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Abstract

In the vast majority of recent work on sparse estimation algorithms, performance
has been evaluated using ideal or quasi-ideal dictionaries(e.g., random Gaussian
or Fourier) characterized by unitℓ2 norm, incoherent columns or features. But in
reality, these types of dictionaries represent only a subset of the dictionaries that
are actually used in practice (largely restricted to idealized compressive sensing
applications). In contrast, herein sparse estimation is considered in the context
of structured dictionaries possibly exhibiting high coherence between arbitrary
groups of columns and/or rows. Sparse penalized regressionmodels are analyzed
with the purpose of finding, to the extent possible, regimes of dictionary invari-
ant performance. In particular, a Type II Bayesian estimator with a dictionary-
dependent sparsity penalty is shown to have a number of desirable invariance
properties leading to provable advantages over more conventional penalties such
as theℓ1 norm, especially in areas where existing theoretical recovery guarantees
no longer hold. This can translate into improved performance in applications such
as model selection with correlated features, source localization, and compressive
sensing with constrained measurement directions.

1 Introduction

We begin with the generative model
Y = ΦX0 + E , (1)

whereΦ ∈ R
n×m is a dictionary of basis vectors or features,X0 ∈ R

m×t is a matrix of unknown
coefficients we would like to estimate,Y ∈ R

n×t is an observed signal matrix, andE is a noise
matrix with iid elements distributed asN (0, λ). The objective is to estimate the unknown genera-
tive X0 under the assumption that it is row-sparse, meaning that many rows of X0 have zero norm.
The problem is compounded considerably by the additional assumption thatm > n, meaning the
dictionaryΦ is overcomplete. Whent = 1, this then reduces to the canonical sparse estimation of
a coefficient vector with mostly zero-valued entries or minimal ℓ0 norm [7]. In contrast, estimation
of X0 with t > 1 represents the more general simultaneous sparse approximation problem [6, 15]
relevant to numerous applications such as compressive sensing and multi-task learning [9, 16], man-
ifold learning [13], array processing [10], and functionalbrain imaging [1]. We will consider both
scenarios herein but will primarily adopt the more general notation of thet > 1 case.

One possibility for estimatingX0 involves solving

min
X

‖Y − ΦX‖2F + λd(X), λ > 0, d(X) ,

m∑

i=1

I [‖xi·‖ > 0] , (2)

where the indicator functionI [‖x‖ > 0] equals one if‖x‖ > 0 and equals zero otherwise (‖x‖
is an arbitrary vector norm).d(X) penalizes the number of rows inX that are not equal to zero;
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for nonzero rows there is no additional penalty for large magnitudes. Moreover, it reduces to theℓ0
norm whent = 1, i.e.,d(x) = ‖x‖0, or a count of the nonzero elements in the vectorx. Note that
to facilitate later analysis, we definex·i as thei-th column of matrixX whilexi· represents thei-th
row. For theoretical inquiries or low-noise environments,it is often convenient to consider the limit
asλ → 0, in which case (2) reduces to

min
X

d(X), s.t.ΦX0 = ΦX. (3)

Unfortunately, solving either (2) or (3) involves a combinatorial search and is therefore not tractable
in practice. Instead, a family of more convenient sparse penalized regression cost functions are re-
viewed in Section 2. In particular, we discuss conventionalType I sparsity penalties, such as theℓ1
norm and theℓ1,2 mixed norm, and aType II empirical Bayesian alternative characterized by dictio-
nary dependency. When the dictionaryΦ is incoherent, meaning the columns are roughly orthogonal
to one another, then certain Type I selections are well-known to produce good approximations ofX0

via efficient implementations. However, as discussed in Section 3, more structured dictionary types
can pose difficulties. In Section 4 we analyze the underlyingcost functions of Type I and Type II,
and demonstrate that the later maintains several properties that suggest it will be robust to highly
structured dictionaries. Brief empirical comparisons arepresented in Section 5.

2 Estimation via Sparse Penalized Regression

Directly solving either (2) or (3) is intractable, so a variety of approximate methods have been
proposed. Many of these can be viewed simply as regression with a sparsity penalty convenient for
optimization purposes. The general regression problem we consider here involves solving

min
X

‖Y − ΦX‖2F + λg(X), (4)

whereg is some penalty function of the row norms. Type I methods use aseparable penalty of the
form

g(I)(X) =
∑

i

h (‖xi·‖2) , (5)

whereh is a non-decreasing, typically concave function.1 Common examples includeh(z) =
zp, p ∈ (0, 1] [11] andh(z) = log(z+α), α ≥ 0 [4]. The parametersp andα are often heuristically
selected on an application-specific basis. In contrast, Type II methods, with origins as empirical
Bayesian estimators, implicitly utilize a more complicated penalty function that can only be ex-
pressed in a variational form [18]. Herein we will consider the selection

g(II) (X) , min
Γ�0

Tr
[
XTΓ−1X

]
+ t log

∣∣αI +ΦΓΦT
∣∣ , α ≥ 0, (6)

whereΓ is a diagonal matrix of non-negative variational parameters [14, 18]. While less transparent
than Type I, it has been shown that (6) is a concave non-decreasing function of each row norm ofX,
hence it promotes row sparsity as well. Moreover, the dictionary-dependency of this penalty appears
to be the source of some desirable invariance properties as discussed in Section 4. Analogous to (3),
for analytical purposes all of these methods can be reduced asλ → 0 to solving

min
X

g(X) s.t.ΦX0 = ΦX. (7)

3 Structured Dictionaries

It is now well-established that when the dictionaryΦ is constructed with appropriate randomness,
e.g., iid Gaussian entries, then for certain choices ofg, in particular the convex selectiong(X) =∑

i ‖xi·‖2 (which represents a generalization of theℓ1 vector norm to row-sparse matrices), we
can expect to recoverX0 exactly in the noiseless case or to close approximation otherwise. This
assumes thatd(X0) is sufficiently small relative to some function of the dictionary coherence or a
related measure. However, with highly structured dictionaries these types of performance guarantees
completely break down.

1Other row norms, such as theℓ∞, have been considered as well but are less prevalent.
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At the most basic level, one attempt to standardize structured dictionaries is by utilizing some form
of column normalization as a pre-processing step. Most commonly, each column is scaled such that
it has unitℓ2 norm. This helps ensure that no one column is implicitly favored over another during
the estimation process. However, suppose our observation matrix is generated viaY = ΦX0, where
Φ = Φ̃D+σabT , Φ̃ is some well-behaved, incoherent dictionary,D is a diagonal matrix, andσabT

represents a rank one adjustment. If we apply column normalization to remove the effect ofD, the
resulting scale factors will be dominated by the rank one term whenσ is large. But if we do not
column normalize, thenD can completely bias the estimation results.

In general, if our given dictionary is effectivelyW Φ̃D, with W an arbitrary invertible matrix that
scales and correlates rows, andD diagonal, the combined effect can be severely disruptive. As
an example from neuroimaging, the MEG/EEG source localization problem involves estimating
sparse neural current sources within the brain using sensors placed near the surface of the scalp.
The effective dictionary or forward model is characterizedby highly correlated rows (because the
sensors are physically constrained to be near one another) and columns with drastically different
scales (since deep brain sources produce much weaker signals at the surface than superficial ones).
More problematic is the situation whereΦ = Φ̃S, since an unrestricted matrixS can introduce
arbitrary coherence structure between individual or groups of columns inΦ, meaning the structure
of Φ is now arbitrary regardless of how well-behaved the original Φ̃.

4 Analysis

We will now analyze the properties of both Type I and Type II cost functions when coherent or highly
structured dictionaries are present. Ideally, we would like to arrive at algorithms that are invariant,
to the extent possible, to dictionary transformations thatwould otherwise disrupt the estimation
efficacy. For simplicity, we will primarily consider the noiseless case, although we surmise that
much of the underlying intuition carries over into the noiseless domain. This strategy mirrors the
progression in the literature of previous sparse estimation theory related to theℓ1 norm [3, 7, 8]. All
proofs have been deferred to the Appendix, with some detailsomitted for brevity.

4.1 Invariance to W and D

We will first consider the case where the observation matrix is produced viaY = ΦX0 = W Φ̃DX0.
Later in Sections 4.2 and 4.3 we will then address the more challenging situation whereΦ = Φ̃S.

Lemma 1. Let W denote an arbitrary full-rankn × n matrix andD an arbitrary full-rankm ×m
diagonal matrix. Then withα → 0, the Type II optimization problem

min
X

g(II)(X) s.t.W Φ̃DX0 = W Φ̃DX (8)

is invariant toW andD in the sense that ifX∗ is a global (or local) minimum to (8), thenD−1X∗

is a global (or local) minimum when we optimizeg(II)(X) subject to the constraint̃ΦX0 = Φ̃X.

Therefore, while switching betweenΦ = W Φ̃D andΦ = Φ̃may influence the initialization and pos-
sibly the update rules of a particular Type II algorithm, it does not fundamentally alter the underlying
cost function. In contrast, Type I methods do not satisfy this invariance. Invariance is preserved with
aW factor in isolation. Likewise, inclusion of aD factor alone with column normalization leads to
invariance. However, inclusion of bothW andD together can be highly disruptive.

Note that for improving Type I performance, it is not sufficient to apply some row decorrelating and
normalizingŴ−1 toΦ and then column normalize with somêD−1. This is because the application
of D̂−1 will disrupt the effects ofŴ−1. But one possibility to compensate for dictionary structure is
to jointly learn aŴ−1 andD̂−1 that produces aΦ satisfying: (i)ΦΦT = CI (meaning rows have a
constantℓ2 norm ofC and are uncorrelated, (ii)‖φ·i‖2 = 1 for all i. Up to irrelevant scale factors, a
unique such transformation will always exist. In Section 5 we empirically demonstrate that this can
be a highly effective strategy for improving the performance of Type I methods. However, as a final
point, we should mention that the invariance Type II exhibits towardsW andD (or any corrected
form of Type I) will no longer strictly hold once noise is added.
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4.2 Invariance to S: The t > 1 Case (Simultaneous Sparse Approximation)

We now turn to the potentially more problematic scenario with Φ = Φ̃S. We will assume thatS
is arbitrary with the only restriction being that the resulting Φ satisfies spark[Φ] = n + 1, where
matrix spark quantifies the smallest number of linearly dependent columns [7]. Consequently, the
spark condition is equivalent to saying that eachn × n sub-matrix ofΦ is full rank. This relatively
weak assumption is adopted for simplicity; in many cases it can be relaxed.

Lemma 2. LetΦ be an arbitrary dictionary with spark[Φ] = n+1 andX0 a coefficient matrix with
d(X0) < n. Then there exists a constantρ > 0 such that the optimization problem (7), withg(X) =

g(II)(X) andα → 0, has no local minima and a unique, global solution atX0 if (x0)
T

i· (x0)j· ≤ ρ
for all i 6= j (i.e., the nonzero rows ofX0 are below some correlation threshold). Also, if we enforce
exactly zero row-wise correlations, meaningρ = 0, then a minimizing solutionX∗ will satisfy
‖x∗

i·‖2 = ‖(x0)i·‖2 for all i (i.e., a matching row-sparsity support), even ford(X0) ≥ n. This
solution will be unique wheneverΦX0X

T
0 Φ = ΦΓΦT has a unique solution for some non-negative,

diagonalΓ.2

Corollary 1. There will always exist dictionariesΦ and coefficientsX0, consistent with the con-
ditions from Lemma 2, such that the optimization problem (7)with any possibleg(X) of the form
g(I)(X) =

∑
i h (‖xi·‖2) will have minimizing solutions not equal toX0 (with or without column

normalization).

In general, Lemma 2 suggests that for estimation purposes uncorrelated rows inX0 can potentially
compensate for troublesome dictionary structure, and together with Corollary 1 it also describes a
potential advantage of Type II over Type I. Of course this result only stipulates sufficient conditions
for recovery that are certainly not necessary, i.e., effective sparse recovery is possible even with
correlated rows (more on this below). We also emphasize thatthe final property of Lemma 2 implies
that the row norms ofX0 (and therefore the row-sparsity support) can still be recovered even up
to the extreme case ofd(X0) = m > n. While this may seem surprising at first, especially since
even brute force minimization of (3) can not achieve a similar feat, it is important to keep in mind
that (3) is blind to the correlation structure ofX0. Although Type II does not explicitly require any
such structure, it is able to outperform (3) by implicitly leveraging this structure when the situation
happens to be favorable. While space prevents a full treatment, in the context of MEG/EEG source
estimation, we have successfully localized500 nonzero sources (rows) using a100×1000 dictionary.

However, what about the situation where strong correlations do exist between the nonzero rows of
X0? A couple things are worth mentioning in this regard. First,Lemma 2 can be strengthened
considerably via the expanded optimization problem:minX,B g(II)(X) s.t.ΦX0 = ΦXB, which
achieves a result similar to Lemma 2 but with a weaker correlation condition (although the row-
norm recovery property is lost). Secondly, in the case of perfect correlation between rows (the
hardest case), the problem reduces to an equivalent one witht = 1, i.e., it exactly reduces to the
canonical sparse recovery problem. We address this situation next.

4.3 Invariance to S: The t = 1 Case (Standard Sparse Approximation)

This section considers thet = 1 case, meaningY = y andX0 = x0 are now vectors. For
convenience, we defineX (S,P) as the set of all coefficient vectors inRm with support (or nonzero
coefficient locations) specified by the index setS ⊂ {1, . . . ,m} and sign pattern given byP ∈
{−1,+1}|S| (here the| · | operator denotes the cardinality of a set).

Lemma 3. Let Φ be an arbitrary dictionary with spark[Φ] = n + 1. Then for anyX (S,P) with
|S| < n, there exists a non-empty subsetX̄ ⊂ X (S,P) (with nonzero Lebesgue measure), such
that ifx0 ∈ X̄ , the Type II minimization problem

min
x

g(II)(x) s.t.Φx0 = Φx, α → 0 (9)

will have a unique minimum and it will be located atx0.
2See Appendix for more details about this condition. In most situations, it willhold if m < n(n + 1)/2,

and likely for many instances withm even greater than this.
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This Lemma can be obtained with a slight modification of results in [18]. In other words, no mat-
ter how poorly structured a particular dictionary is with regard to a given sparsity profile, there
will always be sparse coefficients we are guaranteed to recover (provided we utilize a convergent
algorithm). In contrast, an equivalent claim can not be madefor Type I:

Lemma 4. Given an arbitrary Type I penaltyg(I)(x) =
∑

i h(|xi|), with h a fixed, non-decreasing
function, there will always exist a dictionaryΦ (with or without normalized columns) and set
X (S,P) such that for anyx0 ∈ X (S,P), the problem

min
x

g(I)(x) s.t.Φx0 = Φx (10)

will not have a unique minimum located atx0.

This can happen because the global minimum does not equalx0 and/or because of the presence of
local minima. Of course this does not necessarily imply thata particular Type I algorithm will fail.
For example, even with multiple minima, an appropriate optimization strategy could conceivably
still locate an optimum that coincides withx0. While it is difficult to analyze all possible algorithms,
we can address one influential variety based on iterative reweightedℓ1 minimization [4, 18]. Here
the idea is that ifh is concave and differentiable, then a convergent means of minimizing (10) is to
utilize a first-order Taylor series approximation ofg(I)(x) at some point̂x. This leads to an iterative
procedure where at each step we must first computeh′

i , dh(z)/dz|z=|x̂i|
and then minimize∑

i h
′
i|xi| subject toΦx0 = Φx to updatex̂. This method produces a sparse estimate at each

iteration and is guaranteed to converge to a local minima (orstationary point) of (10). However, this
solution may be suboptimal in the following sense:

Corollary 2. Given an arbitraryg(I)(x) as in Lemma 4, there will always exist aΦ andX (S,P),
such that for anyx0 ∈ X (S,P), iterative reweightedℓ1 minimization will not converge tox0 when
initialized at the minimumℓ1 norm solution.

Note that this failure does not result from a convergence pathology. Rather, the presence of minima
different fromx0 explicitly disrupts the algorithm.

In general, with highly structured dictionaries deviatingfrom the ideal, the global minimum of con-
vex penalties often does not correspond withx0 as theoretical equivalence results break down. This
in turn suggests the use of concave penalty functions to seekpossible improvement. However, as
illustrated by the following result, even the simplest of sparse recovery problems, that of estimating
somex0 with only one nonzero element using a dictionary with a 1D null-space, Type I can be
characterized by problematic local minima with (strictly)concave penalties. For this purpose we
defineφ∗ as an arbitrary column ofΦ andΦ̄∗ as all columns ofΦ excludingφ∗.

Lemma 5. Let h denote a concave, non-decreasing function withh′
max , limz→0 dh(z)/dz and

h′
min , limz→∞ dh(z)/dz. Also, letΦ be a dictionary with unitℓ2 norm columns and spark[Φ] =

m = n+ 1 (i.e., a 1D null-space), and letx0 satisfy‖x0‖0 = 1 with associatedφ∗. Then the Type
I problem (10) can have multiple local minima if

h′
max

h′
min

> ‖Φ̄−1
∗ φ∗‖1. (11)

This result has a very clear interpretation related to how dictionary coherence can potentially disrupt
even the most rudimentary of estimation tasks. The righthand side of (11) is bounded from below by
1, which is approached whenever one or more columns in someΦ̄∗ are similar toφ∗ (i.e., coherent).
Thus, even the slightest amount of curvature (or strict concavity) inh can lead to the inequality being
satisfied when highly coherent columns are present. While obviously withh(z) = z this will not be
an issue (consistent with the well-known convexity of theℓ1 problem), for many popular non-convex
penalties, this gradient ratio may be large relative to the righthand side, indicating that local minima
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are always possible. For example, with theh(z) = log(z+α) selection from [4]h′
min → 0 for all α

while h′
max → 1/α. We note that Type II has provably no local minima in this regime (this follows

as a special case of Lemma 3). Of course the point here is not that Type I algorithms are incapable
of solving simple problems with‖x0‖0 = 1 (and any iterative reweightedℓ1 scheme will succeed
on the first step anyway). Rather, Lemma 5 merely demonstrates how highly structured dictionaries
can begin to have negative effects on Type I, potentially more so than with Type II, even on trivial
tasks. The next section will empirically explore this conjecture.

5 Empirical Results

We now present two simulation examples illustrating the potential benefits of Type II with highly
structured dictionaries. In the first experiment, the dictionary represents an MEG leadfield, which at
a high level can be viewed as a mapping from the electromagnetic (EM) activity withinm brain vox-
els ton sensors placed near the scalp surface. Computed using Maxwell’s equations and a spherical
shell head model [12], the resultingΦ is characterized by highly correlated rows, because the small
scalp surface requires that sensors be placed close together, and vastly different column norms, since
the EM field strength drops off rapidly for deep brain sources. These effects are well represented by a
dictionary such asΦ = W Φ̃D as discussed previously. Figure 1 (Left) displays trial-averaged results
comparing Type I algorithms with Type II using such an MEG leadfield dictionary. Data generation
proceeded as follows: We produceΦ by choosing 50 random sensor locations and 100 random vox-
els within the brain volume. We then create a coefficient matrix X0 with t = 5 columns andd(X0)
an experiment-dependent parameter. Nonzero rows ofX0 are drawn iid from a unit Gaussian distri-
bution. The observation matrix is then computed asY = ΦX0. We run each algorithm and attempt
to estimateX0, calculating the probability of success averaged over 200 trials asd(X0) is varied
from 10 to 50. We compared Type II, implemented via a simple iterative reweightedℓ2 approach,
with two different Type I schemes. The first is a homotopy continuation method using the Type I
penaltyg(I)(X) =

∑
i log(‖xi·‖22 +α), whereα is gradually reduced to zero during the estimation

process [5]. We have often found this to be the near optimal Type I approach on a variety empirical
tests. Secondly, we used the standard mixed-norm penaltyg(I)(X) = ‖X‖1,2 =

∑
i ‖xi·‖2, which

leads to a convex minimization problem that generalizes basis pursuit (or the lasso), to thet > 1
domain [6, 10].

While Type II displays invariance toW - andD-like transformations, Type I methods do not. Con-
sequently, we examined two dictionary-standardization methods for Type I. First, we utilized basic
ℓ2 column normalization, without which Type I will have difficulty with the vastly different column
scalings ofΦ. Secondly, we developed an algorithm to learn a transformeddictionaryÛΦΠ̂, with
Û arbitrary,Π̂ diagonal, such that the combined dictionary has uncorrelated, unitℓ2 norm rows, and
unit ℓ2 norm columns (as discussed in Section 4.1). Figure 1(left) contains results from all of these
variants, where it is clear that some compensation for the dictionary structure is essential for good
recovery performance. We also note that Type II still outperforms Type I in all cases, suggesting
that even after transformation of the latter, there is stillresidual structure in the MEG leadfield being
exploited by Type II. This is a very reasonable assumption given thatΦ will typically have strong
column-wise correlations as well, which are more effectively modeled by right multiplication by
someS. As a final point, the Type II success probability does not go to zero even whend(X0) = 50,
implying that in some cases it is able to find a number of nonzeros equal to the number of rows inΦ.
This is possible because even with onlyt = 5 columns, the nonzero rows ofX0 display somewhat
limited sample correlation, and so exact support recovery is still possible. Witht > 5 these sample
correlations can be reduced further, allowing consistent support recovery whend(X0) > n (not
shown).

To further test the ability of Type II to handle structure imposed by somẽΦS, we performed a
second experiment with explicitly controlled correlations among groups of columns. For each trial
we generated a50 × 100 Gaussian iid dictionarỹΦ. Correlations were then introduced using a
block-diagonalS with 4 × 4 blocks created with iid entries drawn from a uniform distribution
(between 0 and 1). The resultingΦ = Φ̃S was then scaled to have unitℓ2 norm columns. We
then generated a randomx0 vector (t = 1 case) using iid Gaussian nonzero entries withd(x0)
varied from10 to 25 (with t = 1, we cannot expect to recover as many nonzeros as whent = 5).
Signal vectors are computed asy = Φx0 or, for purposes of direct comparison with a canonical
iid dictionary,y = Φ̃x0. We evaluated Type II and the Type I iterative reweightedℓ1 minimization
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method from [4], which is guaranteed to do as well or better than standardℓ1 norm minimization.
Trial-averaged results using bothΦ andΦ̃ are shown in Figure 1(right), where it is clear that while
Type II performance is essentially unchanged, Type I performance degrades substantially.
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Figure 1:Left: Probability of success recovering coefficient matrices with varying degrees of row-
sparsity using an MEG leadfield as the dictionary. Two Type I methods were compared, a homotopy
continuation method from [5] and a version of basis pursuit extended to the simultaneous sparse
approximation problem by minmizing theℓ1,2 mixed norm [6, 10]. Type I methods were compared
using standardℓ2 column normalization and a learned invariance transformation. Right: Probability
of success recovering sparse vectors using a Gaussian iid dictionaryΦ̃ and a coherent dictionaryΦ
with clustered columns. The Type I method was the interactive reweightedℓ1 algorithm from [4].

6 Conclusion

When we are free to choose the basis vectors of an overcompletesignal dictionary, the sparse estima-
tion problem is supported by strong analytical and empirical foundations. However, there are many
applications where physical restrictions or other factorsimpose rigid constraints on the dictionary
structure such that the assumptions of theoretical recovery guarantees are violated. Examples in-
clude model selection problems with correlated features, source localization, and compressive sens-
ing with constrained measurement directions. This can havesignificant consequences depending
on how the estimated coefficients will ultimately be utilized. For example, in the source localiza-
tion problem, correlated dictionary columns may correspond with drastically different regions (e.g.,
brain areas), so recovering the exact sparsity profile can beimportant. Ideally we would like our
recovery algorithms to display invariance, to the extent possible, to the actual structure of the dic-
tionary. With typical Type I sparsity penalties this can be adifficult undertaking; however, with the
natural dictionary dependence of the Type II penalty, to some extent it appears this structure can be
accounted for, leading to more consistent performance across dictionary types.

Appendix

Here we provide brief proofs of several results from the paper. Some details have been omitted for
space considerations.

Proof of Lemma 1: First we address invariance with respect toW . Obviously the equality constraint
is unaltered by a full rankW , so it only remains to check that the dictionary-dependent penalty
g(II) is invariant. However, since by standard determinant relationshipslog |W Φ̃DΓDΦ̃TWT | =
log |W ||Φ̃DΓDΦ̃T ||WT | = log |Φ̃DΓDΦ̃T |+C, whereC is an irrelevant constant for optimization
purposes, this point is established. With respect toD, we re-parameterize the problem by defining
X̃ , DX andΓ̃ , DΓD. It is then readily apparent that the penalty (6) satisfies

g(II) (X) ≡ min
Γ�0

Tr
[
XTΓ−1X

]
+ log |Φ̃DΓDΦ̃T | = min

Γ̃�0
Tr

[
X̃T Γ̃−1X̃

]
+ log |Φ̃Γ̃Φ̃T |. (12)

So we are effectively solving:min
X̃
g(II)(X̃) s.t. Φ̃DX0 = Φ̃X̃. �

Proof of Lemma 2 and Corollary 1: Minimizing the Type II cost function can be accomplished
equivalently by minimizing
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L(Γ) , Tr
[
Φt−1X0X

T
0 Φ

T
(
ΦΓΦT

)−1
]
+ log |ΦΓΦT |, (13)

over the non-negative diagonal matrixΓ (this follows from a duality principle in Type II models
[18]). L(Γ) includes an observed covarianceΦt−1X0X

T
0 Φ

T and a parameterized model covariance
ΦΓΦT , and is globally minimized withΓ∗ = t−1diag[X0X

T
0 ] [17]. Moreover, ifΦΓ∗ΦT is suffi-

ciently close tot−1ΦX0X
T
0 Φ

T , meaning the off-diagonal elements ofX0X
T
0 are not too large, then

it can be shown by differentiating along the direction between any arbitrary pointΓ′ andΓ∗ that no
local minima exist, leading to the first part of Lemma 2.

Regarding the second part, we now allowd(X0) to be arbitrary but require thatX0X
T
0 be diagonal

(zero correlations). Using similar arguments as above, it is easily shown that any minimizing solu-
tion Γ∗ must satisfyΦΓ∗ΦT = Φt−1X0X

T
0 Φ

T . This equality can be viewed asn(n + 1)/2 linear
equations (equal to the number of unique elements in ann×n covariance matrix) andm unknowns,
namely, the diagonal elements ofΓ∗. Therefore, ifn(n + 1)/2 > m this system of equations will
typically be overdetermined (e.g., if suitable randomnessis present to avoid adversarial conditions)
with a unique solution. Moreover, because of the requirement thatΓ be non-negative, it is likely that
a unique solution will exist in many cases wherem is even greater thann(n+ 1)/2 [2].

Finally, we address Corollary 1. First, consider the case wheret = 1, soX0 = x0. To satisfy the
now degenerate correlation condition, we must haved(x0) = 1. Even in this simple regime it can be
demonstrated that a unique minimum atx0 is possible iffh(z) = z based on Lemma 5 (below) and a
complementary result in [17]. So the only Type I possibilityis h(z) = z. A simple counterexample
with t = 2 serves to rule this selection out. Consider a dictionaryΦ and two coefficient matrices
given by

Φ =

[
ǫ ǫ 1 1
1 −1 0 0
0 0 ǫ −ǫ

]
, X(1) =




1 1
1 −1
0 0
0 0


 , X(2) =




0 1
0 −1
ǫ 0
ǫ 0


 , (14)

It is easily verified thatΦX(1) = ΦX(2) and thatX(1) = X0, the maximally row-sparse
solution. Computing the Type I cost for each withh(z) = z gives g(I)(X(1)) = 2

√
2 and

g(I)(X(2)) = 2(1 + ǫ). Thus, if we allowǫ to be small,g(I)(X(2)) < g(I)(X(1)), soX(1) = X0

cannot be the minimizing solution. Note thatℓ2 column normalization will not change this
conclusion since all columns ofΦ have equal norm already. �

Proof of Lemma 4 and Corollary 2: For brevity, we will assume thath is concave and differentiable,
as is typical of most sparsity penalties used in practice (the more general case follows with some
additional effort). This of course includesh(z) = z, which is both concave and convex, and leads
to the ℓ1 norm penalty. These results will now be demonstrated using asimple counterexample
similar to the one above. Assume we have the dictionaryΦ from (14), and thatS = {1, 2} and
P = {+1,+1}, which implies that anyx0 ∈ X (S,P) can be expressed asx0 = [α1, α2, 0, 0]

T , for
someα1, α2 > 0. We will now show that with any member from this set, there will not be a unique
minimum to the Type I cost atx0 for any possible concave, differentiableh.

First assumeα1 ≥ α2. Consider the alternative feasible solutionx(2) = [(α1 − α2), 0, ǫα2, ǫα2]
T .

To check if this is a local minimum, we can evaluate the gradient of the penalty functiong(I)(x)
along the feasible region nearx(2). Givenv = [1, 1,−ǫ,−ǫ]T ∈ Null(Φ), this can be accomplished
by computing∂g(I)(x(2) +βv)/∂β = h′(|α1 −α2 +β|)+h′(|β|)+ 2ǫh′(|ǫα2 − ǫβ|). In the limit
asβ → 0 (from the right or left), this expression will always be positive for ǫ < 0.5 based on the
concavity ofh. Therefore,x(2) must be a minimum. By symmetry an equivalent argument can be
made whenα2 ≥ α1. (In the special case whereα1 = α2, there will actually exist two maximally
sparse solutions, the generatingx0 andx(2).) It is also straightforward to verify analytically that
iterative reweightedℓ1 minimization will fail on this example when initialized at the minimumℓ1
norm solution. It will always become trapped atx(2) after the first iteration, assumingα1 ≥ α2, or
a symmetric local minimum otherwise. �

Proof of Lemma 5: This result can be shown by examining properties of variousgradients along
the feasible region, not unlike some of the analysis above, and then bounding the resultant quantity.
We defer these details to a later publication. �
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