
Randomized Algorithms for Comparison-based
Search

Dominique Tschopp
AWK Group

Bern, Switzerland
dominique.tschopp@gmail.com

Suhas Diggavi
University of California Los Angeles (UCLA)

Los Angeles, CA 90095
suhasdiggavi@ucla.edu

Payam Delgosha
Sharif University of Technology

Tehran, Iran
pdelgosha@ee.sharif.ir

Soheil Mohajer
Princeton University
Princeton, NJ 08544

smohajer@princeton.edu

Abstract

This paper addresses the problem of finding the nearest neighbor (or one of the
R-nearest neighbors) of a query objectq in a database ofn objects, when we can
only use a comparison oracle. The comparison oracle, given two reference objects
and a query object, returns the reference object most similar to the query object.
The main problem we study is how to search the database for thenearest neighbor
(NN) of a query, while minimizing the questions. The difficulty of this problem
depends on properties of the underlying database. We show the importance of a
characterization:combinatorial disorderD which defines approximate triangle
inequalities on ranks. We present a lower bound ofΩ(D log n

D + D2) average
number of questions in the search phase for any randomized algorithm, which
demonstrates the fundamental role ofD for worst case behavior. We develop
a randomized scheme for NN retrieval inO(D3 log2 n + D log2 n log log nD3

)

questions. The learning requires askingO(nD3 log2 n + D log2 n log log nD3

)

questions andO(n log2 n/ log(2D)) bits to store.

1 Introduction

Consider the situation where we want to search and navigate adatabase, but the underlying relation-
ships between the objects are unknown and are accessible only through a comparison oracle. The
comparison oracle, given two reference objects and a query object, returns the reference object most
similar to the query object. Such an oracle attempts to modelthe behavior of human users, capable
of making statements about similarity, but not of assigningmeaningful numerical values to distances
between objects. These situations could occur in many tasks, such as recommendation for movies,
restaurants etc., or a human-assisted search system for image databases among other applications.
Using such an oracle, the best we can hope for is to obtain, forevery objectu in the database, a
ranking of the other objects according to their similarity to u. However, the use of the oracle to
get complete information about ranking could be costly, since invoking the oracle is to represent
human input to the task (preferences in movies, comparison of images etc). We can pre-process
the database by asking questions during a learning phase, and use the resulting answers to facilitate
the search process. Therefore, the main question we ask in this paper is to design a (approximate)
nearest neighbor retrieval algorithm while minimizing thenumber of questions to such an oracle.

Clearly the difficulty of searching using such an oracle depends critically on the properties of the set
of objects. We demonstrate the importance of a characterization which determines the performance

1

of comparison based search algorithms.Combinatorial disorder(introduced by Goyal et al. [1]),
defines approximate triangle inequalities on ranks. Roughly speaking, it defines a multiplicative
factorD by which the triangle inequality on ranks can be violated. Weshow our first lower bound of
Ω(D log n

D +D2) on average number of questions in the search phase for any randomized algorithm,
and therefore demonstrate the fundamental importance ofD for worst case behavior. When the
disorder is known, we can use partial rank information to estimate, or infer the other ranks. This
allows us to design a novel hierarchical scheme which considerably improves the existing bounds
for nearest neighbor search based on a similarity oracle, and performs provably close to the lower
bound. If no characterization of the hidden space can be usedas an input, we develop algorithms
that can decompose the space such that dissimilar objects are likely to get separated, and similar
objects have the tendency to stay together; generalizing the notion of randomizedk-d-trees [2]. This
is developed in more detail in [3]. Due to space constraints,we give statements of the results along
with an outline of proof ideas in the main text. Additionallywe provide proof details in the appendix
[4] as extra material allowed by NIPS.

Relationship to published works:Nearest neighbor (NN) search problem has been very well stud-
ied for metric spaces (see [5]). However, in all these works,it is assumed that one can compute
distances between points in the data set. In [6, 7, 8, 9, 10, 11], various approaches to measure simi-
larities between images are presented, which could be used as comparison oracles in our setup. The
algorithmic aspects of searching with a comparison oracle was first studied in [1], where a random
walk algorithm is presented. The main limitation of this algorithm is the fact that all rank relation-
ships need to be known in advance, which amounts to asking theoracleO(n2 log n) questions, in
a database of sizen. In [12], a data structure similar in spirit toǫ-nets of [13] is introduced. It
is shown that a learning phase with complexityO(D7n log2 n) questions and a space complexity
of O(D5n + Dn log n) allows to retrieve the NN inO(D4 log n) questions. The learning phase
builds a hierarchical structure based on coverings of exponentially decreasing radii. In this paper,
we present what we believe is the firstlower boundfor search through comparisons. This gives
a more fundamental meaning toD as a parameter determining worst case behavior. Based on the
insights gained from this worst case analysis, we then improve (see Section 3) the existing upper
bounds by apoly(D) factor, if we are willing to accept a negligible (less than1

n) probability of
failure. Our algorithm is based on random sampling, and can be seen as a form of metric skip list (as
introduced in [14]), but applied to a combinatorial (non-metric) framework. However, the fact that
we do not have access to distances forces us to use new techniques in order to minimize the number
of questions (or ranks we need to compute). In particular, wesample the database at different densi-
ties, and infer the ranks from the density of the sampling, which we believe is a new technique. We
also need to relate samples to each other when building the data structure top down.

A natural question to ask is whether one can develop data structures for NN when a characterization
of the underlying space is unknown. In [2], when one has access to metric distances, a binary
tree decomposition of a dataset that adapts to its “intrinsic dimension” [13] has been designed. We
extend the result of [2] to our setup, where we have a comparison oracle but do not have access to
metric distances. This can be used in a manner similar to [2] to find (approximate) NN (see [3] for
more details).

To the best of our knowledge, the notion of randomized NN search using similarity oracle is studied
for the first time in this paper. Moreover, the hierarchical search scheme proposed is more efficient
than earlier schemes. The lower bound presented appears to be new and demonstrates that our
schemes are (almost) efficient.

2 Definitions and Problem Statement

We consider a hidden spaceK, and a database of objectsT ⊂ K, with |T | = n. We can only access
this space through asimilarity oraclewhich for any pointq ∈ K, and objectsu, v ∈ T returns

O(q, u, v) =

{

u if u is more similar toq thanv
v else. (1)

The goal is to develop and analyse algorithms which for any givenq ∈ K, can find an object in the
databasea ∈ T which is the nearest neighbor (NN) toq, using the smallest number of questions of
type (1). We also relax this goal to find the approximate NN with “high probability”. The algorithm

2

may have a learning phase, in which it explores the structureof the database, and stores it using a
certain amount of memory. Note that this phase has to be done prior to knowing the queryq ∈ K.
Then, once the query is given, the search phase of the algorithm asks a certain number of questions
of type (1) and finds the closest object in the database.

The performance of the algorithm is measured by three components among which there could be
a trade-off: the number of questions asked in the learning phase, the number of questions asked in
the searching phase, and the total memory to be stored. The main goal of this work is to design
algorithms for NN search and characterize its performance in terms of these parameters. We will
present some definitions which are required to state the results of this paper.

Definition 1. The rank ofu in a setS with respect tov, rv(u,S) is equal toc, if u is thecth nearest
object tov in S, i.e., |{w ∈ S : d(w, v) < d(u, v)}| = c − 1, whered(w, v) < d(u, v) could be
interpreted as a distance function. Also the rank ballβx(r) is defined to be{y : rx(y,S)) ≤ r}.

Note that we do not need existence of a distance function in Definition 1. We could replace
d(w, v) < d(u, v) with “v is more similar tow thanu” by using the oracle in (1).

To simplify the notation, we only indicate the set if it is unclear from the contexti.e.,we writerv(u)
instead ofrv(u,S) unless there is an ambiguity. Note that rank need not be a symmetric relationship
between objectsi.e., ru(v) 6= rv(u) in general. Further, note that we can rankm objects w.r.t. an
objecto by asking the oracleO(m log m) questions, using standard sort algorithms [15].

Our characterization of the space of objects is through a form of approximate triangle inequali-
ties introduced in [1] and [12]. Instead of defining a inequalities between distances, these triangle
inequalities defined over ranks, and depend on a property of the space, called thedisorder constant.

Definition 2. The combinatorial disorder of a set of objectsS is the smallestD such that∀x, y, z ∈
S, we have the following approximate triangle inequalities:

(i) rx(y, S) ≤ D(rz(x, S) + rz(y, S)) (ii) rx(y, S) ≤ D(rx(z, S) + ry(z, S))

(iii) rx(y, S) ≤ D(rx(z, S) + rz(y, S)) (iv) rx(y, S) ≤ D(rz(x, S) + ry(z, S))

In particular, rx(x, S) = 0 andrx(y, S) ≤ Dry(x, S).

3 Contributions

Our contributions are the following:(i) we design a randomized hierarchical data structure with
which we can do NN search using the comparison oracle(ii) we develop the first lower bound
for the search complexity in the combinatorial framework of[1, 12], and thereby demonstrate the
importance of combinatorial disorder. The performance of the randomized algorithm (see(i)) is
shown to be close to this lower bound. We also develop a binarytree decomposition that adapts to
the data set in a manner analogous to [2].

More precisely, we prove a lower bound on the average search time to retrieve the nearest neighbor
of a query point for randomized algorithms in the combinatorial framework.

Theorem 1. There exists a space, a configuration of a database ofn objects in that space that
for the uniform distribution over placements of the query point q such that no randomized search
algorithm, even ifO(n3) questions can be asked in the learning phase, can findq’s nearest neighbor
in the database for sure (with a probability of error of 0) by asking less than an expectedΩ(D2 +
D log n/D) questions in the worst case whenD <

√
n.

As a consequence of this theorem, there must exist at least one query point in this configuration
which requires asking at leastΩ(D log(n

D) + D2) questions, hence setting a lower bound on the
search complexity. Based on the insights gained from this worst case analysis, we introduce a
conceptually simple randomized hierarchical scheme that allows us to reduce the learning compared
to the existing algorithm (see [12, 1]) by a factorD4, memory consumption by a factorD5/ log2 n,
and a factorD/ logn log log nD3

for search.

Theorem 2. We design a randomized algorithm, which for a given query point q, can retrieve
its nearest neighbor with high probability inO(D3 log2 n + D log2 n log log nD3

) questions. The

3

learning requires askingO(nD3 log2 n + D log2 n log log nD3

) questions and we need to store
O(n log2 n/ log(2D)) bits.

Consequently, our schemes are asymptotically (forn) within Dpolylog(n) questions of the optimal
search algorithm.

4 Lower Bounds for NNS

A natural question to ask is whether there are databases and query points for which we need to ask
a minimal number of questions, independent of the algorithmused. In this section, we construct
a databaseT of n objects, a universe of queriesK\T and similarity relationships, for which no
search algorithm can find the NN of a query point in less than expectedΩ(D log n

D +D2) questions.
We show this even when all possible questionsO(u, v, w) related to then database objects (i.e.,
u, v, w ∈ T) can be asked during the learning phase. The query is chosen uniformly from the
universe of queries and is unknown during the learning phase.

Database Structure: Consider the weighted graph shown in Fig. 1. It consists of a star with α
branchesφ1, φ2, . . . , φα, each composed ofn/α2 supernodes (SN). Each of the supernodes in turn
containsα database objects (i.e., objects inT). Clearly, in total there areαα n

α2 = n objects.
Note that the databaseT only includes the set of objects inside the supernodes, and the supernodes,
themselves, arenotelement ofT . We indicate the objects in each branch by numbers from1 to n/α.

We define the set of queries,M, as follows: every query pointq is attached to one object formT on
each branch of the star with an edge; this object is called adirect node(DN) on the corresponding
branch. Moreover, we assume that the weights of allquery edges, theα edges connecting the query
to its DNs, are different. Therefore, the set of all queries,M could be restricted toα!(n/α)α

elements, since there aren/α choices for choosing the direct node in each branch (i.e., (n/α)α

choices forα branches), and the weight of the query edges can be ordered inα! different ways.

In this example, distance between two nodes is given by the weighted graph distance, and the oracle
answers queries based on this distance. All edges connecting the SNs to each other have weight1
expect thoseα edges emitting from the center of the star and ending at the first SNs which have
weightn/(α2). Edges connecting the objects in a supernode to its root are calledobjectedges. We
assume that alln/α object edges in branchφi have weighti/(4α). It remains to fix the weight of
the query edges. We will define the weight of these edges in thefollowing.

Definition 3. For a queryq ∈ M, define theα-tupleδq ∈ {1, 2, . . . , n/α}α to be the sequence of
DNs ofq in α branches,i.e.,δq(i) denotes the indicator of the object onφi which is connected toq
via a query edge. We also represent the rank of the DNs w.r.t.q, by anα-tupleΨq ∈ {1, . . . , α}α,
i.e.,Ψq(i) denotes the rank of the DN on branchφi among all the other DNs w.r.t.q.

Now we can define the weight of query edges. For a queryq ∈ M, the weight of the query edge
which connectsq to δq(i) is given to be1 + (Ψq(i)/α)ǫ, whereǫ≪ 1/(4α) is a constant.

As mentioned before, the disorder constant plays an important role in the performance of the algo-
rithm. The following lemma gives the disorder constant for the database introduced. The proof of
this lemma is presented in the appendix [4].

Lemma 1. The star shaped graph introduced above has disorder constant D = Θ(α).

The Lower Bound: In the proof of Theorem 1, we will use Yao’s minimax principle(see [16]),
which states that, for any distribution on the inputs the expected cost for the best deterministic
algorithm provides a lower bound on the worst case running time of any randomized algorithm. In
the following, we state two lower bounds for the number of questions in the searching phase of any
deterministic algorithm for the database illustrated in Fig. 1.

Proposition 1. The number of questions asked by a deterministic algorithmA, on average w.r.t.
uniform distribution, to solve the NNS problem in star graph, is lower bounded byΩ (α log(n/α)).

To outline the proof of this claim: each question asked by thealgorithm involves two database
nodes. Note that the weights of the edges emitting from the center of the graph are chosen so that
the branches becomeindependent, in the sense that questioning nodes on one branch will not reveal

4

Figure 1: The star database: a weighted star graph withα branches, each composed ofn/α2 “su-
pernodes”. Each supernode further includesα database objects. Finally, each query points is ran-
domly connected tooneobject oneachbranch of the star via a weighted edge. The weights of the
edges are chosen so than the disorder constant beD = Θ(α).

any information about other branches. Therefore, in order to find the nearest node toq, the algorithm
has to find the direct node on each branch, and then compare them to find the NN. For any branch
φi, there aren/α candidates which can be DN ofq with equal probability. Hence, roughly speaking,
the algorithm needs to askΩ(log(n/α)) questions for each branch. This yields to a minimum total
of Ω(α log(n/α)) questions forα independentbranches in the graph.

Proposition 2. Any deterministic algorithmA solving nearest neighbor search problem in the input
query setM with uniform distribution should ask on averageΩ(α2) questions from the oracle.

To outline the proof of this claim: consider an arbitrary branchφi and assume a genie tells us that
which supernode onφi contains the DN forq. However, we do not know which ofp1, p2, . . . , pα,
the nodes inside the revealed supernode, is the DN ofq on φi. Since all the edges connecting the
supernode to its children have the same weight, questioningjust some of them is not sufficient to
find the direct node, and effectively all of them should be asked on average. Since each question
involves at most two of such nodes, anΩ(α) questions is required to find the DN onφi. Summing up
the same number over allα branches, we obtain theΩ(α2) lower bound on the number of questions.

Theorem 1 is a direct consequence of the above mentioned propositions.

Proof of Theorem 1.Let A be an arbitrary deterministic algorithm which solves NNS problem in
star shaped graph with uniform distribution. IfQA denotes the average number of questionsA asks,
according to Proposition 1 and Proposition 2 we have

QA ≥ max
{

Ω
(

α log
n

α

)

, Ω(α2)
}

≥ 1

2

(

Ω
(

α log
n

α

)

, Ω(α2)
)

= Ω
(

α2 + α log n/α
)

. (2)

By using the Yao’s Minimax principle, we can conclude Theorem 1.

We can show that this bound is best bound one can find for this dataset. Indeed, we present an
algorithm in the appendix [4], which finds the query by askingΘ

(

α2 + α log n/α
)

questions.

5

5 Hierarchical Data Structure For Nearest-Neighbor Search

In this section we develop the search algorithm that guarantees the performance stated in Theorem 2.
The learning phase is described in Algorithm 1. The algorithm builds a hierarchical decomposition
level by level, top-down. At each level, we sample objects from the database. The set of samples at
leveli is denoted bySi, and we have|Si| = mi = a(2D)i log n, wherea is a constant independent1

of n andD. At each leveli, every object inT is put in the “bin” of the sample inSi closest to it. To
find this sample at leveli, for every objectp we rank the samples inSi w.r.t. p (by using the oracle
to make pairwise comparisons). However, we show that given that we knowD, we only need to
rank those samples that fell in the bin of one of the at most4aD log n nearest samples top at level
i − 1. This is a consequence of the fact that we carefully chose thedensity of the samples at each
level. Further, the fact that we build the hierarchy top-down, allows us to use the answers to the
questions asked at leveli, to reduce the number of questions we need to ask at leveli + 1. This way,
the number of questions per object does not increase as we go down in the hierarchy, even though
the number of samples increases.

For objectp, νp(i) denotes the nearest neighbor to objectp in Si. We want to keep theλi =
n/(2D)i−1 closest objects inSi to p in the setΓp(i), i.e.,all objectso ∈ Si so thatrp(o, Si) ≤ λi.
It could be shown that for an objecto to be inΓp(i) it is necessary thatνo(i − 1) be inΓp(i − 1).
Therefore by takingΛp(i) = {o ∈ Si|νo(i − 1) ∈ Γp(i − 1)} we haveΓp(i) ⊆ Λp(i). It could
be verified that|Γp(i)| ≤ 4aD log n, thereforeΓp(i) can be constructed by finding the4aD log n
closest objects inΛp(i) top. Definitely the first object inΓp(i) isνp(i). Therefore we can recursively
buildΓp(i), Λp(i) andνp(i) for 1 ≤ i ≤ log n/ log 2D for any objectp, as it is done in the algorithm.

The role of macrosBuildHeap andExtractMin is to build a heap from unordered data, and ex-
tract the minimum element from the heap, respectively. Although they are well-known and standard
algorithms, we will present them in the appendix [4] for completeness.

The search process is described in Algorithm 2. The key idea is that the sample closest to the query
point on the lowest level will be its NN. Hence, by repeating the same process for inserting objects
in the database, we can retrieve the NN w.h.p. We first bound the number of questions asked by
Algorithm 1 (w.h.p.), in Theorem 3. Having this result, the proof of Theorem 2 is then immediate.
Theorem 3. Algorithm 1 succeeds with probability higher than1 − 1

n , and it requires asking no

more thanO(nD3 log2 n + D log2 n log log nD3

) questions w.h.p.

We first state a technical lemma that we will need to prove Theorem 3. The proof could be found in
Appendix [4].
Lemma 2. Takea a constant andλi = n

(2D)i=1 . For every objectp ∈ T ∪{q}, whereq is the query
point, the following four properties of the data structure are true w.h.p.

1. |Si ∩ βp(λi+1)| ≥ 1 2. |Si ∩ βp(λi)| ≤ 4aD log n

3. |Si+1 ∩ βp(λi−1)| ≤ 16aD3 log n 4. |Si ∩ βp(4λi)| ≥ 4aD log n

5. |Si+1 ∩ βp(4λi−1)| ≤ 64aD3 log n

Proof of Theorem 3.Let mi = a(2D)i log n denote the number of objects we sample at leveli, and
let Si be the set of samples at leveli i.e., |Si| = mi. Here,a is an appropriately chosen constant,
independent ofD andn. Further, letλi = n

(2D)i−1 .

From now on, we assume that we are in the situation where Properties (1) to (5) in Lemma 2 are
true for all objects (which is the case w.h.p.). Again, fix an objectp. For each objectp, we need
to find νp(i), which is the nearest neighbor inSi with respect top. In order for being able to
continue this procedure in every level, we keep a wider rangeof objects: those objects inSi that
have ranks less thanλi+1 with respect top in level i; we store them inΓp(i) (property 1 tells us that
such objects exist), in this way the first object inΓp(i) would beνp(i). In practice our algorithm
stores some redundant objects inΓp(i), but we claim that totally no more than4aD log n objects
are stored inΓp(i + 1). To summarize, the properties we want to maintain in each level are: 1-
∀p ∈ T and1 ≤ i ≤ log n/ log 2D, Si ∩ βp(λi) ⊆ Γp(i) and 2-|Γp(i)| ≤ 4aD log n.

1in fact the value ofa is dependent on the value of error we expect, the more accurate we want to be, the
more sample points we need in each level anda would be larger.

6

input : A database withn objectsp1, ..., pn, and disorder constantD
output: For each objectu, a vectorνu of lengthlog n/ log(2D). The list of all samples∪iSi

Def.: Si: The set ofa(2D)i log n random samples at leveli, i = 1, . . . , log n/ log(2D);
νo: νo(i) =nearest neighbor to objecto in Si; o ∈ T , i = 1, . . . , log n/ log(2D);

Γo(i): contains theλi closest objects top in Si, possibly with redundant objects;
Λo(i): The set ofp ∈ Si, for whichνp(i− 1) ∈ Γo(i− 1);

for i← 1 to L = log n
log 2D do

for p← 1 to n do
if i = 1 then

Λp(1)← S1

else
Λp(i) = {o ∈ Si|νo(i− 1) ∈ Γp(i− 1)};
if |Λp(i)| = 0 then

Report Failure
else

H ← BuildHeap(Λp(i)) ;
for k ← 1 to 4aD log n do

m← ExtractMin(H) ;
addm to Γp(i)

end
end
νp(i)← first object inΓp(i);

end
end

end

Algorithm 1 : Learning Algorithm

input : A database withn objects and disorderD, the list of samples, the vectorsνu for
u ∈ T , a query pointq

output: The nearest neighbor ofq in the database

Γq(1) = S1;
for i← 2 to L = log n

log 2D do
Λq(i)← {p ∈ Si|νp(i− 1) ∈ Γq(i− 1)};
H ← BuildHeap(Λq(i)) ;
for k← 1 to 4aD log n do

m← ExtractMin(H) ;
addm to Γq(i)

end
end
return first object inΓq(

log n
log 2D)

Algorithm 2 : Search Algorithm

In the first step, for allp, Λp(1) = S1, and since|S1| = 2aD log n < 4aD log n, all the objects in
S1 are extracted from the heap and thereforeΓp(i) is S1 ordered with respect top, as a result both
the properties hold wheni = 1. The argument for the maintenance of this property is as follows:
Assume the property holds up to leveli; we analyze leveli + 1. In fact we want an objects ∈ Si+1

to be inΓp(i + 1) if rp(s) ≤ λi+1 (note that Property 1 guarantees that there is a least one such
sample). Further, lets′ ∈ Si be the sample at leveli closest tos i.e., s′ = minx∈Si

rs(s
′). Again,

by Property 1, we know thatrs(s
′) ≤ λi+1. Hence, by the approximate triangle inequality 3 (see

Section 2), we have:

rp(s, T) ≤ λi+1 andrs(s
′, T) ≤ λi+1 ⇒ rp(s

′, T) ≤ 2Dλi+1 = λi

hences′ = νs(i) ∈ Si ∩ βp(λi) ⊆ Γp(i) using the first property for stepi. Thereforeνs(i) ∈ Γp(i)
and therefores ∈ Λp(i + 1). Property 2 tells us that|Si+1 ∩ βp(λi+1)| ≤ 4aD log n. Hence by

7

taking the first4aD log n closest objects top in Λp(i + 1) and storing them inΓp(i + 1), we can
make sure than boths ∈ Γp(i + 1) for s ∈ Si+1, s ∈ βp(λi+1) and|Γp(i + 1)| ≤ 4aD log n.

Note that in the last loop of the algorithm wheni = log n/ log 2D, according to Property 1,|Si ∩
βp(λi+1)| ≥ 1. But λi+1 in the last step is1, therefore the closest object top in the database is
in Slog n/ log 2D, which means thatνp(log n/ log 2D) is the nearest neighbor ofp in the database.
Repeating this argument for the query point in the Search algorithm shows that after the termination,
the algorithm finds the nearest neighbor.

To analyze the complexity of the algorithm, we should show that |Λp(i + 1)| is not big. Property 4
tells us that all of the4aD log n closest samples top at leveli have rank less than8λi,so all objects in
Λp(i) have ranks less than8λi with respect top. Consider a samples ∈ Si such thatrp(s, T) ≤ 8λi

and a samples′′ ∈ Si+1 that falls in the bin ofs.

If an objects′′ is in Λp(i + 1), it means that it falls in the bin of an objects in Γp(i), i.e. νs′′ (i) ∈
Γp(i). Sinces ∈ Γp(i), we haverp(s, T) ≤ 8λi.

By property 1, we must havers′′ (s, T) ≤ λi+1. Thus, by inequality 2, we have:

rs′′ (s, T) ≤ λi+1 andrp(s, T) ≤ 8λi ⇒ rp(s
′′, T) < D(8λi + λi+1) ≤ 4λi−1

By property 5, there are at mostO(D3 log n) such samples at leveli + 1, i.e. Λp(i + 1) =
O(D3 log n).

To summarize, at each level for each object, we build a heap out of O(D3 log n) objects and ap-
ply O(aD log n) ExtractMin procedures to find the first4aD log n objects in the heap. Each
ExtractMin requiresO(log(D3 log n)) = O(log log nD3

). Hence the complexity for each level
and for each object isO(D3 log n + D log n log log nD3

). There areO(log n) levels andn objects,
so the overall complexity isO(nD3 log n + nD log2 n log log nD3

).

Proof of Theorem 2.The upper bound on the number of questions to be asked in the learning phase
is immediate from Theorem 3. For each object, we need to storeone identifier (the identifier of the
closest object) at every leveli in the hierarchy, and one bit to mark it as a member ofSi or not;
also one bit if it is inΓq(i − 1) and one bit for being inΛq(i) (we can reuse this memory in the
next level) (note that a heap with size N needsO(N log n) memory, wherelog n is for storing each
object). Hence, the total memory requirement2 do not exceedO(n log2 n/ log(2D)) bits. Finally,
the properties 1-5 shown in the proof of Theorem 3 are also true for an external query objectq.
Hence, to find the closest object toq on every level, we build the same heap structure, the only
difference is that instead of repeating this proceduren times in each level, since there is just one
query point, we need to ask at mostO(D3 log2 n + D log2 n log log nD3

) questions totally. In
particular, the closest object at levelL = log2D(n) will be q’s nearest neighbor w.h.p.

Note that this scheme can be easily modified forR-nearest neighbor search. At thei-the level of the
hierarchy, the closest sample toq will, w.h.p., be one of its n

(2D)i nearest neighbors. If we are only
interested in the level of precision, we can stop the hierarchy construction at the desired level.

6 Discussion

The use of a comparison oracle is motivated by a human user whocan make comparisons between
objects but not assign meaningful numerical values to similarities between objects. There are many
interesting questions raised by studying such a model including fundamental characterizations of the
complexity of search in terms of number of oracle questions.We also believe that ideas of searching
through comparisons form a bridge between many well known search techniques in metric spaces to
perceptually important (non-metric spaces) situations, and could lead to innovative practical appli-
cations. Analogous to locality sensitive hashing, one can develop notions of rank-sensitive hashing,
where “similar” objects based on ranks are given the same hash value. Some preliminary ideas
for it were given in [3], but we believe this is an interestingline of inquiry. Also in [3], we have
implemented comparison-based search heuristics to navigate image database.

2Making the assumption that every object can be uniquely identified with log n bits

8

References

[1] N. Goyal, Y. Lifshits, and H. Schutze, “Disorder inequality: A combinatorial approach to nearest neighbor
search,” inWSDM, 2008, pp. 25–32.

[2] S. Dasgupta and Y. Freund, “Random projection trees and low dimensional manifolds,” inSTOC, 2008,
pp. 537–546.

[3] D. Tschopp, “Routing and search on large scale networks,” Ph.D. dissertation,École Polytechnique
Fédérale de Lausanne (EPFL), 2010.

[4] D. Tschopp, S. Diggavi, P. Delgosha, and S. Mohajer, “Randomized algorithms for comparison-based
search: Supplementary material,” 2011, submitted to NIPS as supplementary material.

[5] K. Clarkson, “Nearest-neighbor searching and metric space dimensions,” inNearest-Neighbor Methods
for Learning and Vision: Theory and Practice, G. Shakhnarovich, T. Darrell, and P. Indyk, Eds. MIT
Press, 2006, pp. 15–59.

[6] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’sdistance as a metric for image retrieval,”
International Journal of Computer Vision, vol. 40, no. 2, pp. 99–121, 2000.

[7] E. Demidenko, “Kolmogorov-smirnov test for image comparison,” in Computational Science and Its
Applications - ICCSA, 2004, pp. 933–939.

[8] M. Nachtegael, S. Schulte, V. De Witte, T. Mlange, and E. Kerre, “Image similarity, from fuzzy sets to
color image applications,” inAdvances in Visual Information Systems, 2007, pp. 26–37.

[9] S. Santini and R. Jain, “Similarity measures,”IEEE transactions on Pattern Analysis and Machine Intel-
ligence, vol. 21, no. 9, pp. 871–883, 1999.

[10] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online learning of image similarity through
ranking,”Journal of Machine Learning Research, vol. 11, pp. 1109–1135, 2010.

[11] A. Frome, Y. Singer, F. Sha, and J. Malik, “Learning globally-consistent local distance functions for
shape-based image retrieval and classification,” inICCV, 2007, pp. 1–8.

[12] Y. Lifshits and S. Zhang, “Combinatorial algorithms for nearest neighbors, near-duplicates and small-
world design,” inSODA, 2009, pp. 318–326.

[13] R. Krauthgamer and J. R. Lee, “Navigating nets: simple algorithms for proximity search,” inSODA, 2004,
pp. 798–807.

[14] D. R. Karger and M. Ruhl, “Finding nearest neighbors in growth-restricted metrics,” inSTOC, 2002, pp.
741–750.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Introduction to algorithms,”MIT Press and McGraw-
Hill Book Company, vol. 7, pp. 1162–1171, 1976.

[16] R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge University Press, 1995.

9

