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Abstract

We present a joint image segmentation and labeling mode) @8ich, given a
bag of figure-ground segment hypotheses extracted at teuitiage locations
and scales, constructs a joint probability distributiorerovoth the compatible
image interpretationgilings or image segmentations) composed from those seg-
ments,and over theirlabelinginto categories. The process of drawing samples
from the joint distribution can be interpreted as first santplilings, modeled

as maximal cliques, from a graph connecting spatially needapping segments

in the bag [1], followed by sampling labels for those segreeabnditioned on
the choice of a particular tiling. We learn the segmentagind labeling parame-
ters jointly, based on Maximum Likelihood with a novel Ingrental Saddle Point
estimation procedure. The partition function over tiliregsl labelings is increas-
ingly more accurately approximated by including incorreetfigurations that a
not-yet-competent model rates probable during learning. st\bw that the pro-
posed methodology matches the current state of the art fatdrdord dataset [2],
as well as in VOC2010, where 41.7% accuracy on the test sehiswaed.

1 Introduction

One of the main goals of scene understanding is the semagmentation of images: label a di-
verse set of object properties, at multiple scales, white@same time identifying the spatial extent
over which such properties hold. For instance, an image maefgmented into things (man-made
objects, people or animals), amorphous regions or studfdifass or sky, or main geometric prop-
erties like the ground plane or the vertical planes corredpg to buildings in the scene. The
optimal identification of such properties requires infa@over spatial supports of different levels
of granularity, and such regions may often overlap. It apptmabe now well understood that a suc-
cessful extraction of such properties requires modelsddiaimake inferences over adaptive spatial
neighborhoods that span well beyond patches around indgil/juxels. Incorporating segmentation
information to inform the labeling process has recentlydnee an increasingly active research area.
While initially inferences were restricted to super-pigegmentations, recent trends emphasize joint
models with capabilities to represent the uncertainty enxsbgmentation process [2, 4, 5, 6, 7]. One
difficulty is the selection of segments that have adequaatasupport for reliable labeling, and
a second major difficulty is the design of models where bothgbgmentation and the labeling
layers can be learned jointly. In this paper, we presentra jolage segmentation and labeling
model (JSL) which, given a bag of possibly overlapping figgreund (binary) segment hypothe-
ses, extracted independently at multiple image locationkszales, constructs a joint probability
distribution overboththe compatible image interpretations (or tilings) assemlitom those seg-
ments,and over their labels. For learning, we present a proceduredbasdaximum Likelihood,
where the partition function over tilings and labelingsisreasingly more accurately approximated
in each iteration, by including incorrect configurationattthe model rates probable. This prevents
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Figure 1: Overview of our joint segment composition and gatization framework. Given an im-
ageZ, we extract a bag of figure-ground segmentations, constrained at differpatial locations
and scales, using the CPMC algorithm [3] and retainfidpgre segments (other algorithms can be
used for segment bagging). Segments are composed into imegeretations (tilings) by FGTil-
ing [1]. In brief, segments become nodes icomsistency graptvhere any two segments that do not
spatially overlap are connected by an edge. Valid composit{tilings) are obtained by computing
maximal cliques in the consistency graph. Multiple tilirgy® usually generated for each image.
Tilings consist of subsets of segmentsSinand may induceesidual regionghat contain pixels not
belonging to any of the segments selected in a particulagtilFor labeling (JSL), configurations
are scored based on both theategory-dependemiroperties measured %!, and by their mid-
level category-independeptoperties measured W}; over thedependency grapha subset of the
consistency grapbonnecting only spatially neighboring segments that sh&@undary. The model
parameter§ = [a" BT T are jointly learned using Maximum Likelihood based on a havere-
mental Saddle Point partition function approximation. is@that a segment appearing in different
tilings of an image is constrained to have the same label (red vertical edges).

cyclic behavior and leads to a stable optimization procées. methodointly learnsboth the mid-
level, category-independent parameters of a segment citigpomodel, and the category-sensitive
parameters of a labeling model for those segments. To owrliedge this is the first model for joint
image segmentation and labeling, that accommodates bfitente and learning, within a com-
mon, consistent probabilistic framework. We show that cocpdure matches the state of the artin
the Stanford [2], as well as the VOC2010 dataset, where 4actracy on the test set is achieved.
Our framework is reviewed in fig. 1.

1.1 Related Work

One approach to recognize the elements of an image would hectarately partition it into re-
gions based on low and mid-level statistical regularitees] then label those regions, as pursued
by Barnardet al. [8]. The labeling problem can then be reduced to a relatigetall number of
classification problems. However, most existing mid-l@egmentation algorithms cannot generate
one unique, yet accurate segmentation per image, acrosiplmirhages, for the same set of generic
parameters [9, 10]. To achieve the best recognition, soskes taight require multiple overlapping
spatial supports which can only be provided by differenhsegtations.

Segmenting object parts or regions can be done at a finer Igrapuwith labels decided locally,
at the level of pixels [11, 12, 13] or superpixels [14, 15]sé&d on measurements collected over
neighborhoods with limited spatial support. Inconsistabel configurations can be resolved by
smoothing neighboring responses, or by encouraging densisamong the labels belonging to re-
gions with similar low-level properties [16, 13]. The maoslalre effective when local appearance
statistics are discriminative, as in the case of amorphtfis(g/ater, grass), but inference is harder
to constrain for shape recognition, which requires lomg@ge interactions among groups of mea-
surements. One way to introduce constraints is by estiigdltia categories likely to occur in the
image using global classifiers, then bias inference to #ialldistribution [12, 13, 15].



A complementary research trend is to segment and recogaiiegaries based on features extracted
over competing image regions with larger spatial suppottefeded regions). The extended regions
can be rectangles produced by bounding box detectors [17Tt2% responses are combined in a
single pixel or superpixel layer [7, 18, 17, 6] to obtain thefilabeling. Extended regions can also
arise from multiple full-image segmentations [7, 18, 6]. &@mputing segmentations multiple times
with different parameters, chances increase that someeaggments are accurate. Multiple seg-
mentations can also be aggregated in an inclusion hiergt&hp], instead of being obtained inde-
pendently. The work of Tet al.[20] uses generative models to drive the sequential re-satation
process, formulated as Data Driven Markov Chain Monte Ciarfiterence. Recently, Goulet al.

[2] proposed a model for segmentation and labeling wherenegion hypotheses were generated
through a sequential procedure, where uniform label swaipalif the pixels contained inside indi-
vidual segment proposals are accepted if they reduce the wéla global energy function. Kumar
and Koller [4] proposed an improved joint inference usingledecomposition. Our approach for
segmentation and labeling is layered rather than simudtasieand learning for the segmentation
and labeling parameters is performed jointly (rather thepasately), in a probabilistic framework.

2 Probabilistic Segmentation and Labeling

LetS = {s1,s9,...}, be a set (bag) of segments from an im&geln our case, the segments
s; are obtained using the publicly available CPMC algorithih Ed represent different figure-
ground hypotheses, computed independently by applyingteaints at various spatial locations and
scales in the image Subsets of segments in the h&idorm the power seP(S), with 2!/ possible
elements. We focus on a restriction of the power set of an énégtiling set 7(Z), with the
property that all segments contained in any subsétiljog) do not spatially overlap and the subset
is maximal: 7(Z) = {t = {...si,...5j,...} € P(S), s.t.Vi,j, overlags;,s;) = 0}. Each
tiling ¢ in 7(Z) can have its segments labeled with oneLopossible category labels. We call a
labeling the mapping obtained by assigning labels to segments img tilt) = {l1, ..., }, with

l; € {1,..., L} the label of segment;, and|l(t)| = |t| (one label corresponds to one segmént).
Let £(Z) be the set of all possible labelings for imagevith
c@) = Y Il @
teT(T)

where we sum over all valid segment compositions (tilindgroimage,7 (Z), and the label space
of each. We define @int probability distribution over tilings and their correspiing labelings,

1
1(t),t,7) = ——— I(t),t, T 2

p9(()a s ) Z@(Z)expfe(()7 ) ) ( )
whereZy(Z) =3, >y, exp Fo(l(t), ¢, T) is the normalizer or partition functioit) € £L(Z),t €
T(Z), andé the parameters of the model. It is a constrained probatilgtribution defined over
two sets: a set of segments in a tiling and an index set of§dbethose segments, both of the same
cardinality. 7y is defined as

Fo(l(t),,1) = Fo (1), T) + F(t, T) (3)
with parameteré = [a" 37]T. The additive decomposition can be viewed as the sum of ome te
]-‘é(t,I), encoding a mid-levelcategory independerscore of a particular tiling, and another

category-dependestore ., (I(t),Z), encoding the potential of a labeling) for that tiling¢. The
components’. (1(t), T) and.Fj(t, ) are defined as interactions over unary and pairwise ternes. Th

potential of a labeling is
}—é(l(t)vz) = Zq)éi(si’a)"f'z Z Wéi,lj(si’sj’a) (4)
s; €t sietsjeNsli

with & and\Ithlj unary and pairwise, label-dependent potentials,sficthe label relevant neigh-
borhood ofs;. In our experiments we tak&! = t\ {s;}. The unary and pairwise terms are linear

'Some of the figure-ground segmentsSif/ ) can spatially overlap.
2\We call a segmentation assembled from non-overlappingdiguund segments a tiling, and the tiling
together with the set of corresponding labels for its sedmetabeling (rather than a labeled tiling).



in the parameters, e.@; (s;,a) = a' ®] (s;). For examplep; (s;,a) encodes how likely it is for
segment; to exhibit the regularities typ|cal of objects belonglng:tassl The potential of a tiling

is defined as
FL(t,T) Zq)t s, +Z Z t(si,55,8) (5)

s;€t s; €t SJE./\/P

with ®* and¥* unary and pairwise, label-independent potential funstiamd\/, the local image
neighborhoodi.eN! = {s; € t | s;, s; share a boundary part and do not ove}lapoth termsd*
and¥! are linear in the parameters, similar to the componentseot#tegory dependent potential
FL(1(t),T). For exampledt(s;, ) encodes how likely is that segmentexhibits generic object
regularities (details on the segmentation moHEQt,I) can be found in [1]).

Inference: Given an imagé&, inference for the optimal tiling and labelirig* (¢*), ¢*) is given by
(I*(t*),t*) = argmaxpy(I(t), t,T) (6)
!

R
Our inference methodology is described in sec. 3.

Learning: During learning we optimize the parametérhat maximize the likelihood (ML) of the
ground truth under our model:

f* = argmax lI t%),t%,T) = argmax Fo(12(t1),t2,T) —log Zy(T 7
g Hpe ), ) ge Z[e(() ) ge()] (7)

where(1% (1), t%) are ground truth labeled tilings for imag@e Our learning methodology, including
an incremental saddle point approximation for the partifimction is presented in sec. 4.

3 Inferencefor Tilingsand Labelings

Given an image where a ba§ of multiple figure-ground segments has been extracted using
CPMC [3], inference is performed by first composing a numbegulausible tilings from subsets
of the segments, then labeling each tiling using spatiarerice methods.

The inference algorithm for computing (sampling) tilingssaciates each segment to a node in a
consistency graph where an edge exists between all paicglesrcorresponding to segments that do
not spatially overlap. The cliques of the consistency gregrinespond to alternative segmentations
of the image constructed from the basic segments. The #igodescribed in [1] can efficiently
find a number of plausible maximal weighted cliques, scone@. A maximum of|S| distinct
maximal cliques (tilings) are returned, and each segmgistcontained in at least one of them.

Inference for the labels of the segments in each tiling cgmeb®rmed using any number of reliable
methods—in this work we use tree-reweighted belief propagad RW-S [21]. The maximum in
(6) is computed by selecting the labeling with the highesbpbility (2) among the tilings generated
by the segmentation algorithm.

Given a set ofV = |S| figure-ground segments, the total complexity for inferdac N d> + NT+
N), whereO(Nd?) steps are required to sample upNotilings [1], with d = max,,es{|N! |},
NT is the complexity for inference with TRW-S (with complexisay,T") for each computed tiling,
and N steps are done to select the highest scoring labeling|&os 200 the joint inference over
labelings and tilings takes under 10 seconds per image imgaementation and produces a set of
plausible segmentation and labeling hypotheses whichisoauaeful for learning, described next.

4 Incremental Saddle Point Learning

Fundamental to maximum likelihood learning is a tractaypée stable and sufficiently accurate esti-
mate of the partition function in (7). The number of term&Z(Z) is |£(Z)| (1), and is exponential
both in the number of figure-ground segments and in the nuidabels. As reviewed in sec. 3,
we approximate the tilings distribution of an image by a nemtf configurations bounded above
by the number of figure-ground segments. This replaces qmanextial set of terms in the partition
function in (2) (the sum over tilings) with a set of size at micH.



In turn, each tiling can be labeled in exponentially many svayhe second sum in the partition
function in (2), running over all labelings of a tiling. Onegsibility to deal with this exponential
sum for models with loopy dependencies would be Pseudo-ktargpproximation (PMA) which
estimatesZ,(Z) using loopy BP and computes gradients as expectations fsimated marginals.
Kumaret al. [22] found this approximation to perform best for learnirapditional random fields
for pixel labeling. However it requires inference over dihgs at every optimization iteration.
With 484 iterations required for convergence on the VOC sktiahis strategy took in our case 140
times longer than the learning strategy based on increrrgaddle-point approximations presented
(below), which requires 1.3 hours for learning. Run for thene time, the PMA did not produce
satisfactory results in our model (sec. 5).

Another possibility would be to approximate the expondstiem over labels with its largest term,
obtained at the most probable configuration (the saddlet@gproximation). However, this ap-
proach tends to behave erratically as a result of flips witménMAP configurations used to approx-
imate the partition function (sec. 5).

To ensure stability and learning accuracy, we use an inaneghsaddle point approximation to the
partition function. This is obtained by accumulating newadrnrect (‘offending’) labelings rated as
the most probable by our current model, in each learningtitam (C? (Z) denotes the set over which
the partition function for imag& is computed in learning iteratiof):

LT = /(@) u it} with (I,t) = argmax Fy(I(t),,T) (8)
1(t),t

and/ # 1% with i the ground truth labeling for image We set£%(Z) = (). The configurations in
L7 are also used to compute the (analytic) gradient and we wss-tlewton methods to optimize
(7). As learning progresses, new labelings are added toahéipn function estimate and this
becomes more accurate.

Our learning procedure stops either when (1) all label conditions have been incrementally gen-
erated, case when the exact value of the partition functimhumbiased estimates for parameters
are obtained, or (2) when a subset of the configuration spasdéen considered in the partition
function approximation and no new ‘offending’ configuratsooutside this set have been generated
during the previous learning (and inference) iteration.this case a biased estimate is obtained.
This is to some extent inevitable for learning models witbdg dependencies and exponential state
spaces. In practice, for all datasets we worked on, the ilggalgorithm converged in 10-25 it-
erations. In experiments (sec. 5), we show that learningyisfecantly more stable over standard
saddle-point approximations.

5 Experiments

We evaluate the quality of semantic segmentation produgedibmodels in two different datasets:
the Stanford Background Dataset [2], and the VOC2010 P&=mhentation Challenge [23].

The Stanford Background Dataset contains 715 images angriges two domains of annotation:
semantic classes and geometric classes. The task is todatielpixel in every image with both
types of properties. The dataset also contains mid-lewghsatation annotations for individual
objects, which we use to initially learn the parameters efsisgmentation model (see sec. 3 and [1]).
Evaluation in this dataset is performed using cross-vatidavers folds, as in [2]. The evaluation
criterion is the mean pixel (labeling) accuracy.

The VOC2010 dataset is accepted as currently one of the inal¢nging object-class segmentation
benchmarks. This dataset also has annotation for indiv@hjects, which we use to learn mid-level
segmentation parameters)( Unlike Stanford, where all pixels are annotated, on VO objects
from the 20 classes have ground truth labels. The evaluatitarion is the VOC score: the average
per-class overlap between pixels labeled in each classham@spective ground truth annotation

Quality of segments and tilings: We generate a bag of figure-ground segments for each image
using the publicly available CPMC code [3]. CPMC is an altjon that generates a large pool
(or bag) of figure-ground segmentations, scores them usidglawvel properties, and returns the

3The overlap measure of two segment®ig, s9) = 2071 [23].
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Max. pixel accuracy
Stanford Geometry 033 Method Semantic Geometry
Stanford Semantics 85.6 JSL 75.6 88.8
Max. VOC score Gouldet al.[2] 76.4 91.0
VOC2010 Object Classes 77.9

Table 1:Left: Study of maximum achievable labeling accuracy for our gilset, for Stanford and
VOC2010. The study uses our tiling closest to the segmemntaffound truth and assigns ‘per-
fect’ pixel labels to it based on that ground truth. In costrshe best labeling accuracy we obtain
automatically is 88.8 for Stanford Geometry, 75.6 for StadfSemantic, and 41.7 for VOC2010.
This shows that potential bottlenecks in reaching the meringalues have to do more with training
(ranking) and labeling, rather than the spatial segmepottsand the tiling configurations produced.
The average number of segments per tiling are 6.6 on Staafatd.9 on VOCRIight: Mean pixel
accuracies on the Stanford Labeling Dataset. We obtairtsesomparable to the state-of-the-art
in a challenging full-image labeling problem. The results significant, considering that we use
tilings (image segmentations) made on average of 6.6 segmpenimage. The same method is also
competitive in object segmentation datasets such as the2dO@ where the object granularity is
much higher and regions with large spatial support are tedisr effective recognition (table 2).

top k£ ranked. The online version contains pre-trained models O& Vbut these tend to discard
background regions, since VOC has none. For the Stanfordriements, we retrain the CPMC
segment ranker using Stanford’s segment layout annotatila generated segment bags having up
to 200 segments on the Stanford dataset, and up to 100 segoretiie VOC dataset. We model
and sample tilings using the methodology described in [@¢ @so (5) and sec. 3).

Table 1, left) gives labeling performance upper-boundseriwo datasets for the figure-ground seg-
ments and tilings produced. It can be seen that the upperdsane high for both problems, hence

the quality of segments and tilings do not currently limi final labeling performance, compared

to the current state-of-the-art. For further detail on tgar@-ground segment pool quality (CPMC)

and their assembly into complete image interpretationgilif@), we refer to [3, 1].

Labeling performance: The tiling component of our model (5) has 41 unary and 31 pagw
parameters/) in VOC2010, and 40 unary and 74 parametétsi( Stanford. Detail for these
features is given in [1]. We will discuss only the featuresdiby the labeling component of the
model (4) in this section.

In both VOC2010 and Stanford we use two meta-features foutlagey, category-dependent terms.
One type of meta-feature is produced as the output of regnessined (on specific image features
described next) to predict overlap of input segments totjygtaategories. There is one such meta-
feature (1 regressor) for each category. A second type adfieetture is obtained from an object
detector [24] to which a particular segment is presenteds&lietectors operate on bounding boxes,
so we determine segment class scores as those of the bouraingverlapping most with the
bounding box enclosing each segment.

Since the target semantic concepts of the Stanford and VO @atasets are widely different, we
use label-dependent unary terms based on different featuréoth cases we use pairwise features
connecting all segmentd{ encodes full connectivity), among those belonging to a siling. As
pairwise features fob! we use simply a square matrix with all values set to 1, as inlfthis way,

the model can learn to avoid unlikely patterns of label counence.

On the Stanford Background Dataset, we train two types ofyumeeta-features for each class, for
semantic and geometric classes. The first unary meta-&e@uhe output of a regressor trained
with the publicly available features from Hoieet al. [7], and the second one uses the features of
Gouldet al. [25]. Each of the feature vectors is transformed using agamzed feature map that
approximates the Gaussian-RBF kernel [26, 27]. Using tethodology we can work with linear
models in the randomized feature map, yet exploit non-titkeanel embeddings. Summarizing,
for Stanford geometry, we have 12 parameter§d unary parameters from 3 classes, each with 2
meta-features and bias and 3 pairwise parameters), wherestsinford semantic labels we have 52
parametersy (24 unary from 8 classes, each with 2 meta-features and di@s28 pair-wise, the
upper triangle of an 8x8 matrix).



Figure 2: (Best viewed in color) Semantic segmentationltesd our method on images from the
VOC2010 test set: first three images where the algorithnopmig satisfactorily, whereas the last
three examples where the algorithm works less well. Notie¢ identifying multiple objects from
the same class is possible in this framework.

In the Stanford dataset, background regions such as grdsskgrare shapeless and often locally
discriminative. In such cases methods relying on pixedléescriptors usually obtain good results
(e.g. see baseline in [2]). In turn, outdoor datasets comguistuff are challenging for a method like
ours that relies on segmentations (tilings) which have amage of 6.6 segments per image (table
1, left). The results we obtain are comparable to Gaildl. [2], as visible in table 1, right. The
evaluation criterion is the same for both methods: the méeai accuracy.

On the VOC2010 dataset, performance is evaluated using@& score the average of per-class
overlap between pixels labeled in each class and the regpggrbund truth class. We used two
different unary meta-features as well. The first is the outp VM regressors trained as in [28] us-
ing their publicly available features [3]. These regresgwedict class scores directly on segments,
based on several features: bag of words of gray-level SIRT 4&d color SIFT [30] defined on
the foreground and background of each individual segmeudittfaree pyramid HOGs with different
parameters. Multiple chi-square kerné&l$z, ) = exp(—vyx?(z,y)) are combined as in [28]. As a
second unary meta-feature we use the outputs of deformaltienodel detectors [24]. Summariz-
ing, we have 63 category-dependent unary paramete@l classes, each having 2 meta-features
and bias), and 210 category-dependent pairwise paranee(epper triangle of 21x21 matrix). The
results, which match and slightly improve the recent wisriarthe 2010 VOC challenge, are re-
ported in table 2. In particular, our method produces thadsgVOC score average over all classes,
and also scores first on 9 individual classes. The images.i2 fipow that our algorithm produces
correct labelings. Notice that often the boundaries predusy tilings align with the boundaries of
individual objects, even when there are multiple such nealijects from the same class.

Impact of different segmentation and labeling methods: We also evaluate the inference method
of [4] (using the code provided by the authors), on the VOC®@4taset, and the same input seg-
ments and potentials as for JSL. The inference time of thei@plementation of [4] is comparable
with our MATLAB implementations of FGtiling and JSL. The sembtained by [4] on our model
is 31.89%, 2.8% higher than the score obtained by the autlsimg piece-wise training and a dif-

| Classes |JSL CHD BSSH Classes |JSL CHD BSSH Classes |JSL CHD BSS}

Background|83.4 81.1 84.2 Cat 446 319 42.9 | PottedPlant/ 19.3 30.1 36.8
Aeroplane |51.6 58.3 52.5 Chalir 106 9.1 9.0 Sheep [45.0 36.8 50.3
Bicycle [25.1 23.1 274 Cow 412 36.8 32.9 Sofa 244 194 219
Bird 524 39.0 32.3 | DiningTable [29.9 24.6 25.2 Train 37.2 441 352
Boat 35.6 37.8 345 Dog 25,5 29.4 27.1 | Tv/iMonitor {43.3 35.9 40.9
Bottle 496 36.4 474 Horse 498 37.5 324
Bus 66.7 63.2 60.4 | Motorbike [47.9 60.6 47.1
Car 55.6 624 54.8 Person |37.2 449 38.3| [ Average [41.7 40.1 39.7

Table 2: Per class results and averages obtained by our chgtBh) as well as top-scoring methods
in the VOC2010 segmentation challenge (CHD: CVC-HARMONE-D[15], BSS: BONN-SVR-
SEGM [28]). Compared to other VOC2010 participants, theppsed method obtains better scores
in 9 out of 21 classes, and has superior class average, tidastameasure used for ranking. Top
scores for each class are marked in bold. Results for oth#rade can be found in [23]. Note
that both JSL (the meta-features) and CHD are trained wehatiditional bounding box data and
images from the training set for object detection. Using #uditional training data the class average
obtained by BSS is 43.8 [28].
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Figure 3:Left: The negativéog(Z) at the end of each iteration, for standard (non-incrempatel
incremental saddle-point approximations to partitionchion. Without the stable and more accurate
incremental saddle-point approximation to the partitiondtion, the algorithm cannot successfully
learn. Results are obtained by training on VOC2010’s ‘train(train+validation) dataseCenter:
VOC2010 labeling score as a function of the learning iteratraining on VOC2010’s ‘trainval’).
Right: Number of new labeling configurations added to the partifiorction expansion as learning
proceeds for VOC2010. Most configurations are added in theféw iterations.

ferent pool of segments [23], but 9.8% lower than the scor@Sif. This suggests that a layered
strategy based on selecting a compact set of represensativeentations, followed by labeling is
more accurate than sequentially searching for segmenthaidabels.

In practice, the proposed JSL framework does not depend a¢iliffBCPMC to provide segmenta-
tions. Instead, we can use any segmentation method. We ésteel the JSL framework (learning
and inference) on the Stanford dataset, using segmergagtimauced by the Ultrametric Contour
Map (UCM) hierarchical segmentation method [9]. To obtasirailar number of segments as for
CPMC (200 per image), we have selected only the segmentatiels above 20. The features and
parameters where computed exactly as before. The bag oesegfor each image was derived from
the UCM segmentations, and the segmentations where takdimgxonfigurations for the corre-
sponding image. In this case, the scores are 76.8 and 88tRef@emantic and geometric classes,
respectively, showing the robustness of JSL to differgmifisegmentations (see also table 1, right).

L earning performance: In all our learning experiments, the model parameters haea itialized

to the null vector, before learning proceeds, except fortkerresponding to the unary termsJj,
which where set to one. Figure 3, left and center, shows casgre of learning with and without
the incremental saddle point approximation to the partifienction, for the VOC 2010 dataset.
Without accumulating labelings incrementally, the leagnalgorithm exhibits erratic behavior and
overfits—the relatively small number of labelings used tineste the partition function produce
very different results between consecutive iterationgufé 3, right, shows the number of total and
new labelings added at each learning iteration.

Learning the parameters on VOC 2010 using PMA has taken 18&tamd produced a VOC score
of 41.3%. Stopping the learning with PMA after 2 hours (sliglabove the 1.3 hrs required by the
incremental saddle point approximation) results in a VO@sof 3.87%.

6 Conclusion

We have presented a joint image segmentation and labelirgeindSL) which, given a bag of
figure-ground image segment hypotheses, constructs agmbiability distribution oveboth the
compatible image interpretations assembled from thos@esets,and over their labeling. The pro-
cess can be interpreted as first sampling maximal cliques &rgraph connecting all segments that
do not spatially overlap, followed by sampling labels foogh segments, conditioned on the choice
of their particular tiling. We propose a joint learning pedcre based on Maximum Likelihood
where the partition function over tilings and labelingsisreasingly more accurately approximated
during training, by including incorrect configurations tllae model rates probable. This ensures
that mistakes are not carried on uncorrected in futureitrgiiterations, and produces stable and
accurate learning schedules. We show that models can etkafficiently and match the state of
the art in the Stanford dataset, as well as VOC2010 wheré&gacturacy on the test set is achieved.
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