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Abstract

We present a joint image segmentation and labeling model (JSL) which, given a
bag of figure-ground segment hypotheses extracted at multiple image locations
and scales, constructs a joint probability distribution over both the compatible
image interpretations (tilings or image segmentations) composed from those seg-
ments,and over theirlabeling into categories. The process of drawing samples
from the joint distribution can be interpreted as first sampling tilings, modeled
as maximal cliques, from a graph connecting spatially non-overlapping segments
in the bag [1], followed by sampling labels for those segments, conditioned on
the choice of a particular tiling. We learn the segmentationand labeling parame-
ters jointly, based on Maximum Likelihood with a novel Incremental Saddle Point
estimation procedure. The partition function over tilingsand labelings is increas-
ingly more accurately approximated by including incorrectconfigurations that a
not-yet-competent model rates probable during learning. We show that the pro-
posed methodology matches the current state of the art in theStanford dataset [2],
as well as in VOC2010, where 41.7% accuracy on the test set is achieved.

1 Introduction

One of the main goals of scene understanding is the semantic segmentation of images: label a di-
verse set of object properties, at multiple scales, while atthe same time identifying the spatial extent
over which such properties hold. For instance, an image may be segmented into things (man-made
objects, people or animals), amorphous regions or stuff like grass or sky, or main geometric prop-
erties like the ground plane or the vertical planes corresponding to buildings in the scene. The
optimal identification of such properties requires inference over spatial supports of different levels
of granularity, and such regions may often overlap. It appears to be now well understood that a suc-
cessful extraction of such properties requires models thatcan make inferences over adaptive spatial
neighborhoods that span well beyond patches around individual pixels. Incorporating segmentation
information to inform the labeling process has recently become an increasingly active research area.
While initially inferences were restricted to super-pixelsegmentations, recent trends emphasize joint
models with capabilities to represent the uncertainty in the segmentation process [2, 4, 5, 6, 7]. One
difficulty is the selection of segments that have adequate spatial support for reliable labeling, and
a second major difficulty is the design of models where both the segmentation and the labeling
layers can be learned jointly. In this paper, we present a joint image segmentation and labeling
model (JSL) which, given a bag of possibly overlapping figure-ground (binary) segment hypothe-
ses, extracted independently at multiple image locations and scales, constructs a joint probability
distribution overboth the compatible image interpretations (or tilings) assembled from those seg-
ments,andover their labels. For learning, we present a procedure based on Maximum Likelihood,
where the partition function over tilings and labelings is increasingly more accurately approximated
in each iteration, by including incorrect configurations that the model rates probable. This prevents
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Figure 1: Overview of our joint segment composition and categorization framework. Given an im-
ageI, we extract a bagS of figure-ground segmentations, constrained at different spatial locations
and scales, using the CPMC algorithm [3] and retain thefiguresegments (other algorithms can be
used for segment bagging). Segments are composed into imageinterpretations (tilings) by FGTil-
ing [1]. In brief, segments become nodes in aconsistency graphwhere any two segments that do not
spatially overlap are connected by an edge. Valid compositions (tilings) are obtained by computing
maximal cliques in the consistency graph. Multiple tilingsare usually generated for each image.
Tilings consist of subsets of segments inS, and may induceresidual regionsthat contain pixels not
belonging to any of the segments selected in a particular tiling. For labeling (JSL), configurations
are scored based on both theircategory-dependentproperties measured byF l

α, and by their mid-
levelcategory-independentproperties measured byF t

β over thedependency graph—a subset of the
consistency graphconnecting only spatially neighboring segments that sharea boundary. The model
parametersθ = [α⊤ β⊤]⊤ are jointly learned using Maximum Likelihood based on a novel incre-
mental Saddle Point partition function approximation. Notice that a segment appearing in different
tilings of an imageI is constrained to have the same label (red vertical edges).

cyclic behavior and leads to a stable optimization process.The methodjointly learnsboth the mid-
level, category-independent parameters of a segment composition model, and the category-sensitive
parameters of a labeling model for those segments. To our knowledge this is the first model for joint
image segmentation and labeling, that accommodates both inference and learning, within a com-
mon, consistent probabilistic framework. We show that our procedure matches the state of the art in
the Stanford [2], as well as the VOC2010 dataset, where 41.7%accuracy on the test set is achieved.
Our framework is reviewed in fig. 1.

1.1 Related Work

One approach to recognize the elements of an image would be toaccurately partition it into re-
gions based on low and mid-level statistical regularities,and then label those regions, as pursued
by Barnardet al. [8]. The labeling problem can then be reduced to a relativelysmall number of
classification problems. However, most existing mid-levelsegmentation algorithms cannot generate
one unique, yet accurate segmentation per image, across multiple images, for the same set of generic
parameters [9, 10]. To achieve the best recognition, some tasks might require multiple overlapping
spatial supports which can only be provided by different segmentations.

Segmenting object parts or regions can be done at a finer granularity, with labels decided locally,
at the level of pixels [11, 12, 13] or superpixels [14, 15], based on measurements collected over
neighborhoods with limited spatial support. Inconsistentlabel configurations can be resolved by
smoothing neighboring responses, or by encouraging consistency among the labels belonging to re-
gions with similar low-level properties [16, 13]. The models are effective when local appearance
statistics are discriminative, as in the case of amorphous stuff (water, grass), but inference is harder
to constrain for shape recognition, which requires longer-range interactions among groups of mea-
surements. One way to introduce constraints is by estimating the categories likely to occur in the
image using global classifiers, then bias inference to that label distribution [12, 13, 15].
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A complementary research trend is to segment and recognize categories based on features extracted
over competing image regions with larger spatial support (extended regions). The extended regions
can be rectangles produced by bounding box detectors [17, 2]. The responses are combined in a
single pixel or superpixel layer [7, 18, 17, 6] to obtain the final labeling. Extended regions can also
arise from multiple full-image segmentations [7, 18, 6]. Bycomputing segmentations multiple times
with different parameters, chances increase that some of the segments are accurate. Multiple seg-
mentations can also be aggregated in an inclusion hierarchy[19, 5], instead of being obtained inde-
pendently. The work of Tuet al.[20] uses generative models to drive the sequential re-segmentation
process, formulated as Data Driven Markov Chain Monte Carloinference. Recently, Gouldet al.
[2] proposed a model for segmentation and labeling where newregion hypotheses were generated
through a sequential procedure, where uniform label swaps for all the pixels contained inside indi-
vidual segment proposals are accepted if they reduce the value of a global energy function. Kumar
and Koller [4] proposed an improved joint inference using dual-decomposition. Our approach for
segmentation and labeling is layered rather than simultaneous, and learning for the segmentation
and labeling parameters is performed jointly (rather than separately), in a probabilistic framework.

2 Probabilistic Segmentation and Labeling

Let S = {s1, s2, . . . }, be a set (bag) of segments from an imageI. In our case, the segments
si are obtained using the publicly available CPMC algorithm [3], and represent different figure-
ground hypotheses, computed independently by applying constraints at various spatial locations and
scales in the image.1 Subsets of segments in the bagS form the power setP(S), with 2|S| possible
elements. We focus on a restriction of the power set of an image, its tiling set T (I), with the
property that all segments contained in any subset (ortiling) do not spatially overlap and the subset
is maximal: T (I) = {t = {. . . si, . . . sj , . . . } ∈ P(S), s.t.∀i, j, overlap(si, sj) = 0}. Each
tiling t in T (I) can have its segments labeled with one ofL possible category labels. We call a
labeling the mapping obtained by assigning labels to segments in a tiling l(t) = {l1, . . . , l|t|}, with
li ∈ {1, . . . , L} the label of segmentsi, and|l(t)| = |t| (one label corresponds to one segment).2

LetL(I) be the set of all possible labelings for imageI with

|L(I)| =
∑

t∈T (I)

L|t| (1)

where we sum over all valid segment compositions (tilings) of an image,T (I), and the label space
of each. We define ajoint probability distribution over tilings and their corresponding labelings,

pθ(l(t), t, I) =
1

Zθ(I)
expFθ(l(t), t, I) (2)

whereZθ(I) =
∑

t

∑

l(t) expFθ(l(t), t, I) is the normalizer or partition function,l(t) ∈ L(I), t ∈

T (I), andθ the parameters of the model. It is a constrained probabilitydistribution defined over
two sets: a set of segments in a tiling and an index set of labels for those segments, both of the same
cardinality.Fθ is defined as

Fθ(l(t), t, I) = F l
α(l(t), I) + F t

β(t, I) (3)

with parametersθ = [α⊤ β⊤]⊤. The additive decomposition can be viewed as the sum of one term,
F t

β(t, I), encoding a mid-level,category independentscore of a particular tilingt, and another
category-dependentscore,F l

α(l(t), I), encoding the potential of a labelingl(t) for that tiling t. The
componentsF l

α(l(t), I) andF t
β(t, I) are defined as interactions over unary and pairwise terms. The

potential of a labeling is

F l
α(l(t), I) =

∑

si∈t

Φl
li
(si, α) +

∑

si∈t

∑

sj∈N l
si

Ψl
li,lj

(si, sj, α) (4)

with Φl
li

andΨl
li,lj

unary and pairwise, label-dependent potentials, andN l
si

the label relevant neigh-

borhood ofsi. In our experiments we takeN l
si

= t \ {si}. The unary and pairwise terms are linear

1Some of the figure-ground segments inS(I) can spatially overlap.
2We call a segmentation assembled from non-overlapping figure-ground segments a tiling, and the tiling

together with the set of corresponding labels for its segments a labeling (rather than a labeled tiling).
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in the parameters, e.g.Φl
li
(si, α) = α⊤Φl

li
(si). For exampleΦl

li
(si, α) encodes how likely it is for

segmentsi to exhibit the regularities typical of objects belonging toclassli. The potential of a tiling
is defined as

F t
β(t, I) =

∑

si∈t

Φt(si, β) +
∑

si∈t

∑

sj∈N t
si

Ψt(si, sj , β) (5)

with Φt andΨt unary and pairwise, label-independent potential functions, andN t
si

the local image
neighborhood i.e.N t

si
= {sj ∈ t | si, sj share a boundary part and do not overlap}. Both termsΦt

andΨt are linear in the parameters, similar to the components of the category dependent potential
F l

α(l(t), I). For exampleΦt(si, α) encodes how likely is that segmentsi exhibits generic object
regularities (details on the segmentation modelF t

β(t, I) can be found in [1]).

Inference: Given an imageI, inference for the optimal tiling and labeling(l∗(t∗), t∗) is given by

(l∗(t∗), t∗) = argmax
l(t),t

pθ(l(t), t, I) (6)

Our inference methodology is described in sec. 3.

Learning: During learning we optimize the parametersθ that maximize the likelihood (ML) of the
ground truth under our model:

θ⋆ = argmax
θ

∏

I

pθ(l
I(tI), tI , I) = argmax

θ

∑

I

[

Fθ(l
I(tI), tI , I)− logZθ(I)

]

(7)

where(lI(tI), tI) are ground truth labeled tilings for imageI. Our learning methodology, including
an incremental saddle point approximation for the partition function is presented in sec. 4.

3 Inference for Tilings and Labelings

Given an image where a bagS of multiple figure-ground segments has been extracted using
CPMC [3], inference is performed by first composing a number of plausible tilings from subsets
of the segments, then labeling each tiling using spatial inference methods.

The inference algorithm for computing (sampling) tilings associates each segment to a node in a
consistency graph where an edge exists between all pairs of nodes corresponding to segments that do
not spatially overlap. The cliques of the consistency graphcorrespond to alternative segmentations
of the image constructed from the basic segments. The algorithm described in [1] can efficiently
find a number of plausible maximal weighted cliques, scored by (5). A maximum of|S| distinct
maximal cliques (tilings) are returned, and each segmentsi is contained in at least one of them.

Inference for the labels of the segments in each tiling can beperformed using any number of reliable
methods—in this work we use tree-reweighted belief propagation TRW-S [21]. The maximum in
(6) is computed by selecting the labeling with the highest probability (2) among the tilings generated
by the segmentation algorithm.

Given a set ofN = |S| figure-ground segments, the total complexity for inferenceisO(Nd3+NT+
N), whereO(Nd3) steps are required to sample up toN tilings [1], with d = maxsi∈S{|N t

si
|},

NT is the complexity for inference with TRW-S (with complexity, say,T ) for each computed tiling,
andN steps are done to select the highest scoring labeling. For|S| = 200 the joint inference over
labelings and tilings takes under 10 seconds per image in ourimplementation and produces a set of
plausible segmentation and labeling hypotheses which are also useful for learning, described next.

4 Incremental Saddle Point Learning

Fundamental to maximum likelihood learning is a tractable,yet stable and sufficiently accurate esti-
mate of the partition function in (7). The number of terms inZθ(I) is |L(I)| (1), and is exponential
both in the number of figure-ground segments and in the numberof labels. As reviewed in sec. 3,
we approximate the tilings distribution of an image by a number of configurations bounded above
by the number of figure-ground segments. This replaces one exponential set of terms in the partition
function in (2) (the sum over tilings) with a set of size at most |S|.

4



In turn, each tiling can be labeled in exponentially many ways—the second sum in the partition
function in (2), running over all labelings of a tiling. One possibility to deal with this exponential
sum for models with loopy dependencies would be Pseudo-Marginal Approximation (PMA) which
estimatesZθ(I) using loopy BP and computes gradients as expectations from estimated marginals.
Kumaret al. [22] found this approximation to perform best for learning conditional random fields
for pixel labeling. However it requires inference over all tilings at every optimization iteration.
With 484 iterations required for convergence on the VOC dataset, this strategy took in our case 140
times longer than the learning strategy based on incremental saddle-point approximations presented
(below), which requires 1.3 hours for learning. Run for the same time, the PMA did not produce
satisfactory results in our model (sec. 5).

Another possibility would be to approximate the exponential sum over labels with its largest term,
obtained at the most probable configuration (the saddle-point approximation). However, this ap-
proach tends to behave erratically as a result of flips withinthe MAP configurations used to approx-
imate the partition function (sec. 5).

To ensure stability and learning accuracy, we use an incremental saddle point approximation to the
partition function. This is obtained by accumulating new incorrect (‘offending’) labelings rated as
the most probable by our current model, in each learning iteration (Lj(I) denotes the set over which
the partition function for imageI is computed in learning iterationj):

Lj+1(I) = Lj(I) ∪ {l̂, t} with (l̂, t) = argmax
l(t),t

Fθ(l(t), t, I) (8)

andl̂ 6= lI with lI the ground truth labeling for imageI. We setL0(I) = ∅. The configurations in
Lj are also used to compute the (analytic) gradient and we use quasi-Newton methods to optimize
(7). As learning progresses, new labelings are added to the partition function estimate and this
becomes more accurate.

Our learning procedure stops either when (1) all label configurations have been incrementally gen-
erated, case when the exact value of the partition function and unbiased estimates for parameters
are obtained, or (2) when a subset of the configuration space has been considered in the partition
function approximation and no new ‘offending’ configurations outside this set have been generated
during the previous learning (and inference) iteration. Inthis case a biased estimate is obtained.
This is to some extent inevitable for learning models with loopy dependencies and exponential state
spaces. In practice, for all datasets we worked on, the learning algorithm converged in 10-25 it-
erations. In experiments (sec. 5), we show that learning is significantly more stable over standard
saddle-point approximations.

5 Experiments

We evaluate the quality of semantic segmentation produced by our models in two different datasets:
the Stanford Background Dataset [2], and the VOC2010 PascalSegmentation Challenge [23].

The Stanford Background Dataset contains 715 images and comprises two domains of annotation:
semantic classes and geometric classes. The task is to labeleach pixel in every image with both
types of properties. The dataset also contains mid-level segmentation annotations for individual
objects, which we use to initially learn the parameters of the segmentation model (see sec. 3 and [1]).
Evaluation in this dataset is performed using cross-validation over5 folds, as in [2]. The evaluation
criterion is the mean pixel (labeling) accuracy.

The VOC2010 dataset is accepted as currently one of the most challenging object-class segmentation
benchmarks. This dataset also has annotation for individual objects, which we use to learn mid-level
segmentation parameters (β). Unlike Stanford, where all pixels are annotated, on VOC only objects
from the 20 classes have ground truth labels. The evaluationcriterion is the VOC score: the average
per-class overlap between pixels labeled in each class and the respective ground truth annotation3.

Quality of segments and tilings: We generate a bag of figure-ground segments for each image
using the publicly available CPMC code [3]. CPMC is an algorithm that generates a large pool
(or bag) of figure-ground segmentations, scores them using mid-level properties, and returns the

3The overlap measure of two segments isO(s, sg) = |s∩s
g |

|s∪sg |
[23].

5



Max. pixel accuracy
Stanford Geometry 93.3
Stanford Semantics 85.6

Max. VOC score
VOC2010 Object Classes 77.9

Method Semantic Geometry
JSL 75.6 88.8

Gouldet al. [2] 76.4 91.0

Table 1:Left: Study of maximum achievable labeling accuracy for our tiling set, for Stanford and
VOC2010. The study uses our tiling closest to the segmentation ground truth and assigns ‘per-
fect’ pixel labels to it based on that ground truth. In contrast, the best labeling accuracy we obtain
automatically is 88.8 for Stanford Geometry, 75.6 for Stanford Semantic, and 41.7 for VOC2010.
This shows that potential bottlenecks in reaching the maximum values have to do more with training
(ranking) and labeling, rather than the spatial segment layouts and the tiling configurations produced.
The average number of segments per tiling are 6.6 on Stanfordand 7.9 on VOC.Right: Mean pixel
accuracies on the Stanford Labeling Dataset. We obtain results comparable to the state-of-the-art
in a challenging full-image labeling problem. The results are significant, considering that we use
tilings (image segmentations) made on average of 6.6 segments per image. The same method is also
competitive in object segmentation datasets such as the VOC2010, where the object granularity is
much higher and regions with large spatial support are decisive for effective recognition (table 2).

top k ranked. The online version contains pre-trained models on VOC, but these tend to discard
background regions, since VOC has none. For the Stanford experiments, we retrain the CPMC
segment ranker using Stanford’s segment layout annotations. We generated segment bags having up
to 200 segments on the Stanford dataset, and up to 100 segments on the VOC dataset. We model
and sample tilings using the methodology described in [1] (see also (5) and sec. 3).

Table 1, left) gives labeling performance upper-bounds on the two datasets for the figure-ground seg-
ments and tilings produced. It can be seen that the upper bounds are high for both problems, hence
the quality of segments and tilings do not currently limit the final labeling performance, compared
to the current state-of-the-art. For further detail on the figure-ground segment pool quality (CPMC)
and their assembly into complete image interpretations (FGtiling), we refer to [3, 1].

Labeling performance: The tiling component of our model (5) has 41 unary and 31 pairwise
parameters (β) in VOC2010, and 40 unary and 74 parameters (β) in Stanford. Detail for these
features is given in [1]. We will discuss only the features used by the labeling component of the
model (4) in this section.

In both VOC2010 and Stanford we use two meta-features for theunary, category-dependent terms.
One type of meta-feature is produced as the output of regressors trained (on specific image features
described next) to predict overlap of input segments to putative categories. There is one such meta-
feature (1 regressor) for each category. A second type of meta-feature is obtained from an object
detector [24] to which a particular segment is presented. These detectors operate on bounding boxes,
so we determine segment class scores as those of the boundingbox overlapping most with the
bounding box enclosing each segment.

Since the target semantic concepts of the Stanford and VOC2010 datasets are widely different, we
use label-dependent unary terms based on different features. In both cases we use pairwise features
connecting all segments (N l

s encodes full connectivity), among those belonging to a sametiling. As
pairwise features forΨl we use simply a square matrix with all values set to 1, as in [5]. In this way,
the model can learn to avoid unlikely patterns of label co-occurrence.

On the Stanford Background Dataset, we train two types of unary meta-features for each class, for
semantic and geometric classes. The first unary meta-feature is the output of a regressor trained
with the publicly available features from Hoiemet al. [7], and the second one uses the features of
Gouldet al. [25]. Each of the feature vectors is transformed using a randomized feature map that
approximates the Gaussian-RBF kernel [26, 27]. Using this methodology we can work with linear
models in the randomized feature map, yet exploit non-linear kernel embeddings. Summarizing,
for Stanford geometry, we have 12 parameters,α (9 unary parameters from 3 classes, each with 2
meta-features and bias and 3 pairwise parameters), whereasfor Stanford semantic labels we have 52
parameters,α (24 unary from 8 classes, each with 2 meta-features and bias,and 28 pair-wise, the
upper triangle of an 8x8 matrix).
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Figure 2: (Best viewed in color) Semantic segmentation results of our method on images from the
VOC2010 test set: first three images where the algorithm performs satisfactorily, whereas the last
three examples where the algorithm works less well. Notice that identifying multiple objects from
the same class is possible in this framework.

In the Stanford dataset, background regions such as grass and sky are shapeless and often locally
discriminative. In such cases methods relying on pixel-level descriptors usually obtain good results
(e.g. see baseline in [2]). In turn, outdoor datasets containing stuff are challenging for a method like
ours that relies on segmentations (tilings) which have an average of 6.6 segments per image (table
1, left). The results we obtain are comparable to Gouldet al. [2], as visible in table 1, right. The
evaluation criterion is the same for both methods: the mean pixel accuracy.

On the VOC2010 dataset, performance is evaluated using theVOC score, the average of per-class
overlap between pixels labeled in each class and the respective ground truth class. We used two
different unary meta-features as well. The first is the output of SVM regressors trained as in [28] us-
ing their publicly available features [3]. These regressors predict class scores directly on segments,
based on several features: bag of words of gray-level SIFT [29] and color SIFT [30] defined on
the foreground and background of each individual segment, and three pyramid HOGs with different
parameters. Multiple chi-square kernelsK(x, y) = exp(−γχ2(x, y)) are combined as in [28]. As a
second unary meta-feature we use the outputs of deformable part model detectors [24]. Summariz-
ing, we have 63 category-dependent unary parameters,α (21 classes, each having 2 meta-features
and bias), and 210 category-dependent pairwise parametersα (upper triangle of 21x21 matrix). The
results, which match and slightly improve the recent winners in the 2010 VOC challenge, are re-
ported in table 2. In particular, our method produces the highest VOC score average over all classes,
and also scores first on 9 individual classes. The images in fig. 2 show that our algorithm produces
correct labelings. Notice that often the boundaries produced by tilings align with the boundaries of
individual objects, even when there are multiple such nearby objects from the same class.

Impact of different segmentation and labeling methods: We also evaluate the inference method
of [4] (using the code provided by the authors), on the VOC 2010 dataset, and the same input seg-
ments and potentials as for JSL. The inference time of the C++implementation of [4] is comparable
with our MATLAB implementations of FGtiling and JSL. The score obtained by [4] on our model
is 31.89%, 2.8% higher than the score obtained by the authorsusing piece-wise training and a dif-

Classes JSL CHD BSS

Background 83.4 81.1 84.2
Aeroplane 51.6 58.3 52.5

Bicycle 25.1 23.1 27.4
Bird 52.4 39.0 32.3
Boat 35.6 37.8 34.5

Bottle 49.6 36.4 47.4
Bus 66.7 63.2 60.6
Car 55.6 62.4 54.8

Classes JSL CHD BSS

Cat 44.6 31.9 42.6
Chair 10.6 9.1 9.0
Cow 41.2 36.8 32.9

DiningTable 29.9 24.6 25.2
Dog 25.5 29.4 27.1

Horse 49.8 37.5 32.4
Motorbike 47.9 60.6 47.1

Person 37.2 44.9 38.3

Classes JSL CHD BSS

PottedPlant 19.3 30.1 36.8
Sheep 45.0 36.8 50.3
Sofa 24.4 19.4 21.9
Train 37.2 44.1 35.2

Tv/Monitor 43.3 35.9 40.9

Average 41.7 40.1 39.7

Table 2: Per class results and averages obtained by our method (JSL) as well as top-scoring methods
in the VOC2010 segmentation challenge (CHD: CVC-HARMONY-DET [15], BSS: BONN-SVR-
SEGM [28]). Compared to other VOC2010 participants, the proposed method obtains better scores
in 9 out of 21 classes, and has superior class average, the standard measure used for ranking. Top
scores for each class are marked in bold. Results for other methods can be found in [23]. Note
that both JSL (the meta-features) and CHD are trained with the additional bounding box data and
images from the training set for object detection. Using this additional training data the class average
obtained by BSS is 43.8 [28].
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Figure 3:Left: The negativelog(Z) at the end of each iteration, for standard (non-incremental) and
incremental saddle-point approximations to partition function. Without the stable and more accurate
incremental saddle-point approximation to the partition function, the algorithm cannot successfully
learn. Results are obtained by training on VOC2010’s ‘trainval’ (train+validation) dataset.Center:
VOC2010 labeling score as a function of the learning iteration (training on VOC2010’s ‘trainval’).
Right: Number of new labeling configurations added to the partitionfunction expansion as learning
proceeds for VOC2010. Most configurations are added in the first few iterations.

ferent pool of segments [23], but 9.8% lower than the score ofJSL. This suggests that a layered
strategy based on selecting a compact set of representativesegmentations, followed by labeling is
more accurate than sequentially searching for segments andtheir labels.

In practice, the proposed JSL framework does not depend on FGtiling/CPMC to provide segmenta-
tions. Instead, we can use any segmentation method. We have tested the JSL framework (learning
and inference) on the Stanford dataset, using segmentations produced by the Ultrametric Contour
Map (UCM) hierarchical segmentation method [9]. To obtain asimilar number of segments as for
CPMC (200 per image), we have selected only the segmentationlevels above 20. The features and
parameters where computed exactly as before. The bag of segments for each image was derived from
the UCM segmentations, and the segmentations where taken astiling configurations for the corre-
sponding image. In this case, the scores are 76.8 and 88.2 forthe semantic and geometric classes,
respectively, showing the robustness of JSL to different input segmentations (see also table 1, right).

Learning performance: In all our learning experiments, the model parameters have been initialized
to the null vector, before learning proceeds, except for theα corresponding to the unary terms inF l

α

which where set to one. Figure 3, left and center, shows comparisons of learning with and without
the incremental saddle point approximation to the partition function, for the VOC 2010 dataset.
Without accumulating labelings incrementally, the learning algorithm exhibits erratic behavior and
overfits—the relatively small number of labelings used to estimate the partition function produce
very different results between consecutive iterations. Figure 3, right, shows the number of total and
new labelings added at each learning iteration.

Learning the parameters on VOC 2010 using PMA has taken 180 hours and produced a VOC score
of 41.3%. Stopping the learning with PMA after 2 hours (slightly above the 1.3 hrs required by the
incremental saddle point approximation) results in a VOC score of 3.87%.

6 Conclusion

We have presented a joint image segmentation and labeling model (JSL) which, given a bag of
figure-ground image segment hypotheses, constructs a jointprobability distribution overboth the
compatible image interpretations assembled from those segments,andover their labeling. The pro-
cess can be interpreted as first sampling maximal cliques from a graph connecting all segments that
do not spatially overlap, followed by sampling labels for those segments, conditioned on the choice
of their particular tiling. We propose a joint learning procedure based on Maximum Likelihood
where the partition function over tilings and labelings is increasingly more accurately approximated
during training, by including incorrect configurations that the model rates probable. This ensures
that mistakes are not carried on uncorrected in future training iterations, and produces stable and
accurate learning schedules. We show that models can be learned efficiently and match the state of
the art in the Stanford dataset, as well as VOC2010 where 41.7% accuracy on the test set is achieved.

8



References
[1] A. Ion, J. Carreira, and C. Sminchisescu. Image segmentation by figure-ground composition into maximal

cliques. InICCV, November 2011.

[2] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semantically consistent
regions. InICCV, September 2009.

[3] J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In
CVPR, June 2010.

[4] M. P. Kumar and D. Koller. Efficiently selecting regions for scene understanding. InCVPR, 2010.

[5] S. Nowozin, P.V. Gehler, and C.H. Lampert. On parameter learning in crf-based approaches to object
class image segmentation. InECCV, 2010.

[6] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for object class image
segmentation. InICCV, 2009.

[7] D. Hoiem, A. Efros, and M. Hebert. Recovering surface layout from an image.IJCV, 75(1), 2007.

[8] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M. Blei, and M. Jordan. Matching words and
pictures.JMLR., 3:1107–1135, March 2003.

[9] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to regions: An empirical evaluation. In
CVPR, pages 2294–2301, June 2009.

[10] T. Malisiewicz and A. Efros. Improving spatial supportfor objects via multiple segmentations. InBMVC,
2007.

[11] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object
recognition and segmentation by jointly modeling texture,layout, and context.IJCV, 81:2–23, 2009.

[12] X. He, R. S. Zemel, and M. Carreira-Perpinan. Multiscale conditional random fields for image labeling.
CVPR, 2004.

[13] G. Csurka and F. Perronnin. An efficient approach to semantic segmentation.IJCV, pages 1–15, 2010.

[14] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization with superpixel
neighborhoods. InICCV, 2009.

[15] J. M. Gonfaus, X. Boix, J. van de Weijer, A. D. Bagdanov, JSerrat, and J. Gonzalez. Harmony potentials
for joint classification and segmentation. InCVPR, 2010.

[16] P. Kohli, L. Ladicky, and P.H.S. Torr. Robust higher order potentials for enforcing label consistency. In
CVPR, 2008.

[17] L. Ladicky, P. Sturgess, K. Alaharia, C. Russel, and P.H.S. Torr. What, where & how many ? combining
object detectors and crfs. InECCV, September 2010.

[18] C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by integrating multiple image segmentations.
In ECCV, 2008.

[19] J.J. Lim, P. Arbelaez, Chunhui Gu, and J. Malik. Contextby region ancestry. InICCV, 2009.

[20] Z. Tu, X. Chen, A.L. Yuille, and S.-C. Zhu. Image parsing: unifying segmentation, detection, and recog-
nition. In ICCV, 2003.

[21] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI,
28(10):1568–1583, 2006.

[22] S. Kumar, J. August, and M. Hebert. Exploiting inference for approximate parameter learning in discrim-
inative fields: An empirical study. InEMMCVPR, 2005.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object
Classes Challenge 2010 (VOC2010) Results. http://www.pascal-network.org/challenges/VOC/.

[24] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discrimina-
tively trained part-based models.PAMI, 32(9):1627–1645, 2010.

[25] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.Multi-class segmentation with relative location
prior. IJCV, 80(3):300–316, 2008.

[26] A. Rahimi and B. Recht. Random features for large-scalekernel machines. InNIPS, December 2007.

[27] F. Li, C. Ionescu, and C. Sminchisescu. Random Fourier approximations for skewed multiplicative his-
togram kernels. InDAGM, September 2010.

[28] F. Li, J. Carreira, and C. Sminchisescu. Object recognition by sequential figure-ground ranking.IJCV,
2012.

[29] D. G. Lowe. Distinctive image features from scale-invariant keypoints.IJCV, 60(2):91–110, 2004.

[30] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. Evaluating color descriptors for object and scene
recognition.PAMI, 32(9):1582–1596, 2010.

9


