Randomized Algorithms for Comparison-based

Search
Dominique Tschopp Suhas Diggavi
AWK Group University of California Los Angeles (UCLA)
Bern, Switzerland Los Angeles, CA 90095
domi ni que. t schopp@mail . com suhasdi ggavi @icl a. edu
Payam Delgosha Soheil Mohajer
Sharif University of Technology Princeton University
Tehran, Iran Princeton, NJ 08544
pdel gosha@e. sharif.ir snohaj er @ri ncet on. edu
Abstract

This paper addresses the problem of finding the nearestmidgbr one of the
R-nearest neighbors) of a query objedh a database of objects, when we can
only use a comparison oracle. The comparison oracle, givemndference objects
and a query object, returns the reference object most sitoilthe query object.
The main problem we study is how to search the database foetdrest neighbor
(NN) of a query, while minimizing the questions. The diffigubf this problem
depends on properties of the underlying database. We steimiiortance of a
characterizationcombinatorial disorderD which defines approximate triangle
inequalities on ranks. We present a lower bound20D log 5 + D?) average
number of questions in the search phase for any randomiggditaim, which
demonstrates the fundamental role Ioffor worst case behavior. We develop

a randomized scheme for NN retrieval @ D? log® n + D log? nloglog nDS)
questions. The learning requires askifgnD? log? n + Dlog? nloglogn”’)
questions and(n log? n/ log(2D)) bits to store.

1 Introduction

Consider the situation where we want to search and navigdtahase, but the underlying relation-
ships between the objects are unknown and are accessilyi¢hoaligh a comparison oracle. The
comparison oracle, given two reference objects and a quegn returns the reference object most
similar to the query object. Such an oracle attempts to mibeebehavior of human users, capable
of making statements about similarity, but not of assigmmgningful numerical values to distances
between objects. These situations could occur in many taskt as recommendation for movies,
restaurants etc., or a human-assisted search system foe id@@abases among other applications.
Using such an oracle, the best we can hope for is to obtaireviery object. in the database, a
ranking of the other objects according to their similaribyut However, the use of the oracle to
get complete information about ranking could be costlycsimvoking the oracle is to represent
human input to the task (preferences in movies, compari$@mages etc). We can pre-process
the database by asking questions during a learning phagesarthe resulting answers to facilitate
the search process. Therefore, the main question we aslsipdper is to design a (approximate)
nearest neighbor retrieval algorithm while minimizing thember of questions to such an oracle.

Clearly the difficulty of searching using such an oracle aelsecritically on the properties of the set
of objects. We demonstrate the importance of a charactenivahich determines the performance

of comparison based search algorithm@mbinatorial disorder(introduced by Goyal et al. [1]),
defines approximate triangle inequalities on ranks. Roughkaking, it defines a multiplicative
factor D by which the triangle inequality on ranks can be violated.shew our first lower bound of
Q(Dlog 5 +D?) on average number of questions in the search phase for atiyrrazed algorithm,
and therefore demonstrate the fundamental importande @r worst case behavior. When the
disorder is known, we can use partial rank information tenestie, or infer the other ranks. This
allows us to design a novel hierarchical scheme which censldy improves the existing bounds
for nearest neighbor search based on a similarity oracteparforms provably close to the lower
bound. If no characterization of the hidden space can be aseah input, we develop algorithms
that can decompose the space such that dissimilar objextikely to get separated, and similar
objects have the tendency to stay together; generalizengdation of randomize#-d-trees [2]. This

is developed in more detail in [3]. Due to space constraimésgive statements of the results along
with an outline of proof ideas in the main text. Additionaly provide proof details in the appendix
[4] as extra material allowed by NIPS.

Relationship to published works: Nearest neighbor (NN) search problem has been very weH stud
ied for metric spaces (see [5]). However, in all these woitkis, assumed that one can compute
distances between points in the data set. In [6, 7, 8, 9, J0yafious approaches to measure simi-
larities between images are presented, which could be sseohaparison oracles in our setup. The
algorithmic aspects of searching with a comparison oraele fivst studied in [1], where a random
walk algorithm is presented. The main limitation of thisaithm is the fact that all rank relation-
ships need to be known in advance, which amounts to askingrétweO(n? log n) questions, in

a database of size. In [12], a data structure similar in spirit tonets of [13] is introduced. It
is shown that a learning phase with complexityD"n log? n) questions and a space complexity
of O(D®n + Dnlogn) allows to retrieve the NN irO(D* logn) questions. The learning phase
builds a hierarchical structure based on coverings of exptally decreasing radii. In this paper,
we present what we believe is the fitstver boundfor search through comparisons. This gives
a more fundamental meaning @ as a parameter determining worst case behavior. Based on the
insights gained from this worst case analysis, we then ingfeee Section 3) the existing upper
bounds by apoly (D) factor, if we are willing to accept a negligible (less th;lltm probability of
failure. Our algorithm is based on random sampling, and esselen as a form of metric skip list (as
introduced in [14]), but applied to a combinatorial (nontrigd framework. However, the fact that
we do not have access to distances forces us to use new taeehiicprder to minimize the number
of questions (or ranks we need to compute). In particulasaveple the database at different densi-
ties, and infer the ranks from the density of the samplingctvive believe is a new technique. We
also need to relate samples to each other when building thesttacture top down.

A natural question to ask is whether one can develop datetstas for NN when a characterization
of the underlying space is unknown. In [2], when one has actesnetric distances, a binary
tree decomposition of a dataset that adapts to its “intridsnension” [13] has been designed. We
extend the result of [2] to our setup, where we have a compansacle but do not have access to
metric distances. This can be used in a manner similar to[#ht (approximate) NN (see [3] for
more details).

To the best of our knowledge, the notion of randomized NN&easing similarity oracle is studied
for the first time in this paper. Moreover, the hierarchiedreh scheme proposed is more efficient
than earlier schemes. The lower bound presented appeaesrievib and demonstrates that our
schemes are (almost) efficient.

2 Definitions and Problem Statement

We consider a hidden spakg and a database of obje&sc K, with |7| = n. We can only access
this space throughsimilarity oraclewhich for any poiny € IC, and objects:, v € 7 returns

if w is more similar tag than
o) ={ & e o thanv ®

The goal is to develop and analyse algorithms which for aagrgj € K, can find an object in the
database € 7 which is the nearest neighbor (NN) ¢ousing the smallest number of questions of
type (1). We also relax this goal to find the approximate NNwfitigh probability”. The algorithm

may have a learning phase, in which it explores the struaifiee database, and stores it using a
certain amount of memory. Note that this phase has to be ddmetp knowing the query; € K.
Then, once the query is given, the search phase of the digoasks a certain number of questions
of type (1) and finds the closest object in the database.

The performance of the algorithm is measured by three coemisramong which there could be
a trade-off: the number of questions asked in the learnirg@hthe number of questions asked in
the searching phase, and the total memory to be stored. Thegwoal of this work is to design
algorithms for NN search and characterize its performanderims of these parameters. We will
present some definitions which are required to state thétsesfithis paper.

Definition 1. The rank ofu in a setS with respect ta, r,, (u, S) is equal toc, if u is thect" nearest
objecttov in S, i.e.,|{w € § : d(w,v) < d(u,v)}| = ¢ — 1, whered(w,v) < d(u,v) could be
interpreted as a distance function. Also the rank sal(r) is defined to bdy : r,.(y,S)) < r}.

Note that we do not need existence of a distance function ifiniien 1. We could replace
d(w,v) < d(u,v) with “v is more similar taw thanu” by using the oracle in (1).

To simplify the notation, we only indicate the set if it is Uear from the contexte., we writer,, (u)
instead of-, (u, S) unless there is an ambiguity. Note that rank need not be a syriwmelationship
between objectse., r,(v) # r,(u) in general. Further, note that we can rankobjects w.r.t. an
objecto by asking the oracl®(m log m) questions, using standard sort algorithms [15].

Our characterization of the space of objects is through @ fof approximate triangle inequali-
ties introduced in [1] and [12]. Instead of defining a inedfied between distances, these triangle
inequalities defined over ranks, and depend on a properhecfgace, called thdisorder constant

Definition 2. The combinatorial disorder of a set of objedétss the smallesD such thawz, y, z €
S, we have the following approximate triangle inequalities:

() 2(y,5) < D(r=(z,5) +7:(y, 5)) (i) r2(y, S) < D(ra(2,5) +1y(2,9))
(i) r4(y,S) < D(ry(z,5)+r.(y,9)) (iv) 72 (y, S) < D(r.(z,S) +1y(2,9))

In particular, r, (z, S) = 0 andr;(y, S) < Dry(z, S).

3 Contributions

Our contributions are the following(i) we design a randomized hierarchical data structure with
which we can do NN search using the comparison oréigleve develop the first lower bound
for the search complexity in the combinatorial frameworf1f12], and thereby demonstrate the
importance of combinatorial disorder. The performancehef tandomized algorithm (s€g) is
shown to be close to this lower bound. We also develop a bilneeydecomposition that adapts to
the data set in a manner analogous to [2].

More precisely, we prove a lower bound on the average seinetto retrieve the nearest neighbor
of a query point for randomized algorithms in the combinialdramework.

Theorem 1. There exists a space, a configuration of a database objects in that space that
for the uniform distribution over placements of the queriynpg such that no randomized search
algorithm, even iD(n?) questions can be asked in the learning phase, canjféwlearest neighbor
in the database for sure (with a probability of error of 0) byking less than an expectéd D? +
Dlogn/D) questions in the worst case whén< /n.

As a consequence of this theorem, there must exist at leastj@ery point in this configuration
which requires asking at lea&(D log() + D?) questions, hence setting a lower bound on the
search complexity. Based on the insights gained from thisstvcase analysis, we introduce a
conceptually simple randomized hierarchical scheme fl@taus to reduce the learning compared
to the existing algorithm (see [12, 1]) by a faciof, memory consumption by a factér® / log? n,

and a factotD / log n log log nP’ for search.

Theorem 2. We design a randomized algorithm, which for a given quemnipgi can retrieve
its nearest neighbor with high probability it(D? log? n + D log® n log log nDS) guestions. The

learning requires asking)(nD?log® n 4+ Dlog® nloglog nDS) guestions and we need to store
O(nlog®n/log(2D)) bits.

Consequently, our schemes are asymptotically:{jorithin Dpolylog(n) questions of the optimal
search algorithm.

4 Lower Bounds for NNS

A natural question to ask is whether there are databasesusmy points for which we need to ask
a minimal number of questions, independent of the algoritised. In this section, we construct
a databasé@ of n objects, a universe of queriéS\7 and similarity relationships, for which no
search algorithm can find the NN of a query pointin less thaeeted (D log £ + D?) questions.
We show this even when all possible questidha:, v, w) related to the: database objects.€.,
u,v,w € 7T) can be asked during the learning phase. The query is chos@raly from the
universe of queries and is unknown during the learning phase

Database Structure: Consider the weighted graph shown in Fig. 1. It consists darnsith «
branchesp;, ¢2, . . ., ¢, €ach composed of/a? supernodes (SN). Each of the supernodes in turn
containsa database objects (i.e., objectsTr). Clearly, in total there areca’s = n objects.
Note that the databage only includes the set of objects inside the supernodes tansipernodes,
themselves, aneotelement of7. We indicate the objects in each branch by numbers froom / «.

We define the set of querie$/, as follows: every query pointis attached to one object forfh on
each branch of the star with an edge; this object is calldiezt node(DN) on the corresponding
branch. Moreover, we assume that the weights afadiry edgeghea edges connecting the query
to its DNs, are different. Therefore, the set of all queri#$,could be restricted ta!(n/o)*
elements, since there arg'« choices for choosing the direct node in each braneh, (n/a)*
choices fora branches), and the weight of the query edges can be orderédlifferent ways.

In this example, distance between two nodes is given by thghtex graph distance, and the oracle
answers queries based on this distance. All edges congeh8rSNs to each other have weight
expect thoser edges emitting from the center of the star and ending at teeSiNs which have
weightn/(a?). Edges connecting the objects in a supernode to its rootdlexiobjectedges. We
assume that alb/« object edges in branah; have weighti/(4«). It remains to fix the weight of
the query edges. We will define the weight of these edges ifotlmsving.

Definition 3. For a queryq € M, define thex-tupled, € {1,2,...,n/a}* to be the sequence of
DNs ofq in a branchesi.e., §,(i) denotes the indicator of the object gpwhich is connected tg
via a query edge. We also represent the rank of the DNs w, ity ana-tuple ¥, € {1,...,a}%,
i.e.,¥,(i) denotes the rank of the DN on branghamong all the other DNs w.r.t;.

Now we can define the weight of query edges. For a qyegy M, the weight of the query edge
which connectg to ¢,(¢) is given to bel + (¥,(:)/a)e, wheree < 1/(4c) is a constant.

As mentioned before, the disorder constant plays an importde in the performance of the algo-
rithm. The following lemma gives the disorder constant for tlatabase introduced. The proof of
this lemma is presented in the appendix [4].

Lemma 1. The star shaped graph introduced above has disorder cohflan O(«).

The Lower Bound: In the proof of Theorem 1, we will use Yao’s minimax princigkee [16]),
which states that, for any distribution on the inputs theested cost for the best deterministic
algorithm provides a lower bound on the worst case runnimg f any randomized algorithm. In
the following, we state two lower bounds for the number ofgjioms in the searching phase of any
deterministic algorithm for the database illustrated ig. Ai.

Proposition 1. The number of questions asked by a deterministic algorithmn average w.r.t.
uniform distribution, to solve the NNS problem in star graisHower bounded b (« log(n/«)).

To outline the proof of this claim: each question asked byalgwrithm involves two database
nodes. Note that the weights of the edges emitting from théec®f the graph are chosen so that
the branches beconiredependentin the sense that questioning nodes on one branch will neate

Supernode that Star with o branches,

contains the NN each containing n/o’ supernodes
/ \ s th
3 \ supernode in " branch
: s root of
H / supernode

Figure 1: The star database: a weighted star graphavlthanches, each composedrgfa? “su-
pernodes”. Each supernode further includedatabase objects. Finally, each query points is ran-
domly connected toneobject oneachbranch of the star via a weighted edge. The weights of the
edges are chosen so than the disorder constabtse9 («).

any information about other branches. Therefore, in o@éntl the nearest node ¢othe algorithm
has to find the direct node on each branch, and then comparetthiéind the NN. For any branch
¢;, there area /o candidates which can be DN @fvith equal probability. Hence, roughly speaking,
the algorithm needs to ask(log(n/a)) questions for each branch. This yields to a minimum total
of Q(alog(n/a)) questions fory independenbranches in the graph.

Proposition 2. Any deterministic algorithrd solving nearest neighbor search problem in the input
query setM with uniform distribution should ask on avera@¢a?) questions from the oracle.

To outline the proof of this claim: consider an arbitrarydrh¢; and assume a genie tells us that
which supernode on; contains the DN for. However, we do not know which of;, po, . .., pa,

the nodes inside the revealed supernode, is the DiNaof ¢;. Since all the edges connecting the
supernode to its children have the same weight, questigngtgsome of them is not sufficient to
find the direct node, and effectively all of them should beegisén average. Since each question
involves at most two of such nodes, Qfx) questions is required to find the DN ¢ Summing up
the same number over allbranches, we obtain th&(«?) lower bound on the number of questions.

Theorem 1 is a direct consequence of the above mentionedsitioms.

Proof of Theorem 1Let A be an arbitrary deterministic algorithm which solves NN8kpem in
star shaped graph with uniform distributionf4 denotes the average number of questidrasks,
according to Proposition 1 and Proposition 2 we have

Qa > max{ﬂ (alog g) ,Q(ag)} > % (Q (alogg) ,Q(aQ)) =0 (a2 + alogn/a) . (2

By using the Yao’s Minimax principle, we can conclude Theote O

We can show that this bound is best bound one can find for thasea Indeed, we present an
algorithm in the appendix [4], which finds the query by asl@njgoz2 + alog n/a) questions.

5 Hierarchical Data Structure For Nearest-Neighbor Search

In this section we develop the search algorithm that guaesmthe performance stated in Theorem 2.
The learning phase is described in Algorithm 1. The algarithuilds a hierarchical decomposition
level by level, top-down. At each level, we sample objeatsfithe database. The set of samples at
leveli is denoted bys;, and we havésS;| = m; = a(2D)? log n, wherea is a constant independént
of n andD. At each level, every object irZ is put in the “bin” of the sample i¥; closest to it. To
find this sample at level for every objech we rank the samples ifi; w.r.t. p (by using the oracle

to make pairwise comparisons). However, we show that gikkahwe knowD, we only need to
rank those samples that fell in the bin of one of the at Mag? log n nearest samples joat level

1 — 1. This is a consequence of the fact that we carefully chosedhsity of the samples at each
level. Further, the fact that we build the hierarchy top-dpallows us to use the answers to the
guestions asked at levelto reduce the number of questions we need to ask atdevél This way,

the number of questions per object does not increase as wevgoid the hierarchy, even though
the number of samples increases.

For objectp, v, (i) denotes the nearest neighbor to objedh S;. We want to keep the,, =
n/(2D)~! closest objects it$; to p in the sefl’, (i), i.e.,all objectso € S; so thatr, (o0, S;) < A;.
It could be shown that for an objectto be inT",(4) it is necessary that,(: — 1) be inT', (i — 1).
Therefore by taking\, (i) = {0 € S;|vo,(i — 1) € T',(: — 1)} we havel', (i) € A,(7). It could
be verified thatl', (:)| < 4aD logn, thereforel',(i) can be constructed by finding tHe D log n
closest objectsin,(7) top. Definitely the first object i, (¢) isv, (7). Therefore we can recursively
buildT',(7), A, (7) andy, (i) for 1 < i < logn/log 2D for any objecp, asitis done in the algorithm.

The role of macro8ui | dHeap andExt r act M n is to build a heap from unordered data, and ex-
tract the minimum element from the heap, respectively. dltfh they are well-known and standard
algorithms, we will present them in the appendix [4] for cdetgness.

The search process is described in Algorithm 2. The key isl#zeit the sample closest to the query
point on the lowest level will be its NN. Hence, by repeatihng same process for inserting objects
in the database, we can retrieve the NN w.h.p. We first bouadhtimber of questions asked by
Algorithm 1 (w.h.p.), in Theorem 3. Having this result, the@f of Theorem 2 is then immediate.

Theorem 3. Algorithm 1 succeeds with probability higher than- % and it requires asking no
more thanO (n.D? log? n + D log? nloglog nDS) guestions w.h.p.

We first state a technical lemma that we will need to prove Témd3. The proof could be found in
Appendix [4].

Lemma 2. Takea a constantand,; = # For every objecp € 7 U {q}, whereg is the query
point, the following four properties of the data structume é&rue w.h.p.

1. |Sz n ﬁp(/\i+1)| >1 2. |Sz n ﬁp(/\l” <4aDlogn
3. |S1'+1 n Bp(Aiflﬂ S 16(1D3 logn 4, |S1 n ﬁp(4/\z)| Z 4aD IOgTL
5. |S1'+1 n 6p(4Azfl)| S 64(1D3 IOgTL

Proof of Theorem 3Letm; = a(2D)" log n denote the number of objects we sample at levahd
let S; be the set of samples at leviele., |S;| = m,. Here,a is an appropriately chosen constant,

independent oD andn. Further, let\; = #

From now on, we assume that we are in the situation where Riepél) to (5) in Lemma 2 are
true for all objects (which is the case w.h.p.). Again, fix djectp. For each objecp, we need
to find v, (), which is the nearest neighbor B with respect top. In order for being able to
continue this procedure in every level, we keep a wider rasfgebjects: those objects ifi; that
have ranks less thax_; with respect tg in levels; we store them i, (i) (property 1 tells us that
such objects exist), in this way the first objectlip(i) would bev,(i). In practice our algorithm
stores some redundant objectdlig¢), but we claim that totally no more thataD logn objects
are stored i, (¢ + 1). To summarize, the properties we want to maintain in eacél lere: 1-
Vp e T andl <i <logn/log2D, S; N By(A\;) C T'p(é) and 2-|T(7)| < 4aDlogn.

lin fact the value of: is dependent on the value of error we expect, the more aecwetvant to be, the
more sample points we need in each level anebuld be larger.

input : A database witm objectspy, ..., p,,, and disorder constai?
output: For each object, a vector,, of lengthlogn/log(2D). The list of all samples);.S;
Def.: S;: The set ofa(2D)? logn random samples at levgli = 1, ..., logn/log(2D);
Vo V(i) =nearest neighbor to objeetn S;; 0 € T,i=1,...,logn/log(2D);
I',(i): contains the\; closest objects tp in .S;, possibly with redundant objects;
Ao(i): Thesetop € S;, forwhichv, (i — 1) € T', (i — 1);
foriHltoLzli)‘;;%do
for p < 1ton do
if i =1 then
| Ap(l) < 5

p()={0€ Silvo(i —1)eT,(i—1)};
if |Ap(¢)| = 0 then
| Report Failure
else
H — BuildHeafg A, (7)) ;
for k — 1to4aDlogn do
m «— ExtractMin(H) ;

addm toT',,(4)
end
end
vp (i) < first object inl,(i);
end
end
end

Algorithm 1: Learning Algorithm

input : A database witm objects and disorddp, the list of samples, the vectaws for
u € 7, aquery poing
output: The nearest neighbor gfin the database
Fq(l) =51
for i — 2to L = {22 do
og
Ag(i) = {p € Sifpp(i —1) € Ty(i = 1)};
H — BuildHeaf A4 (7)) ;
for k — 1to 4aDlogn do
m «— ExtractMin(H) ;

addm to ', (i)
end
end
return first object inl“q(lgég&)

Algorithm 2 : Search Algorithm

In the first step, for alp, A, (1) = S, and sincdS;| = 2aD logn < 4aD logn, all the objects in

S, are extracted from the heap and therefdgéi) is S, ordered with respect tp, as a result both
the properties hold wheh= 1. The argument for the maintenance of this property is asval
Assume the property holds up to levelve analyze level + 1. In fact we want an object € S; 11

to be inT',(i + 1) if 7,(s) < Ai41 (note that Property 1 guarantees that there is a least ofhe suc
sample). Further, let’ € S; be the sample at levelclosest tos i.e., s’ = min,cg, 75(s’). Again,

by Property 1, we know that,(s’) < A, ;+1. Hence, by the approximate triangle inequality 3 (see
Section 2), we have:

T‘p(S, T) <)‘i+1 andrs(s’,T) <)‘i+1 = T‘p(S/,T) < 2D)\i+1 =\

hences’ = v,(i) € S; N B,(N;) C I',p(4) using the first property for step Thereforev,(i) € T'y(7)
and therefore € A, (i + 1). Property 2 tells us thasS; ;1 N 5,(Ait1)| < 4aDlogn. Hence by

taking the firstda D logn closest objects tp in A, (i + 1) and storing them i, (¢ + 1), we can
make sure than bothe T',(i 4+ 1) for s € Si11,s € Bp(Nix1) and|T, (i + 1)| < 4aDlogn.

Note that in the last loop of the algorithm whén= logn/log 2D, according to Property 1.5; N
Bp(Xit1)] > 1. But A\,4q in the last step i4, therefore the closest object toin the database is
iN Siogn/10g 20, Which means that, (log n/log 2D) is the nearest neighbor ofin the database.
Repeating this argument for the query point in the Searatrithgn shows that after the termination,
the algorithm finds the nearest neighbor.

To analyze the complexity of the algorithm, we should shoat th, (¢ + 1)| is not big. Property 4
tells us that all of thda D log n closest samples toat leveli have rank less thaw;,so all objects in
A, (i) have ranks less tha\; with respect tg. Consider a samplec S; such that, (s, 7) < 8)\;
and a sample” € S;.; that falls in the bin ok.

If an objects” is in A, (i + 1), it means that it falls in the bin of an objecin ', (¢), i.e. vy (7) €
I, (7). Sinces € T', (i), we haver,(s,T) < 8\,.

By property 1, we must have (s, 7) < A;11. Thus, by inequality 2, we have:
T (S,T) < Aig1 andrp(s,T) <8\ = Tp(S”, T) < D(S/\l +)‘i+1) <4M\q

By property 5, there are at mo&}(D?3 logn) such samples at level+ 1, i.e. A,(i + 1) =
O(D31ogn).

To summarize, at each level for each object, we build a heapfoQ (D3 logn) objects and ap-
ply O(aDlogn) Extract M n procedures to find the firsta D log n objects in the heap. Each

Ext ract M n requiresO(log(D3logn)) = O(loglog nDS). Hence the complexity for each level
and for each object i©(D? logn + Dlognloglogn?’). There are)(log n) levels andh objects,
so the overall complexity i©(n.D? log n + n.D log? nlog log nDS). O

Proof of Theorem 2The upper bound on the number of questions to be asked inaharg phase

is immediate from Theorem 3. For each object, we need to stoeadentifier (the identifier of the
closest object) at every levelin the hierarchy, and one bit to mark it as a membefpbr not;
also one bit if it is in[',(¢ — 1) and one bit for being im, (i) (we can reuse this memory in the
next level) (note that a heap with size N neétsV log n) memory, wherédog n is for storing each
object). Hence, the total memory requirenfaid not exceed (n log® n/ log(2D)) bits. Finally,

the properties 1-5 shown in the proof of Theorem 3 are alse fiou an external query objegt
Hence, to find the closest object goon every level, we build the same heap structure, the only
difference is that instead of repeating this procedutenes in each level, since there is just one

query point, we need to ask at ma8t D3 log? n + D log? nloglog nDS) guestions totally. In
particular, the closest object at level= log, ,(n) will be ¢'s nearest neighbor w.h.p. O

Note that this scheme can be easily modifiedRemearest neighbor search. At ththe level of the
hierarchy, the closest sampleg¢avill, w.h.p., be one of its(Q”T)i nearest neighbors. If we are only

interested in the level of precision, we can stop the hiéraoconstruction at the desired level.

6 Discussion

The use of a comparison oracle is motivated by a human usecammake comparisons between
objects but not assign meaningful numerical values to anitiks between objects. There are many
interesting questions raised by studying such a modeldmiufundamental characterizations of the
complexity of search in terms of number of oracle questid¥s also believe that ideas of searching
through comparisons form a bridge between many well knoarcbetechniques in metric spaces to
perceptually important (non-metric spaces) situationd, @uld lead to innovative practical appli-
cations. Analogous to locality sensitive hashing, one @melbp notions of rank-sensitive hashing,
where “similar” objects based on ranks are given the samk talsie. Some preliminary ideas
for it were given in [3], but we believe this is an interestiimge of inquiry. Also in [3], we have
implemented comparison-based search heuristics to rievigage database.

2Making the assumption that every object can be uniquelytifies with log n bits

References

(1]
(2]
(3]
(4]
(5]

[6]
7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N. Goyal, Y. Lifshits, and H. Schutze, “Disorder ineqial A combinatorial approach to nearest neighbor
search,” inWSDM 2008, pp. 25-32.

S. Dasgupta and Y. Freund, “Random projection trees anddimensional manifolds,” ilsSTOG 2008,
pp. 537-546.

D. Tschopp, “Routing and search on large scale netwbiRh,D. dissertation Ecole Polytechnique
Fédérale de Lausanne (EPFL), 2010.

D. Tschopp, S. Diggavi, P. Delgosha, and S. Mohajer, ‘tRemized algorithms for comparison-based
search: Supplementary material,” 2011, submitted to NPSugplementary material.

K. Clarkson, “Nearest-neighbor searching and metriacgpdimensions,” ilNearest-Neighbor Methods
for Learning and Vision: Theory and Practic&. Shakhnarovich, T. Darrell, and P. Indyk, Eds. MIT
Press, 2006, pp. 15-59.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth movdi&ance as a metric for image retrieval,”
International Journal of Computer Visigrol. 40, no. 2, pp. 99-121, 2000.

E. Demidenko, “Kolmogorov-smirnov test for image compan,” in Computational Science and Its
Applications - ICCSA2004, pp. 933-939.

M. Nachtegael, S. Schulte, V. De Witte, T. Mlange, and Ern¢, “Image similarity, from fuzzy sets to
color image applications,” ildvances in Visual Information Systerg2807, pp. 26—37.

S. Santini and R. Jain, “Similarity measurelZEE transactions on Pattern Analysis and Machine Intel-
ligence vol. 21, no. 9, pp. 871-883, 1999.

G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Largals online learning of image similarity through
ranking,” Journal of Machine Learning Researolol. 11, pp. 1109-1135, 2010.

A. Frome, Y. Singer, F. Sha, and J. Malik, “Learning gtip-consistent local distance functions for
shape-based image retrieval and classificationCi@aV, 2007, pp. 1-8.

Y. Lifshits and S. Zhang, “Combinatorial algorithmsr foearest neighbors, near-duplicates and small-
world design,” inSODA 2009, pp. 318-326.

R. Krauthgamer and J. R. Lee, “Navigating nets: simfjedthms for proximity search,” iIsODA 2004,
pp. 798-807.

D. R. Karger and M. Ruhl, “Finding nearest neighbors iiavgth-restricted metrics,” isTOG 2002, pp.
741-750.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “ldtrction to algorithms,MIT Press and McGraw-
Hill Book Companyvol. 7, pp. 1162-1171, 1976.

R. Motwani and P. RaghavaRandomized Algorithms Cambridge University Press, 1995.

