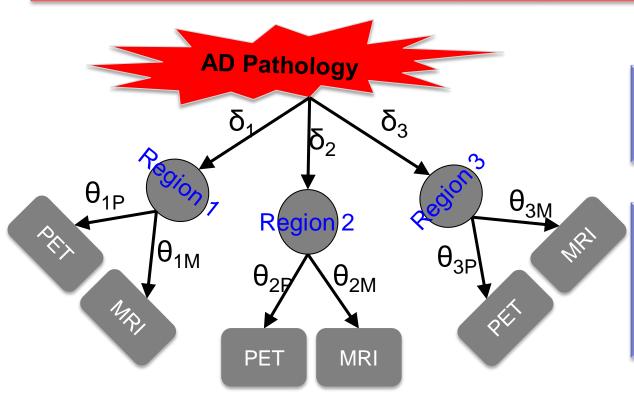


Identifying Alzheimer's Disease Brain Regions from Multi-Modality Neuroimaging Data Using Sparse Composite Linear Discrimination Analysis (SCLDA)


Shuai Huang, Jing Li, Jieping Ye, Teresa Wu, Kewei Chen, Adam Fleisher, Eric Reiman

T016

Combine MRI and PET for AD Study

A tree structure which links the AD pathology, brain regions, PET and MRI

MRI and PET measure the same AD pathology, and supplement each other

A joint analysis of MRI and PET imaging data will increase the statistical power to detect AD-related brain regions

- δ_1 : the relatedness of brain region 1 with the AD pathology
- θ_{1P} : the signal strength of θ_1 reflected on PET (i.e., enhanced or reduced)
- θ_{2M} : the signal strength of θ_1 reflected on MRI (i.e., enhanced or reduced)

Formulation of SCLDA

Original formulation – impose penalty on both θ and γ

$$\begin{split} \widehat{\mathbf{\Theta}} &= \operatorname{argmin}_{\mathbf{\Theta}} l_1 \big(\mathbf{\Theta} | \big\{ \mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}, \dots, \mathbf{Z}^{(M)} \big\} \big) = \operatorname{argmin}_{\mathbf{\Theta}} \Big\{ -l_0 \big(\mathbf{\Theta} | \big\{ \mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}, \dots, \mathbf{Z}^{(M)} \big\} \big) + \ \lambda_1 \sum_k \delta_k + \\ \lambda_2 \sum_{k,l,m} \gamma_{k,l}^{(m)} \Big\}, \text{ subject to} \\ \theta_{k,l}^{(m)} &= \delta_k \gamma_{k,l}^{(m)}, \ \delta_k \geq 0, \ 1 \leq k, l \leq p, \ 1 \leq m \leq M. \end{split}$$

Reduced formulation – a non-convex sparse learning model

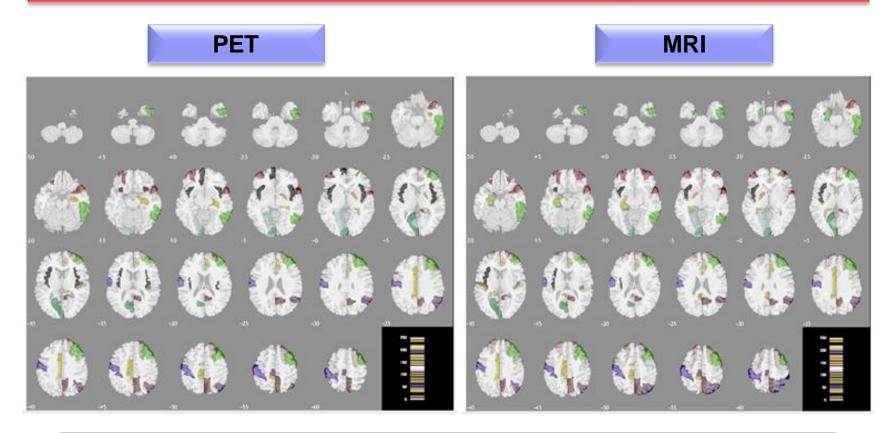
$$\widetilde{\mathbf{\Theta}} = \operatorname{argmin}_{\mathbf{\Theta}} l_2(\mathbf{\Theta} | \{\mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}, \dots, \mathbf{Z}^{(M)}\})$$

$$= \operatorname{argmin}_{\boldsymbol{\Theta}} \left\{ -l_0 \left(\boldsymbol{\Theta} | \left\{ \mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}, \dots, \mathbf{Z}^{(M)} \right\} \right) + \lambda \sum_{k} \sqrt{\sum_{l=1}^q \sum_{m=1}^M \left| \boldsymbol{\theta}_{k,l}^{(m)} \right|} \right\}$$

Superiority over L1/L2 penalty

Less shrinkage effect – less irrelevant features been selected

No more "all-in-all-out" solution for the parameters under the same square root


DC (difference of convex functions) programming is used to solve the optimization task

Has a linkage with adaptive LASSO

Result – Identified AD-related Brain Regions

Locations of AD-related brain regions

Most of the AD-related regions are consistent with existing knowledge