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Abstract
Psychologists have long been struck by individuals’ limitations in expressing their
internal sensations, impressions, and evaluations via rating scales. Instead of us-
ing an absolute scale, individuals rely on reference points from recent experience.
This relativity of judgment limits the informativeness of responses on surveys,
questionnaires, and evaluation forms. Fortunately, the cognitive processes that
map stimuli to responses are not simply noisy, but rather are influenced by re-
cent experience in a lawful manner. We explore techniques to remove sequential
dependencies, and thereby decontaminate a series of ratings to obtain more mean-
ingful human judgments. In our formulation, the problem is to infer latent (sub-
jective) impressions from a sequence of stimulus labels (e.g., movie names) and
responses. We describe an unsupervised approach that simultaneously recovers
the impressions and parameters of a contamination model that predicts how recent
judgments affect the current response. We test our iterated impression inference,
or I3, algorithm in three domains: rating the gap between dots, the desirability of a
movie based on an advertisement, and the morality of an action. We demonstrate
significant objective improvements in the quality of the recovered impressions.

1 Introduction

Individuals are often asked to convey their opinions and sentiments in the form of quantitative judg-
ments. On a 1–5 scale, how much did you enjoy the movie Kung Fu Panda? How many stars would
you give the Olive Garden restaurant? How bad is the pain in your back, where 1 means no pain
and 10 means unbearable? What grade should you assign to the term paper on “Consciousness and
Commander Data”? On a Likert scale (ranging from strongly disagree to strongly agree), what is
your attitude toward the statement “NIPS should stay in North America”?

Researchers in the social sciences have developed methods for minimizing response bias of various
sorts (Bagozzi, 1994). Response bias can occur from the wording of questions, respondents trying
to portray themselves in a certain way, individual differences in the use of the response scale (e.g.,
extreme responding versus midpoint responding), or even cultural variation in the ideal rating-scale
granularity (Chami-Castaldi, Reynolds, & Wallace, 2008). An additional influence on responses is
the sequential ordering of items to be judged. To illustrate, suppose you are asked to make a series
of moral judgments concerning various actions using a 1-10 scale, with a rating of 1 indicating
’not particularly bad or wrong’ and a rating of 10 indicating ’extremely evil.’ When individuals are
shown the series on the left, their ratings of item (3) tend to be higher than the identical item (3′) in
the series on the right (Parducci, 1968).

(1) Stealing a towel from a hotel (1′) Testifying falsely for pay
(2) Keeping a dime you find on the ground (2′) Using guns on striking workers
(3) Poisoning a barking dog (3′) Poisoning a barking dog

Individuals seem incapable of making absolute judgments, and instead recent experience provides
reference points with respect to which relative judgments are made (e.g., Laming, 1984; Parducci,
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1965, 1968; Stewart, Brown, & Chater, 2005). These sequential dependencies in judgment arise in
almost every task in which an individual is asked to make a series of responses, such as filling out
surveys, questionnaires, and evaluations (e.g., usability ratings, pain assessment inventories). Every
faculty member is aware of drift in grading that necessitates comparing papers graded early on a
stack with those graded later. Sequential effects have been demonstrated in domains as varied as
legal reasoning and jury evidence interpretation (Furnham, 1986; Hogarth & Einhorn, 1992) and
clinical assessments (Mumma & Wilson, 2006).

Sequential dependencies are observed in even the simplest of laboratory tasks involving the rating of
unidimensional stimuli, such as the loudness of a tone or the length of a line. Individuals’ ability to
rate even these simple stimuli is surprisingly poor compared to their ability to discriminate the same
stimuli. Across many domains, responses convey not much more than two bits of mutual information
with the stimulus (Stewart et al., 2005). The poor transmission of information is attributed in large
part to the contamination from recent trials. (A trial is psychological jargon for a single judgment
of a stimulus.)

We (Mozer et al., 2010) have surveyed the empirical and theoretical literature on sequential effects
(e.g., DeCarlo & Cross, 1990; Parducci, 1965; Petrov & Anderson, 2005; Stewart et al., 2005),
and mention here findings relevant for understanding their mechanistic basis. The influence of
recent trials is exerted by both stimuli and responses. We’ll refer to the relevant recent history
as the context. One interpretation of the joint effect of stimuli and responses is that individuals
form their current response by analogy to recent trials: they determine a response to the current
stimulus that has the same relationship as the previous response had to the previous stimulus. The
immediately preceding trial has the strongest influence on responses, and the influence of further
back trials typically falls off exponentially. Linear autoregression models have done a reasonable
job of accounting for sequential dependencies, though many theories include nonlinearities, e.g.,
memory based anchors, and generalization from previous trials that depends on the similarity of the
current stimulus to the previous stimuli.

2 Decontamination Models

Because responses are influenced by recent context, they are not as pure a measure of an individual’s
stimulus appraisal as one might wish for. In the applied psychology literature, techniques have been
explored to mitigate judgment relativity effects, such as increasing the number of response categories
and varying the type and frequency of anchors (Mumma & Wilson, 2006; Wedell, Parducci, & Lane,
1990).

In previous work (Mozer et al., 2010), we proposed an alternative: an algorithmic technique that
decontaminates responses to remove contextual influences. By removing the contamination from
previous trials, we recover ratings that are more meaningful than are the raw ratings. We focused on
a task in which an objective ground truth exists in order that we could assess the quality of the ratings.
The task involved judging the gap between two dots that appear on a monitor. In our experiments,
ten equally spaced gaps were used, and we asked participants to rate the gaps on a 1-10 scale. Even
though there is a one-to-one mapping between stimuli and responses, and participants were shown
all gaps prior to the start of the experiment, participants still show strong sequential dependencies
in their ratings. Our decontamination procedure obtains ratings that better reflect ground truth than
the reported ratings by about 5%. (This improvement is purely due to desequencing—the removal
of sequential effects. The improvement rises to about 20% with debiasing and decompressing the
ratings.)

Our framework assumes that an external stimulus—the dot pairs in our experiment—maps to an
internal mental representation we refer to as the impression, and this impression is then mapped to
a response. We treat the mapping from stimulus to impression as veridical, and contamination from
recent trials as occurring in the mapping from impression to response. The term sensation might be
preferred over impression if the judgment task is purely perceptual, and the term evaluation might be
preferred in a domain involving higher cognition, but we will use impression as the generic term for
the internal representation. The goal of decontamination is to recover the (latent) impression from
the sequence of ratings and stimuli. To introduce some notation, Stdenotes the stimulus presented
on trial t, αSt denotes the impression associated with the stimulus, and the corresponding rating
or response is Rt. St is a unique label associated with each distinct stimulus. Importantly, we do
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not assume to have any metric or featural information about the stimulus; we will simply index
the n distinct stimuli with integers, 1, 2, ..., n. We denote the impression associated with stimulus
s as αs. Decontamination involves discovering α ≡ {α1, α2, ..., αn} given stimulus sequence
{S1, S2, ..., ST } and the corresponding response sequence {R1, R2, ..., RT }, where each of the n
distinct stimuli is presented at least once in the stimulus sequence, i.e., ∀s ∈ {1, 2, ..., n},∃t : St =
s.

In our previous work, we utilized ground truth not only to evaluate the quality of decontamination
procedures but also for training decontamination models. That is, we adopted a supervised training
paradigm in which the ground truth provided the target impression values. We built a single model
for all participants. One group of participants was used for training the model, and another group for
testing. We explored a range of models, including linear and nonlinear regression, look up tables,
hybrid models, and these same models embedded in a conditional random fields (CRFs). With their
more powerful inference techniques, the CRF-based models performed the best.

Ground truth is known for stimuli that vary along a unidimensional perceptual continuum, e.g., gaps
between points, pitches of tones. However, interesting and realistic judgment tasks often involve
stimuli that vary along dimensions that are ill defined and even inherently subjective (i.e., a uni-
versal ground truth does not exist) Even perceptual tasks may have this character, e.g., smell or
taste evaluation. And in cognitive preference tasks, e.g., the rating of movies or music, not only are
the stimulus dimensions unknown but the critical dimensions and preferences may vary from one
individual to the next.

In complex, cognitive domains, the only means of obtaining ground truth for an individual is to ask
the individual to rate the same stimulus in many contexts and to average the ratings to eliminate the
“noise” due to sequential effects. Although training data can in principle be obtained, the cost is
nontrivial. In our simple gap-measurement task, even with twenty ratings of the each gap, the error
in the impression obtained by debiasing, decompressing, and averaging ratings was still nonzero,
and dropped with each subsequent rating incorporated into the average.

2.1 The Iterated Impression Inference (I3) Algorithm

Given the challenge of collecting sufficient ground-truth data for supervised training of decontami-
nation models, our goal in this paper is to develop an unsupervised technique for decontamination
of rating sequences. Our technique involves simultaneously inferring the set of impressions, α, and
the parameters β of a contamination model Cβ, that predicts the response at time t given the current
stimulus and context:

R̂t = Cβ

(
αSt , ..., αSt−h

, Rt−1, ..., Rt−h

)
,

where R̂t denotes the prediction and h is the number of trials of history (the context) used to make
the prediction. In the style of the EM algorithm, our approach is a straightforward iteration between
inference on the latent variables and updating the model parameters:

1. Define the baseline estimate of the impression for each stimulus s to be the average rating
given on all trials when s is presented, i.e.,

α0
s = E{t:St=s} [Rt] ,

where the superscript (0) associated with α indicates the iteration of the algorithm, and E
is the expectation over a set of trial indices.

2. Given impressions determined on the previous iteration i, αi, train a new contamination
model for iteration i+1, Cβi+1 , by searching for model parameters βi+1 that minimize the
mean squared-error, MSE(αi,βi+1), defined as

MSE(α,β) = Et

[(
Cβ

(
αSt , ..., αSt−h

, Rt−1, ..., Rt−h

)
−Rt

)2
]
.

3. Given the updated contamination model, Cβi+1 , search for a new set of impressions, αi+1,
that minimize the mean squared-error criterion MSE(αi+1,βi+1).

4. Repeat steps 2 and 3 until αi+1 ≈ αi.
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We refer to this algorithm as Iterated Impression Inference or I3. Because the MSE is strictly non-
increasing at steps 2 and 3, I3 is guaranteed to find a local optimum in the search space. The
initialization at step 1 starts the search in the neighborhood of the solution because—by our defini-
tion of an impression—the responses are noise-corrupted and recency-modulated instantiations of
the impressions. Consequently, local optimization has a shot at finding a good solution.

The simulations described in the following sections all use a simple linear model for Cβ,

R̂t = β0 + β1αSt + ... + βh+1αSt−h
+ βh+2Rt−1 + ... + β2h+1Rt−h.

Because the model is bilinear in the set of variables that we’re solving for— α and β—steps 2 and 3
each amount to solving a least squares regression problem, and the I3 algorithm offers an approach to
bilinear regression. Although this system of bilinear equations does not have a unique least-squares
solution, the I3 benefits from the strong initialization conditions. Related iterative algorithms for
bilinear regression are found in the literature (Bai & Li, 2004; Bai & Liu, 2006).

In preference tasks (e.g., movie rating) where impressions are different for different individuals,
I3 has a large number of free parameters: an impression α must be inferred for each distinct item
being rated and for each respondent. To address the possibility of overfitting, we incorporate ridge
regression in estimating the impressions (step 3 of I3). As the regressand at step 3, we use the
deviation of the impression at iteration i from the baseline impression, i.e., αi −α0. Consequently,
regularization penalizes large deviations from the baseline impressions, and a large ridge parameter
prevents the impressions from wandering too far from the baseline. Overfitting is avoided because
the baseline impressions are grounded in the ratings.

3 Simulations

We describe a series of simulations using I3 to decontaminate both artificial sequences and actual
rating sequences from behavioral experiments. In all cases, ratings are integers on a 1–10 scale. The
impressions are on the same scale, but are allowed to be continuous in [1, 10]. With ||β|| = 2h + 2,
||α|| = n, and a context of h trials required before the model can be used, we need a T ≥ 3h +
n + 2 trial sequence to constrain the model from the data. In all our experiments, two complete
passes through the (randomly ordered) set of stimuli is sufficient to constrain the model parameters,
although we could in principle get by with fewer than two complete passes through the stimuli.

Data from multiple participants are obtained in each experiment. In principle, we could decontam-
inate each participant’s data in isolation. However, in the simulations we report, we have chosen to
build a single contamination model for all participants, thereby imposing a strong constraint on the
β parameters. An alternative would be a hierarchical Bayesian approach with shared hyperpriors
but separate parameter inference for each participant.

3.1 Artificial Data

To evaluate I3 under ideal circumstances, we construct artificial data via a generative contamination
process that is consistent with the linear form of C, and therefore I3 should be able to perform perfect
decontamination given sufficient data. The artificial sequences are generated by drawing randomly
from n = 10 stimuli for a total of p passes through the stimulus set such that each stimulus appears
exactly once in a series of 10 trials and the total number of trials is T = pn. The impressions
associated with each stimulus were randomly drawn from {2, 4, 6, 8}, and responses were generated
by an autoregressive model: Rt = αSt + αSt−1 − Rt−1, anchored with αS0 − R0 ≡ −1. For
example, the impression sequence {8, 2, 4, 8, 6, 4} would yield response sequence {7, 3, 3, 9, 5, 5}.
The stimulus-impression mapping was used in the generative process, but was not provided to I3.
The goal of I3 is to infer both the impressions α and the model parameters β.

Figure 1 shows the results of 50 replications of the simulation in which we vary the number of
participants, from 1 to 5, and the number of passes, p, from 2 to 10. For each replication, we com-
pute the mean squared-error (MSE) between the true impressions and α0—the baseline recovered
impression that is obtained by averaging ratings across stimulus presentations. We also compute
the MSE between the true impressions and α∞—the impressions recovered by I3. The percentage
improvement due to I3 is displayed on the ordinate of the graph. Even with only one participant
and T = 20 trials, I3 reduces the error in the reconstructed impression by 65%. With 3 or more
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Figure 1: Benefit of decontamination (% re-
duction in MSE for decontamination over
baseline) for the artificial data set as a func-
tion of number of stimulus presentations and
number of individuals providing data. Error
bars are ±1 SEM.

participants, and T = 50 trials, the error is reduced by 95%. To emphasize, this reduction is due to
the use of decontamination and reflects the improvement over a baseline which is the best one can do
without considering sequential dependencies, treating variability in responses to the same stimulus
simply as noise to be eliminated by averaging.

Comparison of the curves for, say, one versus two participants in Figure 1 indicates a benefit of
combining data to build a single contamination model for all participants, assuming, of course, that
the participants share a common underlying contamination process.

3.2 Gap-Estimation Task

Next, we decontaminate data from the gap-estimation task described earlier (Mozer et al., 2010).
The reason for using this task is that it provides ground truth, which can be used for evaluating
the quality of the recovered impressions even though I3 does not use ground truth impressions in
training. The experiment consists of 180 trials in which pairs of dots were presented and participants
were asked to estimate the gap between dots. In every block of 10 consecutive trials, the set of
distinct gaps were shown in random order. Data were collected from 76 participants.

Because the trials are blocked, we can vary the number of passes, p, through the stimulus set used
for decontamination by selecting only the first T = 10p trials of the experiment. Figure 2a shows
the MSE associated with α0, the baseline impression, and α∞, the impression recovered by I3, as
a function of p. The key feature of the curves is that increasing p—obtaining more ratings of each
stimulus—produces a steep drop in MSE. Surprisingly, even with 18 ratings of the same stimulus,
there is still a significant discrepancy between ground truth and the mean rating provided by the
participant. This result is all the more surprising considering that we postprocess the recovered
impressions to use the full response range; without this postprocessing, the error is larger yet.

Although I3 produces impressions closer to ground truth than the baseline for p between 2 and 12,
Figure 2a belies the magnitude of the difference. The solid green curve of Figure 2b shows the
percentage reduction in MSE due to I3. When only a small number of ratings of each stimulus is
available, I3 obtains a roughly 10% reduction in MSE by accounting for sequential dependencies.
We can evaluate the significance of this reduction by asking what percentage reduction in MSE
would be obtained if we simply collected p + 1 ratings of each stimulus instead of p. The benefit of
additional data is shown in the dashed blue curve of Figure 2b. For small p, collecting additional data
is more valuable than decontaminating the existing data, but once we have roughly p = 4 samples,
the benefit of decontamination is comparable to the benefit obtained from collecting an additional
round of ratings. However, the cost of collecting additional ratings can be quite high if you consider
large data sets, e.g., music and movies.

Figure 2c depicts the distribution of errors for individual participants and stimuli, where the red
points indicate the (signed) error in the baseline impression for p = 3, with one point per participant
and stimulus, and the green points indicate the error in the impressions recovered by I3 for p = 3.
We have jittered the horizontal position of the points a bit to make it easier to see the densities. It’s
clear that the large errors are reduced by decontamination, and the other points appear more tightly
clustered around zero. (The errors for the endpoints of the stimulus continuum are small because of
the rescaling we mentioned previously.)
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Figure 2: (a) Mean squared-error of the baseline impressions (α0) and impressions recovered by I3
(α∞) on the gap-estimation task as a function of number of stimulus presentations included in the
modeling. (b) Percentage reduction in MSE for I3 over baseline (green line); benefit of adding an
additional stimulus presentation to the data set (dashed blue). (c) Distribution of errors for individual
participants and stimuli

Figure 3: Movie ads
used for rating task.
Examples are shown of
action, comedy, drama,
family, and sports
genres.

3.3 Movie Advertisement Evaluation

Having established the value of decontamination in a domain where performance can be assessed
relative to objective truth, we move on to examine judgments in more complex, subjective domains.
We conducted a web-based experiment in which participants were asked to indicate their desire to
see a movie based solely on a movie poster of the sort that typically appears on a DVD jacket,
and shows images from the movie, the movie title, and sometimes quotes from reviews (Figure 3).
Participants were asked to rate each movie on a 1–10 scale, where 1 means “would never watch this
movie” and 10 means “can’t wait to see it”. The rating task here should not be confused with more
typical rating task of indicating enjoyment for a previously viewed film; this sort of task might be
used by film marketers who attempt to design advertisements to have broad appeal.

We selected 50 relatively obscure movies from the Internet Movie Database (IMDb.com). Obscurity
was determined by a small number of user ratings on IMDb. We polled participants during the
experiment to verify that the films were generally unfamiliar. We chose 10 movies from each of five
genres: action, comedy, drama, family, and sports. The movies varied in their mean IMDb rating
and in their release year, from 1947 to 2007. Participants were asked to rate each movie four times
for a total of T = 200 trials. The trials were blocked such that each movie was presented exactly
once every 50 trials. The movies within a block were ordered randomly with the constraint that
consecutive films were always drawn from different genres. We collected data from 120 participants
in the United States using Mechanical Turk, rejecting five whose ratings looked suspicious on several
criteria. Ordinarily, tasks for Mechanical Turk workers are defined to be a single trial; we set up
a javascript sequence of 200 trials that had to be completed by the worker to receive payment.
We required that participants respond on each trial within 15 seconds to ensure a steady rate of
responding.

Because of the large stimulus set in this experiment—in contrast to the previous experiment with just
10 items—we had sufficient data to perform model selection by cross validation. We split the data
from each participant into 100 trials for training and 100 trials for testing. Within the 100 training
trials, we used trials 1-80 for training I3 and trials 81-100 as a validation set for model selection.
We searched over two hyperparameters previously described: h, the number of contextual trials to
include in the model, and the ridge (regularization) parameter. We say more about h shortly.
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terms, for trial lags 1–10.

One way to evaluate the quality of the contamination model and impressions inferred by I3 is to use
the model to predict ratings in the test set. Even though our goal is to decontaminate ratings, if we
are successful at this goal we should be able to predict the consequence of context on ratings. We
predicted ratings in the test set either with the baseline impressions, α0, or with the combination
of the contamination model and the recovered impressions, α∞. We obtained a 5.18% reduction
in the test set prediction error with I3 over the baseline approach that does not exploit sequential
dependencies. Of this reduction in error, about 2/3 (3.32%) was attributable to modeling sequential
dependencies and 1/3 (1.86%) to iterative impression inference.

Having established the quality of the model using the test set, we can ask a more substantive question
about how the model treats movie genre. Intuitively, one would expect individuals to cluster their
ratings within genre. Some individuals will love dramas and hate comedies; others will have the
reverse preferences. This clustering is present in the data. Using the baseline impressions α0, we
computed the ratio of intra- to inter-genre impression variance and compared it to a shuffled measure
in which we randomly reassigned movies to genres. The original data has a variance ratio of 8.41,
whereas the shuffled data has a ratio of 19.8, highly significant (p < .0001) by a sign test with
participants as the random factor. A further indication of the quality of the inferred impressions,
α∞, is that they obtain an even more compact clustering by genre: the variance ratio for the inferred
impressions is 8.04, a reliable 4.40% reduction in the ratio (p < .0005 by a sign test).

The model we present here used h = 10 time steps of history, chosen by cross validation. We
searched h in the range of 1–10, but didn’t go beyond 10 because each additional time step causes
the loss of a training trial. We were surprised to find this amount of context showing a benefit, but we
believe we have an explanation that suggests the model is capturing slow drift as well as very local
influences of the sequence. Figure 4 shows the model coefficients for impression and response terms
for lags 1–10. (The lag 0 impression coefficient is 1.0.) To a first order, the impression and response
coefficients are symmetric with most of the impression coefficients being negative. If one thinks
of the impression as the average response to a stimulus, then these weights will tend to lower the
predicted response on the current trial if recent trials have produced stimulus-conditioned responses
that are lower than the average stimulus-conditioned response, and vice-versa, i.e., slow drift. Be-
yond this first-order analysis of the weights, note that the impression and response coefficients are
not entirely symmetric: the impression coefficients tend to have smaller magnitudes. Further, the
overall magnitude is larger at lag 1, and the lag 1 and 2 coefficients have flipped signs, a typical
pattern reflecting assimilation to the trial t−1 and contrast with trial t−2 (DeCarlo & Cross, 1990).

3.4 Morality Judgments

We conducted a final experiment in which participants were asked to rate the morality of various
actions, like the Parducci experiment cited in the introduction of this paper. We concocted 25 ac-
tions, ranging from relatively inoffensive (picking two lemons from your neighbors’ tree without
their permission) to questionable (failing to report $3000 in cash earnings on a tax return) to the
unimaginable (sentencing a rape victim to death to prevent her from carrying a child to term). The
experiment consisted of T = 100 trials, in blocks of 25 trials in which each action was presented
exactly once. Fifty participants were enlisted using Mechanical Turk, using the same procedure for
collecting a sequence of ratings as we used for the movie-ad experiment. Three additional partici-
pants were rejected due to suspicious patterns in their data (e.g., all items assigned the same rating).
Seventy-five trials were used for training the model, and 25 for testing. Of the 75 training trials, 50
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were used for setting model parameters and 25 were used for model selection on h and the ridge
parameter. In this data set, h = 4 yielded the best validation (rating prediction) performance.

As summarized in Table 1, we found a benefit for decontamination in these data, although perhaps
the magnitudes are a bit smaller than in the movie-ad data. The reduction in error in the test set
that comes about by predicting responses using I3—relative to using the baseline impressions and
not accounting for sequential dependencies—is 4.5%. Beyond this basic verification that the in-
ferred impressions are valid, we hypothesized that in the domain of moral judgments—in contrast
to movie-ad sentiment—there should be a strong consensus among individuals within the same cul-
ture. Consequently, impressions gleaned from the ratings should show a high degree of interrater
agreement. We can measure the interrater agreement as the ratio of the variance of ratings to an
item over participants to the variance of mean ratings over items. By this measure, the impressions
inferred by I3, α∞, are superior to the baseline impressions, α0, in that the interrater agreement
measure improves by 2.13%. Although this improvement is small, it is highly consistent across
items (p < .005 by a sign test with items as the random factor).

In this experiment, there are only 25 items and many of them are quite distinctive and clearly at
the ends of any continuum of actions. Consequently, participants are likely to remember not only
having rated items previously, but also the ratings that they assigned. To the extent that memory is
playing a role in this experiment, it will diminish sequential effects and the potential of a model like
I3 to improve the quality of inferred impressions. It seems advisable in future work to use larger
sets of items, or to impose a waiting period between passes through the items.

4 Discussion

In this paper, we posed the challenge of improving the quality of human judgments by partialing out
contextual contamination. Although both the phenomenon and theory of sequential dependencies
has been studied in the psychology literature for over half a century, our work is aimed at the more
practical concern of mitigating the influence of recent trials, in order to remove an important source
of uncontrolled variability in the data.

In this work, we’ve tried to assess the practical utility of decontamination. In the gap-measurement
task, we showed that decontamination reduced mismatch between ratings and ground truth about as
much as using an additional round of ratings to smooth out the average. With a large set of items
to be rated, the time savings can be significant. In the movie ad and morality tasks, we showed a
roughly 5% improvement in rating predictability with decontamination, a nontrivial improvement
considering that the Netflix prize was aimed at obtaining a 10% improvement in total. Further,
decontamination recovered impressions that were more sensible and therefore more meaningful, in
the sense that the impressions were more consistent within genres for movie ads and were more
consistent across respondents for morality judgments.

I3can readily be incorporated into current web-based and pencil-and-paper surveys if respondents
are asked to rate some items more than once. Rating the items twice is sufficient in the tasks we stud-
ied to show a benefit of decontamination, but in principle, the model parameters can be constrained
with fewer than two complete passes through the items. Further, if a training pool of subjects is
used to constrain model parameters (e.g., to set β or to establish priors on β and α), it’s conceivable
that decontamination will work without requiring much more than a single rating per item. This
final point suggests an obvious avenue for further research: exploring more sophisticated, Bayesian
approaches that can better exploit cross-participant constraints to improve the quality of decontami-
nation or reduce the amount of data that needs to be collected to perform decontamination.

Reduction in Improvement in Improvement in
Experiment test set clustering of interrater

prediction error genre ratings reliability
Movie ads 5.18% 4.40% (p < .0005)
Morality 4.46% 2.13% (p < .005)

Table 1: Summary of results from movie ad and morality experiments
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