 78.3 85.4 8.6 81.2 82.1 3.8 76.0 80.6 7.4 80.25 −1.65± 0.69
Flat CRF – 60 71.2 84.2 10.3 79.5 80.8 4.1 71.6 79.0 8.4 77.99 −3.91± 0.74
Flat CRF – 80 64.5 81.1 12.4 74.7 76.8 4.9 68.9 80.2 8.4 75.01 −6.89± 0.47

1-class pylon (no bnd) 78.3 85.7 8.5 76.7 83.9 3.9 76.3 84.9 6.6 – –
2/8-class pylon (no bnd) 79.6 85.7 8.3 77.9 84.0 3.8 76.6 82.9 6.9 81.29 −0.62± 0.24

Table 2: Comparison with baseline methods with the same features and the same training procedure (un-
weighted Hamming loss was used in all cases). ’Flat CRF – X’ correspond to flat random fields trained and
evaluated on the segmentations obtained by thresholding the segmentation tree at level X. The last two lines
correspond to the pylon model trained and evaluated with boundary terms disabled. For Graz-02, recall,
precision and Hamming error for the predefined splits are given. For Stanford background, % of correctly-
labeled pixels is measured over 5 random splits, then the mean and the difference to the full pylon model are
given. For all datasets, the full pylon models perform better than the baselines (the best baseline for each
dataset is underlined).

reasons for this higher performance: superior features, a superior learning procedure, and a superior model
(pylon).

To clarify what is the benefit of the pylon model alone, we perform an extensive comparison with baselines
(Table 2). We compare with the flat CRF approaches, where the partitions are obtained by thresholding the
segmentation tree at different levels. We also determine the benefit of having boundary terms by comparing
with the pylon model without these terms. All baseline models used the same features and the same max-
margin learning procedure. The full pylon model performs better than baselines, although the advantage is
not as large as that over the preceding methods.

Efficiency. The runtime of the entire framework is dominated by the pre-computation of segmentation trees
and the features. After such pre-computation, our graph cut inference is extremely fast: less than 0.1s per
image/label which is orders of magnitude faster than inference in previous pool-based methods. Training the
model (after the precomputation) takes 85 minutes for one split of the Stanford background dataset (compared
to 55 minutes for the flat CRF).

5 Discussion

Despite a very strong performance of our system in the experiments, we believe that the main appeal of the
pylon model is in the combination of interpretability, tractability, and flexibility. The interpretability is not
adequately measured by the quantitative evaluation, but it may be observed in qualitative examples (Figures
1 and 3), where many segments chosen by the pylon model to “explain” a photograph correspond to objects
or their high-level parts. The pylon model generalizes the flat CRF model for semantic segmentation that
operates with small low-level structural elements. Notably, despite such generalization, the inference and
max-margin learning in the pylon model is as easy as in the flat CRF model.
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