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Abstract

We propose a novel inference framework for finding maximal cliques in a weight-
ed graph that satisfy hard constraints. The constraints specify the graph nodes
that must belong to the solution as well as mutual exclusionsof graph nodes, i.e.,
sets of nodes that cannot belong to the same solution. The proposed inference is
based on a novel particle filter algorithm with state permeations. We apply the
inference framework to a challenging problem of learning part-based, deformable
object models. Two core problems in the learning framework,matching of image
patches and finding salient parts, are formulated as two instances of the problem
of finding maximal cliques with hard constraints. Our learning framework yields
discriminative part based object models that achieve very good detection rate, and
outperform other methods on object classes with large deformation.

1 Introduction

The problem of finding maximal cliques in a weighted graph is faced in many applications from
computer vision to social networks. Related work on finding dense subgraph in weighted graph
include [16, 12, 14]. However, these approaches relax the discrete problem of subgraph selection
to a continuous problem. The main drawback of such relaxation is the fact that it is impossible to
enforce that the constraints are satisfied for solutions of the relaxed problem. Therefore, we aim
at solving the discrete subgraph selection problem by employing the recently proposed extension
of particle filter inference to problems with state permeations [20]. There are at least two main
contributions of this paper: (1) We propose an inference framework for solving a maximal clique
problem that cannot be solved with typical clustering methods nor with recent relaxation based
methods [16, 12, 14]. (2) We utilize the inference frameworkfor solving a challenging problem of
learning a part model for deformable object detection.

Object detection is one of the key challenges in computer vision, due to the large intra-class ap-
pearance variation of an object class. The appearance variation arises not only from changes in
illumination, viewpoint, color, and other visual properties, but also from nonrigid deformations.
Objects under deformation often observed large variation globally. However, their local structures
are somewhat more invariant to the deformations. Based on this observation, we propose a learning
by matching framework to match all local image patches from training image. By matching, object
parts with similar local structure in different training images can be found.

Given a set of training images that contain objects of the same class, e.g., Fig. 1(a), our first problem
is to select a set of image patches that depict the same visualpart of these objects. Thus, an object
part is regarded as a collection of image patches e.g., Fig. 1(c). To solve the problem, we divide
each training image into a set of overlapping patches, like the ones shown in Fig. 1(b), and construct
a graph whose nodes represent the patches. The edge weights represent the appearance similarity of
pair of patches. Since close by patches in the same image tendto be very similar, we must impose
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Figure 1: (a) example training images; (b) patches extracted from the training images; (c) object
parts as collections of patches obtained as maximal cliquesof patch similarity graph; (d) the learned
salient parts for giraffe, the patches belong to the same salient part are in the same color. The salient
parts are obtained as maximal cliques in a second graph whosevertices represent the object parts.

a hard constraint that a patch set representing the same object part does not contain two patches
from the same image. This constraint is very important, since otherwise very similar patches from
the same images will dominate this graph. In order to obtain meaningful object parts, we define an
object part as a maximal clique in the weighted graph that satisfies the above constraint. By solving
the problem of maximal clique, we obtain a set of object partslike the ones shown in Fig. 1(c). We
use this set as vertices of a second graph. Finally, we obtaina small set of salient visual parts, e.g.,
Fig. 1(d), by solving a different instance of the maximal clique problem on the second graph.

For each salient visual part, we train a discriminative classifier. By combining these classifiers
with spatial distribution of the salient object parts, a detector for deformable object is built. As
illustrated in the experimental results, this detector achieves very good object detection performance,
and outperforms other methods on object classes with large deformation.

The computer vision literature has approached learning of part based object models in different
ways. In [8] objects are modeled as flexible constellations of parts, parts are constrained to a sparse
set of locations determined by an entropy-based feature detector, other part models based on feature
detector include [15, 17]. Our model is similar to discriminatively trained part based model in [6] in
that we train SVM classifiers for each part of object and geometric arrangement of parts is captured
by a set of ”springs”. However, our learning method is quite different from [6]. In [6] the learning
problem is formalized as latent SVM, where positions of parts are considered as latent values. The
learning process is an iterative algorithm that alternatesbetween fixing latent values and optimizing
the latent SVM objective function. In contrast, we case partlearning as finding maximal cliques in
a weighted graph of image patches. The edge weights represent appearance similarities of patches.
In [4, 13] multiple instance learning is used to search position of object parts in training images, and
boosting algorithm is used to select salient parts to represent object.

2 Maximal Cliques that Satisfy Hard Constraint

A weighted graphG is defined asG = (V,E, e), whereV = {v1, . . . , vn} is the vertex set,n is the
number of vertices,E ⊆ V × V , ande : E → R≥0 is the weight function. Vertices inG correspond
to data points, edge weights between different vertices represent the strength of their relationships,
and self-edge weight respects importance of a vertex. As is customary, we represent the graphG
with the corresponding weighted adjacency matrix, more specifically, ann × n symmetric matrix
A = (aij), whereaij = e(vi, vj) if (vi, vj) ∈ E, andaij = 0 otherwise.

Let S = {1, ..., n} be the index set of vertex setV . For any subsetT ⊆ S, GT denotes a subgraph
of G with vertex setVT = {vi, i ∈ T} and edge setET = {(vi, vj) | (vi, vj) ∈ E, i ∈ T, j ∈ T}.
The total weight of subgraphGT is defined asf(GT ) =

∑
i∈T,j∈T A(i, j). We can expressT by

an indicator vectorx = (x1, . . . , xn) ∈ {0, 1}
n such thatxi = 1 if i ∈ T andxi = 0 otherwise.

Thenf(GT ) can be represented in a quadratic formf(x) = xTAx.

2



We consider mutex relationship between vertices in graph. Given a subset of verticesM ⊆ S,
we call M a mutex (short for mutual exclusion) ifi ∈ M and j ∈ M implies that verticesvi
andvj can not belong to the same maximal clique. Formally,M is a constraint on the indicator
vectorx ∈ {0, 1}n, i.e., if i ∈ M and j ∈ M , thenxi + xj ≤ 1. A mutex set of graphG is
M = {M1, . . . ,Mm | Mi ⊆ S, i = 1, . . . ,m} such that eachMi is a mutex fori = 1, . . . ,m.
Given a setT ⊆ S, we define mutex(T ) as a set of indices of vertices ofG that are incompatible
with T according toM: mutex(T ) = {j ∈ S|∃Mi∈M ∃k∈T j, k ∈Mi}. We consider the following
maximization problem

maximize
x

f(x) = xTAx

subject to (C1)x = (x1, . . . , xn) ∈ {0, 1}
n and

(C2)∀i ∈ U xi = 1 and

(C3)xi + xj ≤ 1 if ∃Mk ∈M such thati, j ∈Mk and

(C4)Σx ≤ K

(1)

The constraint (C2) specifies a set of verticesU ⊆ S that must be selected as part of the solution,
(C3) ensures that all mutex constraints are satisfied, (C4) requires number of vertices in the solution
is small or equal toK. Of course, we assume the problem (1) is well-defined in that there existsx
that satisfies the four constraints (C1)-(C4).

The goal of (1) is to select a subset of vertices of graphG such thatf is maximized and the con-
straints (C1)-(C4) are satisfied. Sincef is the sum of pairwise affinities of the elements of the
selected subset, the larger is the subset, the larger is the value off . However, the size of the subset
is limited by the mutex constraints (C3) and maximal size constraint (C4).

A global maximum of (1) is called aU −M maximal clique of graphG. When both setsU andM
are clear from the context, we simply call the solution a maximal clique.

The problem (1) is a combinatorial optimization problem, and hence it is NP-hard [2]. As is the case
for similar problems of finding dense subgraphs, the constraint (C1) is usually relaxed tox ∈ [0, 1]n,
i.e., each coordinate ofx is relaxed to a continuous variable in the interval [0, 1], e.g., [16, 12, 14].
However, it is difficult if not impossible to ensure that constraints (C2), (C3) and (C4) are satisfied
then. Another difficulty is related to discretization of therelaxed solution in order to obtain a solution
that satisfies (C1). For these reasons, and since for our application, it is very important that the
constraints are satisfied, we treat (C1)-(C4) as hard constraints that cannot be violated. We propose
an efficient method for directly solving (1) in Section 4. We first present two instances of problem
(1) in Section 3, where we describe the proposed applicationto learning salient object parts.

3 Learning by Matching

In this section, we present a novel framework to learn part based object model based on matching.
The core problems of learning part based object model are howto search right locations of an object
part in all training images and how to select salient parts for representing object. In our framework,
the two problems are formulated as finding maximal cliques with hard constraints.

3.1 Matching Image Patches

Given a batch of training imagesI = {I1, . . . , IK} showing objects from a given class, e.g., Fig. 1
(a), whereK is the total number of training images. For every training image, we densely extract
image patches with overlap. We denote the set of patches extracted from all images as{P1, . . . , Pn},
wheren is total number of patches. Each patch is described asPi = {Fi, Li, Xi, Yi} for i ∈
[1, . . . n], whereFi is the appearance descriptor ofPi (we use the descriptor from [19]),Li is the
image label ofPi, (e.g., ifPi is extracted from the 5th training image,Li = 5), Xi andYi indicate
the position ofPi in its image. All the training images are normalized to the same size.

We treat all the patches as the set of vertices of graphG, i.e., V = {P1, . . . , Pn}. The affinity
relation between the patches, i.e., the graph edge weights,are defined asaij = Fi · Fj , if i 6= j, and
aij = 0 otherwise, whereFi · Fj is the dot product of two feature vectors, which are normalized. It
measures the appearance similarity of patchesPi andPj . In addition, if the distance between patch
positions(Xi, Yi) and(Xj , Yj) is larger than 0.2 of the mean of all bounding box heights, we set
aij=0. This ensures that matrix A is sparse.
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We have exactlyK mutex constraintsM = {M1, . . . ,MK}, whereMj contains all patches from
imageIj , i.e., Mj = {Pi ∈ V |Li = j}, j ∈ [1, . . . ,K]. This means that we do not want two
patches from the same image to belong to the same maximal clique.

Suppose that the firstr patchesP1, . . . , Pr are in the1st training image, i.e.,Li = 1 if and only if
i = 1, . . . , r. The part learning algorithm by finding maximal cliques is given in Alg. 1.

Algorithm 1 Part learning by finding maximal cliques with hard constraints
Input: A,M, K, andr.
for i = 1→ r do

1. SetU = {i}.
2. Solve problem (1), get the solutionx∗, and its valueW (i) = f(x∗) = x∗TAx∗.
3. Set the solution patches asQ(i) = {Pj |x

∗
j = 1}.

end for
Output: PartsQ = {Q(1), . . . , Q(r)} and their matching weightsW = {W (1), . . . ,W (r)}.

We recall that each learned partQ(i) is defined as a set ofK patches, e.g., Fig. 1 (c). Due to our
mutex constraint, eachQ(i) contains exactly one patch from each ofK training images. We treat
the learned parts as candidate object parts, because there are non-object areas inside the bounding
box images. Each valueW (i) represents a matching score of ofQ(i).

3.2 Selecting Salient Parts for Part Based Object Representation

In order to select a set of object parts that best represent the object class, our strategy is to find a
subset ofQ that maximizes the sum of the matching scores. We formulate this problem as finding
maximal clique with hard constraints again. We define a new graphH with verticesV = Q and
adjacency matrixB = (bij), wherebij = W (i) if i = j, andbij = 0 otherwise. Thus, the matrix of
graphH has nonzero entries only on diagonal. It may appear that the problem is trivial, since there
is no edges between different vertices ofH, but this is not the case due to the mutex relations.

The mutex setMH = {MH
1 , . . . ,MH

r } is defined asMH
i = {j | D(i, j) ≤ τ} for i, j ∈ [1, . . . , r],

whereτ is a distance threshold andD(i, j) is the average distance between patches inQ(i) andQ(j)
that belong to the same image. IfQ(i) is selected as a salient part, the mutexMH

i ensures that the
patches of other salient parts are not too close to the patches ofQ(i). For example,Q(1) andQ(2)
in Fig. 1(c) both have good matching weights, but the averagedistance betweenQ(1) andQ(2) is
smaller thanτ , so they cannot be selected as salient parts at the same time.

As initialization (C2), we setUH to a one element set containingargmaxi W (i), so the part with
maximal matching score is always selected as a salient part.We setK in (C4) toKH , whereKH is
the maximal number of salient parts.KH = 6 in all our experiments.

By solving the second instance of problem (1) forB, UH ,MH , KH , we obtain the set of salient
parts as the solutionx∗. We denote is asSP = {Q(j) | x∗(j) = 1}.

4 Particle Filter Inference for U −MMaximal Clique

By associating a random variable (RV)Xi with each vertexi ∈ S of graphG, we introduce a Gibbs
random field (GRF) with the neighborhood structure of graphG. Each RV can be assigned either 1
or 0, whereXi = 1 means that the vertexvi is selected as part of the solution. The probability of
the assignment of values to all RVs is defined as

P (X1 = x1, . . . , Xn = xn) = p(x) ∝ exp
f(x)

γ
= exp

xTAx

γ
, (2)

where we recall thatx = (x1, . . . , xn) ∈ {0, 1}
n andγ > 0. We observe that the definition in (2)

also applies to a subset of RVs, i.e., we can use it to computeP (Xi1 = xi1 , . . . , Xik = xik) =

p(xi1 , . . . , xik) ∝ exp
f(xi1

,...,xik
)

γ
for k < n. This is equivalent to setting other coordinates in the

indicator vectorx to zero.

Sinceexp is a monotonically increasing function, the maximum of (2) is obtained at the same point
as the maximum off in (1). We propose to utilize Particle Filter (PF) frameworkto maximize (2)
subject to the constraints in (1). The goal of PF is to approximatep(x) with a set of with weighted
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samples{x(i), w(x(i))}Ni=1 drawn from some proposal distributionq. Under reasonable assumptions
onp(x) this approximation is possible with any precision ifN is sufficiently large [3].

Since it is still computationally intractable to draw samples fromq due to high dimensionality ofx,
PF utilizes Sequential Importance Sampling (SIS). In the classical PF approaches, samples are gen-
erated recursively following the order of the RVs accordingto x

(i)
t ∼ q(xt|x1:t−1) for t = 1, . . . n,

and the particles are built sequentiallyx(i)
1:t = (x

(i)
1:t−1, x

(i)
t ) for i = 1, . . . , N . The subscriptt in xt

in q(xt|x1:t−1) indicates from which RV the samples are generated. We usex
(i)
1:t as a shorthand nota-

tion for (x(i)
1 , . . . , x

(i)
t ). Whent = m we obtain thatx(i)

1:m ∼ q(x1:m). In other words, by sampling

recursivelyx(i)
t from proposal distributionq(xt|x1:t−1) of RV with indext, we obtain a sample from

q(x1:m) at t = m. As is common in PF applications, we setq(xt|x1:t−1) = p(xt|x1:t−1), i.e., the
proposal distribution is set to the conditional distribution ofp.

We observe that the order of sampling follows the indexing ofRVs with the index setS. However,
there is not natural order of RVs on GRF, and the order of RV indices inS does not have any
particular meaning in that this order is not related in any way to our objective functionf . The
classical PF framework has been developed for sequential state estimation like tracking or robot
localization [5], where observations arrive sequentially, and consequently, determine a natural order
of RVs representing the states like locations. In a recent work [20], PF framework has been extended
to work with unordered set of RVs for solving image jigsaw puzzles. Inspired by this work, we
extend PF framework to solveU − M maximal clique problem in the weighted graph. Unlike
tracking a moving object, in our problem, the observations are known from the beginning and are
given by the affinity matrixA.

The key idea of [20] is to explore different orders of the states(xi1 , . . . , xin) as opposed to utilizing
the fix order of the statesx = (x1, . . . , xn) determined by the index of RVs as in the standard PF.
(States are assigned values of RVs.) To achieve this the firststep of the PF algorithm is modified so
that the importance sampling is performed for every RV not yet represented by the current particle.
To formally define the sampling rule, we need to explicitly represent different orders of states with
an index selection functionσ : {1, . . . , t} → {1, . . . , n} for 1 < t ≤ n, which is one-to-one.
In particular, whent = n, σ is a permutation. We use the shorthand notationσ(1 : t) to denote
(σ(1), σ(2), . . . , σ(t)) for t ≤ n, and similarly,xσ(1:t) = (xσ(1), xσ(2), . . . , xσ(t)). Each particle

x
(i)
σ(1:t) can now have a different permutationσ(i) representing the indices of RVs with assigned

values. Thus, a sequence of RVs visited before timet is described by a subsequence(i1, . . . , it) of
t different numbers inS = {1, . . . , n}.

We define an index set of indices of graph vertices that are compatible with selected vertices in
σ(i)(1 : t) asκ(σ(i)(1 : t)) = S \ ( σ(i)(1 : t) ∪ mutex(σ(i)(1 : t) ). Henceκ(σ(i)(1 : t)) contains
indices fromS that that are both not present inσ(i)(1 : t) and not have mutex relation with the
members ofσ(i)(1 : t).

We are now ready to formulate the proposed importance sampling. At each iterationt ≤ n, for each
particle(i) and for eachs ∈ κ(σ(i)(1 : t−1)), we samplex(i)

s ∼ p(xs|x
(i)
σ(1:t−1)). The subscripts at

the conditional pdfp indicates that we sample values for RV with indexs. We generate at least one
sample for eachs ∈ κ(σ(i)(1 : t − 1)). This means that the single particlex(i)

σ(1:t−1) is multiplied

and extended to several follower particlesx
(i)
σ(1:t−1),s.

Based on (2), it is easy to derive a formula for the proposal function:

p(xs|xσ(1:t−1)) =
p(xσ(1:t−1), xs)

p(xσ(1:t−1))
=

exp
f(xσ(1:t−1),xs)

γ

exp
f(xσ(1:t−1))

γ

= exp
f(xσ(1:t−1), xs)− f(xσ(1:t−1))

γ

(3)

We observe thatf(xs, xσ(1:t−1)) − f(xσ(1:t−1)) = xT
s Axs + 2xT

s Axσ(1:t−1) is the gain in the
target functionf obtained after assigning the value to RVXs. Since we are interested in making
this gain as large as possible, and assigningxs = 0 leads to zero gain, we focus only on assigning
xs = 1. Consequently, the pdf in (3) can be treated as a probabilitymass function (pmf) over
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s ∈ κ(σ(i)(1 : t− 1)) and sampling from it becomes equivalent to sampling

s(i) ∼ p(s|σ(i)(1 : t− 1)) = p(xs = 1|x
(i)
σ(1:t−1)). (4)

Hence, we can interpret a particlex(i)
σ(1:t−1) as a sequence of indices of selected graph vertices

σ(i)(1 : t − 1), sincex(i)
σ(1:t−1) is a vector of ones assigned to RVs with indices inσ(i)(1 : t − 1).

In other words, it holds ind(x(i)
σ(1:t−1)) = σ(i)(1 : t − 1), where ind: {0, 1}n → 2S is a function

that assigns tox a set of indices of coordinates ofx that are equal to one. For example, ifx =
(0, 1, 1, 0, 0) ∈ {0, 1}5, then ind(x) = {2, 3}, which means that graph vertices with indices 2 and 3
are selected byx.

In order to construct the pmf in (4), we only need to assign theprobabilities to all indicess ∈
κ(σ(i)(1 : t − 1)) according to the definition in (3). Thens(i) is sampled from the discrete pmf
constructed this way. Now we are ready to summarize the proposed PF framework in Algorithm 2.

Algorithm 2 Particle Filter Algorithm forU −M Maximal Clique
Input: A, U ,M, K, N , γ.
Initialize: t = 1, initialize every particle(i) with σ

(i)
1 = U for i = 1, . . . , N .

while κ(σ(1)(1 : t− 1)) ∪ . . . ∪ κ(σ(N)(1 : t− 1)) 6= ∅ andt ≤ K do
for i = 1→ N do

if κ(σ(i)(1 : t− 1)) 6= ∅ then
1. Importance sampling / proposal: Sample followersx(i)

s of particle(i) from

x(i)
s ∼ p(xs|x

(i)
σ(1:t−1)) = exp((f(xs, x

(i)
σ(1:t−1))− f(x

(i)
σ(1:t−1)))/γ)

and setx(i,s)
σ(1:t) = (x

(i)
σ(1:t−1), x

(i)
s ) andσ(i,s)(t) = s, i.e.,σ(i,s)(1 : t) = (σ(1 : t− 1), s).

2. Importance weighting / evaluation: An individual importance weight is assigned to
each follower particle according to

w(x
(i,s)
σ(1:t)) = exp(f(x(i)

s , x
(i)
σ(1:t−1))/γ)

else
we carry over the particle:x(i,s)

σ(1:t) = x
(i)
σ(1:t−1) andw(x(i,s)

σ(1:t)) = w(x
(i)
σ(1:t−1)).

end if
end for
3. Resampling: Sample with replacementN new particle filters from{x(1,s)

σ(1:t), . . . , x
(N,s)
σ(1:t)}

according to weights, and assign the sampled set to{x
(1)
σ(1:t), . . . , x

(N)
σ(1:t)}; sett← t+ 1.

end while
Output: {x(1)

σ(1:t), . . . , x
(N)
σ(1:t)}

We take the particle with maximal value off as solution of (2), or equivalently, as solution of (1):
x∗ = x

(k)
σ(1:t), wherek = argmaxif(x

(i)
σ(1:t)). As proven in [20],x∗ approximatesmaxx p(x) with

any precision for sufficiently large number of particlesN .

5 Object Detection with the Deformable Part Model

In Section 3.2, we findKH salient parts denoted asSP = {Qi|i = 1, . . . ,KH} to represent an
object class, each partQi containsK image patches, one patch from each training image. Now we
describe the object model constructed fromSP.

We train a linear SVM classifier for each partQi, which we denote asSVM(Qi). To train the linear
SVM classifierSVM(Qi), positive examples are the patches ofQi. The negatives examples are
obtained by an iterative procedure described in [10]. The initial training set consists of randomly
chosen background windows and objects from other classes. The resulting classifier is used to scan
images and select the top false positives as hard examples. These hard examples are added to the
negative set and a new classifier is learned. This procedure is repeated several times to obtain the
final classifier.
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As in [6], we capture the spatial distribution of salient parts in SP with a star model, where the
location of each part is expressed as an offset vector with respect to the model center. The offset is
learned from the offsets of the patches inQi to the centers of their training images (bounding boxes)
containing them.

In order to be able to directly compare to Latent SVM [6], we use the same object detection frame-
work. Thus, the detection is performed in the sliding windowfashion followed by non maxima
suppression. However, we do not use the root filter, which is an appearance classifier of the whole
detection window. Thus, our detection is purely part based.

6 Experimental Evaluation

We validate our method on two datasets with deformable objects: ETHZ Giraffes dataset [9] and
TUD-Pedestrians dataset [1]. For ETHZ Giraffes dataset, wefollow the train/test split described in
[18]: the first 43 giraffe images are positive training examples. The remaining 44 giraffe images in
ETHZ dataset are used for testing as positive images. We alsoselect 43 images from other categories
as negative training images. As negative test images we takeall remaining images from the other
categories. Thus, we have the total of 86 training images, and the total of 169 test images. For
learning the salient parts, the giraffe bounding boxes are normalized to the area of 3000 pixels with
aspect ratio kept.

For TUD-Pedestrians dataset, we use the provided 400 imagesfor training and 250 images for
testing. The background of training images is used to extract negative examples. The training
pedestrian bounding boxes are normalized to the height of 200 pixels with aspect ratio kept.

For both datasets, the size of each patch is61 ∗ 61 pixels, number of patches per image is about
1000. We setKH in (C4) to 6 meaning that our goal is to learn 6 salient parts for each object class.
The number of salient part was determined experimentally. The minimal distanceτ between salient
parts is 60 pixels for the giraffe class and 45 pixels for the pedestrian class. In Algorithm 2, the
normalization parameterγ is set to the median value inA times the size of expected maximal clique
times2, the number of particles isN = 500, and for each particle we sample 10 followers. In order
to compare to [6], we used the released latent SVM code [7] on the same training and testing images
as for our approach.

6.1 Detection Performance

We plot the precision/recall (PR) curves to show the detection performance of the latent SVM
method [6] and our method on both test dataset in Fig. 2. On theETHZ giraffe class our aver-
age precision (AP) is 0.841, it is much better than AP of the latent SVM which is 0.610. Our
result significantly outperforms the currently best reported result in [18], which has AP of 0.787.
On the TUD-Pedestrian dataset, our AP of 0.862 is comparableto the latent SVM, whose AP is
0.875. These results show that our method can learn object models that yield very good detection
performance. Our method is particularly suitable for learning part models of objects with large de-
formation like giraffes. The significant nonrigid deformation of giraffes leads to a large variation in
the position of patches representing the same object part. Since latent SVM learning is based on in-
cremental improvement in the position of parts, it seems to be unable to deal with large variations of
part positions. In contrast, this does not influence the performance of our method, since it is match-
ing based. Because the variance in the part positions in TUD-Pedestrian dataset is smaller than in
giraffes, the performance of both methods becomes comparable. Some of our detection results are
shown in Fig. 3. They demonstrate that our learned part modelleads to detection performance that is
robust to the scale changes, appearance variance, part location variance, and substantial occlusion.
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Figure 2: Precision/recall curves for Latent SVM method (red) and our method (blue) on ETHZ
Giraffe dataset (left) and TUD-Pedestrian dataset (right).
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Figure 3: Some of our detection results for giraffe class andpedestrian dataset. The detected patches
with the same color belong to the same salient part. The part colors are the same as in Fig. 4.
Detected bounding boxes are shown in blue.

6.2 Tree Structure of Salient Parts

In our framework, it is also possible to learn a tree structure of the salient parts. Given a set of
learned salient partsSP = {Qi|i = 1, . . . ,KH} as vertices, we construct a new graph, called
Salient Part Graph (SPG). The edge weights of SPG are given bythe average distance between pairs
of salient partsQi andQj given byD(i, j) for i, j = 1, . . . ,KH .

Figure 4: The learned salient parts and graph structures forthe giraffe class and pedestrian dataset.
The patches that belong to the same salient part are in the same color.

We obtain a minimum spanning tree of SPG using the Kruskal’s algorithm [11]. The learned trees
for two object classes of giraffes and pedestrians are illustrated in Fig. 4. Their connections yield
a salient part structure in accord with our intuition. We didnot utilize this tree structure for object
detection. Instead we used the star model in our detection results in order to have a fair comparison
to [6].

7 Conclusions

An object part is defined as a set of image patches. Learning object parts is formulated as two
instances of the problem of finding maximal cliques in weighted graphs that satisfy hard constraints,
and solved with the proposed Particle Filter inference framework. By utilizing the spatial relation of
the obtained salient parts, we are also able to learn a tree structure of the deformable object model.
The application of the proposed inference framework is not limited to learning object part models.
There exist many other applications where it is important toenforce hard constraints like common
pattern discovery and solving constrained matching problems.
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