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Abstract

In the vast majority of recent work on sparse estimationrtigms, performance
has been evaluated using ideal or quasi-ideal dictionéigs, random Gaussian
or Fourier) characterized by uri§ norm, incoherent columns or features. But in
reality, these types of dictionaries represent only a dulifsthe dictionaries that
are actually used in practice (largely restricted to idmalicompressive sensing
applications). In contrast, herein sparse estimation isidered in the context
of structured dictionaries possibly exhibiting high catrere between arbitrary
groups of columns and/or rows. Sparse penalized regressidels are analyzed
with the purpose of finding, to the extent possible, reginfediciionary invari-
ant performance. In particular, a Type Il Bayesian estimaftith a dictionary-
dependent sparsity penalty is shown to have a number ofatdsiinvariance
properties leading to provable advantages over more ctionah penalties such
as thel; norm, especially in areas where existing theoretical regoguarantees
no longer hold. This can translate into improved perfornean@applications such
as model selection with correlated features, source at#n, and compressive
sensing with constrained measurement directions.

1 Introduction

We begin with the generative model
Y =0X,+¢, Q)

where® ¢ R™*™ is a dictionary of basis vectors or featurgég, € R™*? is a matrix of unknown
coefficients we would like to estimat®, ¢ R™*! is an observed signal matrix, agdis a noise
matrix with iid elements distributed &g'(0, A). The objective is to estimate the unknown genera-
tive X, under the assumption that it is row-sparse, meaning thay moavs of X, have zero norm.
The problem is compounded considerably by the additiorelragtion thatn > n, meaning the
dictionary ® is overcomplete. Wheh = 1, this then reduces to the canonical sparse estimation of
a coefficient vector with mostly zero-valued entries or miai ¢, norm [7]. In contrast, estimation
of Xy with ¢ > 1 represents the more general simultaneous sparse apptmirpeoblem [6, 15]
relevant to numerous applications such as compressivengearsd multi-task learning [9, 16], man-
ifold learning [13], array processing [10], and functioba&in imaging [1]. We will consider both
scenarios herein but will primarily adopt the more geneaghtion of thet > 1 case.

One possibility for estimating(, involves solving

m

min ||y — OX[|% +M(X), A>0, d(X)2) T[] > 0], 2)
=1

where the indicator functioff [||x|| > 0] equals one if|x|| > 0 and equals zero otherwisga]|
is an arbitrary vector norm)d(X) penalizes the number of rows i that are not equal to zero;
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for nonzero rows there is no additional penalty for large niagles. Moreover, it reduces to the
norm whent = 1, i.e.,d(x) = ||z||o, or a count of the nonzero elements in the veatoNote that
to facilitate later analysis, we defing; as thei-th column of matrixX while x;. represents theth
row. For theoretical inquiries or low-noise environmeiitss often convenient to consider the limit
asA — 0, in which case (2) reduces to

mind(X),  st.@Xp =X, ®3)

Unfortunately, solving either (2) or (3) involves a comhbinéal search and is therefore not tractable
in practice. Instead, a family of more convenient sparselmsd regression cost functions are re-
viewed in Section 2. In particular, we discuss conventidigpé | sparsity penalties, such as the
norm and the’; » mixed norm, and dype |l empirical Bayesian alternative characterized by dictio-
nary dependency. When the dictiondrys incoherent, meaning the columns are roughly orthogonal
to one another, then certain Type | selections are well-kntowproduce good approximations &f,

via efficient implementations. However, as discussed ini@e8, more structured dictionary types
can pose difficulties. In Section 4 we analyze the underlgiogt functions of Type | and Type I,
and demonstrate that the later maintains several propdh#t suggest it will be robust to highly
structured dictionaries. Brief empirical comparisonsgesented in Section 5.

2 Estimation via Sparse Penalized Regression

Directly solving either (2) or (3) is intractable, so a v&yi®f approximate methods have been
proposed. Many of these can be viewed simply as regressibreveiparsity penalty convenient for
optimization purposes. The general regression problemonsider here involves solving

min [Y = @X |5 + Ag(X), (4)
whereg is some penalty function of the row norms. Type | methods useparable penalty of the

form
g (X) :Zh(Hl‘i-HQ), )]

where h is a non-decreasing, typically concave functtorCommon examples include(z) =
zP,p € (0,1] [11] andh(z) = log(z + «), « > 0 [4]. The parameterg and« are often heuristically
selected on an application-specific basis. In contraste Typethods, with origins as empirical
Bayesian estimators, implicitly utilize a more complighfgenalty function that can only be ex-
pressed in a variational form [18]. Herein we will considee selection

gID (x) 2 min Tr [(XTT7'X] + tlog |l + @T'®T|, « >0, (6)

wherel is a diagonal matrix of non-negative variational paransefe4, 18]. While less transparent
than Type |, it has been shown that (6) is a concave non-daogefunction of each row norm of,
hence it promotes row sparsity as well. Moreover, the diaig-dependency of this penalty appears
to be the source of some desirable invariance propertiesasssded in Section 4. Analogous to (3),
for analytical purposes all of these methods can be redug&d-a0 to solving

m}}n g(X) stdXy=9X. @)

3 Structured Dictionaries

It is now well-established that when the dictionapyis constructed with appropriate randomness,
e.g., iid Gaussian entries, then for certain choiceg, af particular the convex selectigr{X) =

>, llzi.|l2 (which represents a generalization of thevector norm to row-sparse matrices), we
can expect to recovek, exactly in the noiseless case or to close approximationnatee. This
assumes that( X)) is sufficiently small relative to some function of the dictary coherence or a
related measure. However, with highly structured dictiasathese types of performance guarantees
completely break down.

other row norms, such as tide,, have been considered as well but are less prevalent.



At the most basic level, one attempt to standardize stradtdictionaries is by utilizing some form
of column normalization as a pre-processing step. Most contyneach column is scaled such that
it has unit/, norm. This helps ensure that no one column is implicitly faebover another during
the estimation process. However, suppose our observattixis generated vi&d = & X, where

® = dD+oab”, ® is some well-behaved, incoherent dictionabyis a diagonal matrix, andab™
represents a rank one adjustment. If we apply column noratadin to remove the effect db, the
resulting scale factors will be dominated by the rank onmtethenc is large. But if we do not
column normalize, the® can completely bias the estimation results.

In general, if our given dictionary is effectively/ ® D, with W an arbitrary invertible matrix that
scales and correlates rows, afddiagonal, the combined effect can be severely disruptive. A
an example from neuroimaging, the MEG/EEG source locatingbroblem involves estimating
sparse neural current sources within the brain using semdaced near the surface of the scalp.
The effective dictionary or forward model is characteribgdhighly correlated rows (because the
sensors are physically constrained to be near one anothéryadumns with drastically different
scales (since deep brain sources produce much weakerssajrtake surface than superficial ones).
More problematic is the situation whefie = &S, since an unrestricted matri¥ can introduce
arbitrary coherence structure between individual or gsonfpcolumns in®, meaning the structure

of ® is now arbitrary regardless of how well-behaved the orikﬁna

4 Analysis

We will now analyze the properties of both Type | and Type Btdanctions when coherent or highly
structured dictionaries are present. Ideally, we would tik arrive at algorithms that are invariant,
to the extent possible, to dictionary transformations thatld otherwise disrupt the estimation
efficacy. For simplicity, we will primarily consider the rem@less case, although we surmise that
much of the underlying intuition carries over into the nteése domain. This strategy mirrors the
progression in the literature of previous sparse estimatieory related to thé, norm [3, 7, 8]. All
proofs have been deferred to the Appendix, with some detaiited for brevity.

41 Invarianceto W and D

We will first consider the case where the observation madrproduced vid™ = ¢ X = W@pXo.
Later in Sections 4.2 and 4.3 we will then address the morkectifng situation wheré® = &5.

Lemma 1. Let W denote an arbitrary full-rank x n matrix andD an arbitrary full-rankm x m
diagonal matrix. Then withx — 0, the Type Il optimization problem

ng;ng(”)(X) St.W®DX,=W®oDX (8)

is invariant tol and D in the sense that iK™ is a global (or local) minimum to (§), theD:lX*
is a global (or local) minimum when we optimizé’!) (X) subject to the constraidt X, = ®X.

Therefore, while switching betwedn= W ® D and® = ® may influence the initialization and pos-
sibly the update rules of a particular Type Il algorithm,ded not fundamentally alter the underlying
cost function. In contrast, Type | methods do not satisfy twvariance. Invariance is preserved with
alV factor in isolation. Likewise, inclusion of B factor alone with column normalization leads to
invariance. However, inclusion of boitl and D together can be highly disruptive.

Note that for improving Type | performance, it is not suffiti¢o apply some row decorrelating and
normalizingl¥ —! to ® and then column normalize with soni&™*. This is because the application
of D~ will disrupt the effects of/’ —. But one possibility to compensate for dictionary struetisr
to jointly learn al¥’ —* and D~ that produces & satisfying: (i)®®7 = CI (meaning rows have a
constan¥, norm ofC' and are uncorrelated, (iiy.;||2 = 1 for all ;. Up to irrelevant scale factors, a
unique such transformation will always exist. In Sectionéempirically demonstrate that this can
be a highly effective strategy for improving the performainé Type | methods. However, as a final
point, we should mention that the invariance Type |l exkilbditwardsi? and D (or any corrected
form of Type 1) will no longer strictly hold once noise is adtle



4.2 Invarianceto S: Thet > 1 Case (Simultaneous Spar se Approximation)

We now turn to the potentially more problematic scenarichvlit= ®.S. We will assume that

is arbitrary with the only restriction being that the reBwt® satisfies spaf®] = n + 1, where
matrix spark quantifies the smallest number of linearly deleat columns [7]. Consequently, the
spark condition is equivalent to saying that eack n sub-matrix of® is full rank. This relatively
weak assumption is adopted for simplicity; in many caseatitlze relaxed.

Lemma2. Let® be an arbitrary dictionary with spafk] = n + 1 and X, a coefficient matrix with
d(Xp) < n. Then there exists a constant> 0 such that the optimization problem (7), wighX') =
g""(X) anda — 0, has no local minima and a unique, global solutioiXgtif (mo)f (zo);. < p
foralli # j (i.e., the nonzero rows ofy are below some correlation threshold). Also, if we enforce
exactly zero row-wise correlations, meanipg= 0, then a minimizing solutionX* will satisfy

[l ]2 = ||(x0):.||2 for all i (i.e., a matching row-sparsity support), even #X,) > n. This
solution will be unique whenever X, XI'® = ®I'dT has a unique solution for some non-negative,
diagonall".?

Corollary 1. There will always exist dictionarie® and coefficientsX, consistent with the con-
ditions from Lemma 2, such that the optimization problemwiith any possibley(X) of the form
gD (X) =Y, h(||lz:.||2) will have minimizing solutions not equal t&, (with or without column
normalization).

In general, Lemma 2 suggests that for estimation purposesrtatated rows inX, can potentially
compensate for troublesome dictionary structure, andthegevith Corollary 1 it also describes a
potential advantage of Type Il over Type I. Of course thisittasnly stipulates sufficient conditions
for recovery that are certainly not necessary, i.e., gffectparse recovery is possible even with
correlated rows (more on this below). We also emphasizdhiedtnal property of Lemma 2 implies
that the row norms ofX, (and therefore the row-sparsity support) can still be reoed even up
to the extreme case @ X,) = m > n. While this may seem surprising at first, especially since
even brute force minimization of (3) can not achieve a sinféat, it is important to keep in mind
that (3) is blind to the correlation structure &f. Although Type Il does not explicitly require any
such structure, it is able to outperform (3) by implicitlyégaging this structure when the situation
happens to be favorable. While space prevents a full tredtnmetihe context of MEG/EEG source
estimation, we have successfully localiz&® nonzero sources (rows) usindg@) x 1000 dictionary.

However, what about the situation where strong correlataimexist between the nonzero rows of
Xo? A couple things are worth mentioning in this regard. Fitgtiimma 2 can be strengthened
considerably via the expanded optimization problenin x5 ¢/ (X) s.t. X, = ®X B, which
achieves a result similar to Lemma 2 but with a weaker caicglacondition (although the row-
norm recovery property is lost). Secondly, in the case ofegércorrelation between rows (the
hardest case), the problem reduces to an equivalent one with, i.e., it exactly reduces to the
canonical sparse recovery problem. We address this situagéxt.

4.3 Invarianceto S: Thet = 1 Case (Standard Sparse Approximation)

This section considers the = 1 case, meanind” = y and X, = x, are now vectors. For
convenience, we defin&(S, P) as the set of all coefficient vectorsIRi* with support (or nonzero
coefficient locations) specified by the index setc {1,...,m} and sign pattern given b €

{-1, +1}|3‘ (here the - | operator denotes the cardinality of a set).

Lemma 3. Let @ be an arbitrary dictionary with spaf] = n + 1. Then for anyX'(S, P) with
|S| < n, there exists a non-empty subsétC X'(S,P) (with nonzero Lebesgue measure), such
that if ¢ € X', the Type Il minimization problem

Irgrlg(II)(m) st.dxy=dx,aa—0 9)

will have a unique minimum and it will be located#.

2See Appendix for more details about this condition. In most situations, itwitl if m < n(n + 1)/2,
and likely for many instances withh even greater than this.



This Lemma can be obtained with a slight modification of rissinl [18]. In other words, no mat-

ter how poorly structured a particular dictionary is wittgaed to a given sparsity profile, there
will always be sparse coefficients we are guaranteed to eeqpvovided we utilize a convergent
algorithm). In contrast, an equivalent claim can not be nfad@&ype I:

Lemma4. Given an arbitrary Type | penalgt!) (z) = 3", h(|z;|), with & a fixed, non-decreasing
function, there will always exist a dictionarg (with or without normalized columns) and set
X (8, P) such that for anyy € X(S,P), the problem

min gD (x) st dxy = dx (10)

will not have a unique minimum located a.

This can happen because the global minimum does not aguahd/or because of the presence of
local minima. Of course this does not necessarily imply ghparticular Type | algorithm will fail.
For example, even with multiple minima, an appropriate rojgation strategy could conceivably
still locate an optimum that coincides wiiy. While it is difficult to analyze all possible algorithms,
we can address one influential variety based on iterativeigied/; minimization [4, 18]. Here
the idea is that ifs is concave and differentiable, then a convergent meansrifmzing (10) is to
utilize a first-order Taylor series approximationgéf) () at some point. This leads to an iterative
procedure where at each step we must first comp{ité: dh(z)/dz|,_;, and then minimize

>, hilx;| subject todx, = Px to updatexz. This method produces a sparse estimate at each
iteration and is guaranteed to converge to a local minimat@iionary point) of (10). However, this
solution may be suboptimal in the following sense:

Corollary 2. Given an arbitrary;(!) () as in Lemma 4, there will always existlaand X (S, P),
such that for anyeg € X (S, P), iterative reweighted; minimization will not converge ta:, when
initialized at the minimun?; norm solution.

Note that this failure does not result from a convergencbgagy. Rather, the presence of minima
different froma explicitly disrupts the algorithm.

In general, with highly structured dictionaries deviatfngm the ideal, the global minimum of con-
vex penalties often does not correspond withas theoretical equivalence results break down. This
in turn suggests the use of concave penalty functions to geséible improvement. However, as
illustrated by the following result, even the simplest ohige recovery problems, that of estimating
somex, with only one nonzero element using a dictionary with a 1D-sphce, Type | can be
characterized by problematic local minima with (strictbgncave penalties. For this purpose we
defineg, as an arbitrary column @b and®,, as all columns ofb excludingg..

Lemma 5. Let h denote a concave, non-decreasing function Wih, = lim,_,, dh(z)/dz and
! . =1lim, . dh(z)/dz. Also, let® be a dictionary with unit, norm columns and spaf®] =

min

m =n+1 (i.e., a 1D null-space), and le) satisfy||x||o = 1 with associated... Then the Type
| problem (10) can have multiple local minima if

Rl e -

T > @ (12)
man

This result has a very clear interpretation related to hatiatiary coherence can potentially disrupt
even the most rudimentary of estimation tasks. The rightisste of (11) is bounded from below by
1, which is approached whenever one or more columns in danage similar tog, (i.e., coherent).
Thus, even the slightest amount of curvature (or strict awitg) in 4 can lead to the inequality being
satisfied when highly coherent columns are present. Whileably with 2.(z) = z this will not be

an issue (consistent with the well-known convexity of th@roblem), for many popular non-convex
penalties, this gradient ratio may be large relative to idiethand side, indicating that local minima



are always possible. For example, with tt{e) = log(z + «) selection from [4T),,,, — 0 for all «
while k), .. — 1/a. We note that Type Il has provably no local minima in this negi(this follows

as a special case of Lemma 3). Of course the point here is aibType | algorithms are incapable
of solving simple problems withz,||o = 1 (and any iterative reweightey scheme will succeed
on the first step anyway). Rather, Lemma 5 merely demonstrene highly structured dictionaries
can begin to have negative effects on Type I, potentiallyarsar than with Type Il, even on trivial

tasks. The next section will empirically explore this canjee.
5 Empirical Results

We now present two simulation examples illustrating theeptil benefits of Type Il with highly
structured dictionaries. In the first experiment, the diediry represents an MEG leadfield, which at
a high level can be viewed as a mapping from the electromaxie¥) activity within m brain vox-

els ton sensors placed near the scalp surface. Computed using Maxegeiations and a spherical
shell head model [12], the resultidgis characterized by highly correlated rows, because thd sma
scalp surface requires that sensors be placed close togatdevastly different column norms, since
the EM field strength drops off rapidly for deep brain sourdédese effects are well represented by a
dictionary such a® = W®D as discussed previously. FigurelEft) displays trial-averaged results
comparing Type | algorithms with Type Il using such an MECdigeld dictionary. Data generation
proceeded as follows: We produdeby choosing 50 random sensor locations and 100 random vox-
els within the brain volume. We then create a coefficient matl with ¢ = 5 columns andi(X)

an experiment-dependent parameter. Nonzero row§afre drawn iid from a unit Gaussian distri-
bution. The observation matrix is then computed’as: ® X,. We run each algorithm and attempt
to estimateX, calculating the probability of success averaged over #@Btasd(X) is varied
from 10 to 50. We compared Type I, implemented via a simple iterativeaigited/, approach,
with two different Type | schemes. The first is a homotopy tardtion method using the Type |
penaltyg D) (X) = 3", log(||z:.|3 + a), wherea is gradually reduced to zero during the estimation
process [5]. We have often found this to be the near optimpéTyapproach on a variety empirical
tests. Secondly, we used the standard mixed-norm pegldhyX ) = || X |12 = 3, ||x:.||2, which
leads to a convex minimization problem that generalizesshassuit (or the lasso), to the> 1
domain [6, 10].

While Type Il displays invariance td/- and D-like transformations, Type | methods do not. Con-
sequently, we examined two dictionary-standardizatiothods for Type I. First, we utilized basic
¢5 column normalization, without which Type | will have diffiity with the vastly different column
scalings of®. Secondly, we developed an algorithm to learn a transfordigtibnary U ®11, with

U arbitrary,II diagonal, such that the combined dictionary has uncose)amit/ norm rows, and
unit £ norm columns (as discussed in Section 4.1). Figukeft) Contains results from all of these
variants, where it is clear that some compensation for tbgodiary structure is essential for good
recovery performance. We also note that Type Il still outgrens Type | in all cases, suggesting
that even after transformation of the latter, there is midual structure in the MEG leadfield being
exploited by Type Il. This is a very reasonable assumptiorrgthat® will typically have strong
column-wise correlations as well, which are more effetyiveodeled by right multiplication by
someS. As a final point, the Type Il success probability does notogoero even whed(X,) = 50,
implying that in some cases it is able to find a number of nayeequal to the number of rows dn
This is possible because even with only 5 columns, the nonzero rows of, display somewhat
limited sample correlation, and so exact support recovesyill possible. Witht > 5 these sample
correlations can be reduced further, allowing consistappsrt recovery whed(X,) > n (not
shown).

To further test the ability of Type Il to handle structure iosed by somebS, we performed a
second experiment with explicitly controlled correlatcemong groups of columns. For each trial
we generated &0 x 100 Gaussian iid dictionaryp. Correlations were then introduced using a
block-diagonalS with 4 x 4 blocks created with iid entries drawn from a uniform distitibn
(between 0 and 1). The resultinigg = ®.S was then scaled to have urit norm columns. We
then generated a randosmy vector ¢ = 1 case) using iid Gaussian nonzero entries wile)
varied from10 to 25 (with ¢ = 1, we cannot expect to recover as many nonzeros as whemn).
Signal vectors are computed gs= ®x or, for purposes of direct comparison with a canonical
iid dictionary,y = ®xy. We evaluated Type Il and the Type | iterative reweightedinimization



method from [4], which is guaranteed to do as well or bettantstandard; norm minimization.

Trial-averaged results using bothand® are shown in Figure tight), where it is clear that while
Type Il performance is essentially unchanged, Type | paréorce degrades substantially.
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Figure 1:Left: Probability of success recovering coefficient matricethwarying degrees of row-
sparsity using an MEG leadfield as the dictionary. Two Typetirods were compared, a homotopy
continuation method from [5] and a version of basis pursuieérded to the simultaneous sparse
approximation problem by minmizing ttfe » mixed norm [6, 10]. Type | methods were compared
using standard, column normalization and a learned invariance transfaomaRight: Probability

of success recovering sparse vectors using a Gaussiarttidrdiry® and a coherent dictionardy
with clustered columns. The Type | method was the interageweighted’; algorithm from [4].

6 Conclusion

When we are free to choose the basis vectors of an overconsfiietd dictionary, the sparse estima-
tion problem is supported by strong analytical and empifmandations. However, there are many
applications where physical restrictions or other factorgose rigid constraints on the dictionary
structure such that the assumptions of theoretical regayearantees are violated. Examples in-
clude model selection problems with correlated featur@s;ce localization, and compressive sens-
ing with constrained measurement directions. This can Baysficant consequences depending
on how the estimated coefficients will ultimately be utitize=or example, in the source localiza-
tion problem, correlated dictionary columns may correspwith drastically different regions (e.g.,
brain areas), so recovering the exact sparsity profile campertant. Ideally we would like our
recovery algorithms to display invariance, to the exterggilde, to the actual structure of the dic-
tionary. With typical Type | sparsity penalties this can bdifficult undertaking; however, with the
natural dictionary dependence of the Type Il penalty, tosentent it appears this structure can be
accounted for, leading to more consistent performancesadiationary types.

Appendix

Here we provide brief proofs of several results from the pafeme details have been omitted for
space considerations.

Proof of Lemma 1: First we address invariance with respechito Obviously the equality constraint
is unaltered by a full ranky, so it only remains to check that the dictionary-dependemafty

¢ is invariant. However, since by standard determinantimahipslog W& DI D®TW7T| =

log |[W||®DT DO [|WT| = log |® DT D®T |+C, whereC is an irrelevant constant for optimization
purposes, this point is established. With respeddtave re-parameterize the problem by defining

X 2 DX andl £ DI'D. Itis then readily apparent that the penalty (6) satisfies

g (X) = minTr [X"T 7' X] + log |8DTDE”| = min Tr [)?Tffl)?} +1og|BTET|. (12)
> =0

So we are effectively solvingnin z g/ (X) s.t. 8D X, = X. ]

Proof of Lemma 2 and Corollary 1: Minimizing the Type Il cost function can be accomplished
equivalently by minimizing



L) 2 Tr [(I)t_lXOXOT o7 (@F@T)’l} +log [OI®T|, (13)

over the non-negative diagonal matfix(this follows from a duality principle in Type Il models
[18]). £(T) includes an observed covarianke ! X, X/ ®7 and a parameterized model covariance
®I'dT, and is globally minimized with™ = ¢~'diag X, X[ [17]. Moreover, if®T*®T is suffi-
ciently close ta ~1® X, X7 ®T, meaning the off-diagonal elementsX§ X! are not too large, then

it can be shown by differentiating along the direction betwany arbitrary poinf’ andI'™* that no
local minima exist, leading to the first part of Lemma 2.

Regarding the second part, we now alldyX) to be arbitrary but require thaf, X! be diagonal
(zero correlations). Using similar arguments as abovs,éaisily shown that any minimizing solu-
tion I'* must satisfydI™* &7 = &t~ X, XI'®7. This equality can be viewed agn + 1)/2 linear
equations (equal to the number of unique elements im:am covariance matrix) angh unknowns,
namely, the diagonal elementsof. Therefore, ifn(n + 1)/2 > m this system of equations will
typically be overdetermined (e.g., if suitable randomnggsesent to avoid adversarial conditions)
with a unique solution. Moreover, because of the requirdrtieil” be non-negative, it is likely that
a unigue solution will exist in many cases whetes even greater tham(n + 1)/2 [2].

Finally, we address Corollary 1. First, consider the caseresh= 1, so Xy = xy. To satisfy the
now degenerate correlation condition, we must h#wg)) = 1. Even in this simple regime it can be
demonstrated that a unique minimumeagtis possible iffi(2) = z based on Lemma 5 (below) and a
complementary resultin [17]. So the only Type | possibility:(z) = z. A simple counterexample
with ¢ = 2 serves to rule this selection out. Consider a dictionrgnd two coefficient matrices

given by 1 1 0 1
e ¢ 11 1 -1 0 -1

b = 1 -1 0 0 ] s X(l) = 0 0 B X(Q) - € 0 ) (14)
0 0 € —e 0 0 . 0

It is easily verified thatd X(;) = ®X(5 and thatX;) = Xy, the maximally row-sparse
solution. Computing the Type | cost éor each W'WIQZS = 2z gives gD (X;)) = 2v2 and
9D (X(2)) = 2(1 + €). Thus, if we allowe to be smallg)(X(,)) < g (X(1)), S0 X 1) = Xo
cannot be the minimizing solution. Note th&f column normalization will not change this
conclusion since all columns df have equal norm already. |

Proof of Lemma 4 and Corollary 2: For brevity, we will assume thatis concave and differentiable,
as is typical of most sparsity penalties used in practice ftiore general case follows with some
additional effort). This of course includégz) = z, which is both concave and convex, and leads
to the/; norm penalty. These results will now be demonstrated usisgnale counterexample
similar to the one above. Assume we have the dictiodafyom (14), and thatS = {1,2} and

P = {+1,+1}, which implies that anyg, € X' (S, P) can be expressed ag = [a1, az2,0,0]", for
someasy, as > 0. We will now show that with any member from this set, therd nilt be a unique
minimum to the Type | cost at, for any possible concave, differentialdle

First assumer; > ao. Consider the alternative feasible solutiep) = [(1 — a2),0, eaz, eas]™.

To check if this is a local minimum, we can evaluate the gratdaé the penalty functioy(!) (x)
along the feasible region neay,. Givenv = [1,1, —e, —e]T € Null(®), this can be accomplished
by computingdg'D) (z 2y + Bv) /0B = h'(jax — az + B|) + 1/ (| B]) + 2¢h’ (Jeas — €]). In the limit

asp — 0 (from the right or left), this expression will always be pog for e < 0.5 based on the
concavity ofh. Thereforex ;) must be a minimum. By symmetry an equivalent argument can be
made whenv, > «;. (In the special case wherg = as, there will actually exist two maximally
sparse solutions, the generating andz(,).) It is also straightforward to verify analytically that
iterative reweighted; minimization will fail on this example when initialized ate¢ minimum¢;
norm solution. It will always become trappedagt, after the first iteration, assuming > axs, or

a symmetric local minimum otherwise.

Proof of Lemma 5: This result can be shown by examining properties of vargmaslients along
the feasible region, not unlike some of the analysis abawe tleen bounding the resultant quantity.
We defer these details to a later publication. |
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