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Abstract

We propose a novel inference framework for finding maximigjugs in a weight-

ed graph that satisfy hard constraints. The constraintsifgpiae graph nodes
that must belong to the solution as well as mutual exclusidmggaph nodes, i.e.,
sets of nodes that cannot belong to the same solution. Tim@ged inference is
based on a novel patrticle filter algorithm with state perioeat We apply the

inference framework to a challenging problem of learning-pased, deformable
object models. Two core problems in the learning framewar&tching of image

patches and finding salient parts, are formulated as twanass of the problem
of finding maximal cliques with hard constraints. Our leaghframework yields

discriminative part based object models that achieve veoggletection rate, and
outperform other methods on object classes with large defton.

Introduction

The problem of finding maximal cliques in a weighted graphaisefl in many applications from
computer vision to social networks. Related work on findiregge subgraph in weighted graph
include [16, 12, 14]. However, these approaches relax theretie problem of subgraph selection
to a continuous problem. The main drawback of such relaasidhe fact that it is impossible to
enforce that the constraints are satisfied for solutionhefrelaxed problem. Therefore, we aim
at solving the discrete subgraph selection problem by eyirgiathe recently proposed extension
of particle filter inference to problems with state permamagi [20]. There are at least two main
contributions of this paper: (1) We propose an inferencenéaork for solving a maximal clique
problem that cannot be solved with typical clustering mdghaor with recent relaxation based
methods [16, 12, 14]. (2) We utilize the inference framewforksolving a challenging problem of
learning a part model for deformable object detection.

Object detection is one of the key challenges in computaowjdue to the large intra-class ap-
pearance variation of an object class. The appearancdigaraises not only from changes in
illumination, viewpoint, color, and other visual propesj but also from nonrigid deformations.
Objects under deformation often observed large variatlobajly. However, their local structures
are somewhat more invariant to the deformations. Basediswliservation, we propose a learning
by matching framework to match all local image patches fraining image. By matching, object
parts with similar local structure in different trainingages can be found.

Given a set of training images that contain objects of theeselass, e.g., Fig. 1(a), our first problem
is to select a set of image patches that depict the same vyiauadf these objects. Thus, an object
part is regarded as a collection of image patches e.g., K. To solve the problem, we divide
each training image into a set of overlapping patches, likeohes shown in Fig. 1(b), and construct
a graph whose nodes represent the patches. The edge wejgitesant the appearance similarity of
pair of patches. Since close by patches in the same imageddredvery similar, we must impose
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Figure 1: (a) example training images; (b) patches extdafrtam the training images; (c) object
parts as collections of patches obtained as maximal cligiygeatch similarity graph; (d) the learned

salient parts for giraffe, the patches belong to the saniergadart are in the same color. The salient
parts are obtained as maximal cliques in a second graph wiaoisees represent the object parts.

a hard constraint that a patch set representing the samet @ajg does not contain two patches
from the same image. This constraint is very important,eiiherwise very similar patches from
the same images will dominate this graph. In order to obtaéammngful object parts, we define an
object part as a maximal clique in the weighted graph th&fseg the above constraint. By solving
the problem of maximal clique, we obtain a set of object pigltesthe ones shown in Fig. 1(c). We
use this set as vertices of a second graph. Finally, we ohtaimall set of salient visual parts, e.g.,
Fig. 1(d), by solving a different instance of the maximatjak problem on the second graph.

For each salient visual part, we train a discriminative sifeey. By combining these classifiers
with spatial distribution of the salient object parts, ae¢tr for deformable object is built. As
illustrated in the experimental results, this detectoieds very good object detection performance,
and outperforms other methods on object classes with |afperdation.

The computer vision literature has approached learningadf lpased object models in different
ways. In [8] objects are modeled as flexible constellatidrsagts, parts are constrained to a sparse
set of locations determined by an entropy-based featusztigf other part models based on feature
detector include [15, 17]. Our model is similar to discriatinely trained part based model in [6] in
that we train SVM classifiers for each part of object and ge¢dmarrangement of parts is captured
by a set of "springs”. However, our learning method is quifeedent from [6]. In [6] the learning
problem is formalized as latent SVM, where positions of pare considered as latent values. The
learning process is an iterative algorithm that alternbtween fixing latent values and optimizing
the latent SVM objective function. In contrast, we case fgatning as finding maximal cliques in
a weighted graph of image patches. The edge weights reprgseearance similarities of patches.
In [4, 13] multiple instance learning is used to search pasibf object parts in training images, and
boosting algorithm is used to select salient parts to repitssbject.

2 Maximal Cliquesthat Satisfy Hard Constraint

A weighted graplG is defined ag7 = (V, E, ¢), whereV = {vy,...,v,} is the vertex sety is the
number of verticest C V x V, ande : E — R> is the weight function. Vertices i correspond
to data points, edge weights between different verticesesgmt the strength of their relationships,
and self-edge weight respects importance of a vertex. Aastmary, we represent the gragh
with the corresponding weighted adjacency matrix, morei§ipally, ann x n symmetric matrix
A = (ai;), wherea;; = e(v;,v;) if (v;,v;) € E, anda;; = 0 otherwise.

LetS = {1,...,n} be the index set of vertex stt For any subsel’ C S, G denotes a subgraph
of G with vertex setVr = {v;,7 € T'} and edge sebr = {(v;,v;) | (vl,vj) €eE,ieT,jeT}.
The total weight of subgrap&r is defined asf(Gr) = >_,cr jer A4, 7). We can expres$’ by
an indicator vector: = (x1,...,2,) € {0,1}" such thate; = 1if ¢ e T andz; = 0 otherwise.
Thenf(Gr) can be represented in a quadratic fof(w) = 27 Az.



We consider mutex relationship between vertices in graplverGa subset of vertice3/ C S,
we call M a mutex (short for mutual exclusion) if € M andj € M implies that vertices);
andv; can not belong to the same maximal clique. Formallyis a constraint on the indicator
vectorm e {0, 1}" ie.,ifi e M andj € M, thenz; + z; < 1. A mutex set of graphG is

= {My,..., My, | M C S,i=1,...,m} such that eactds; is a mutex fori = 1,...,m.
Given a sefl’ C S, we define mutei@d“) as a set of indices of vertices 6f that are |ncompat|ble
with T according taM: muteXT) = {j € S|3m,em Jker J, k € M;}. We consider the following
maximization problem

maximize f(z) = 2" Az

subjectto (Clk = (x1,...,z,) € {0,1}" and

(C2)Vie U z; =1and (1)
(C3)z; +z; < 1if IM;, € M such that, j € M;, and
(CHYXx <K

The constraint (C2) specifies a set of verti€¢ésC S that must be selected as part of the solution,
(C3) ensures that all mutex constraints are satisfied, @y)ires number of vertices in the solution
is small or equal ta<. Of course, we assume the problem (1) is well-defined in tiexetexists:
that satisfies the four constraints (C1)-(C4).

The goal of (1) is to select a subset of vertices of grépsuch thatf is maximized and the con-
straints (C1)-(C4) are satisfied. Singeis the sum of pairwise affinities of the elements of the
selected subset, the larger is the subset, the larger isathe uf f. However, the size of the subset
is limited by the mutex constraints (C3) and maximal sizest@int (C4).

A global maximum of (1) is called & — M maximal clique of graphG. When both set§ and M
are clear from the context, we simply call the solution a meaticlique.

The problem (1) is a combinatorial optimization problend &ence it is NP-hard [2]. As is the case
for similar problems of finding dense subgraphs, the comstf@1) is usually relaxed to € [0, 1]™,
i.e., each coordinate of is relaxed to a continuous variable in the interval [0, 1§, €16, 12, 14].
However, it is difficult if not impossible to ensure that ctiamts (C2), (C3) and (C4) are satisfied
then. Another difficulty is related to discretization of tiedaxed solution in order to obtain a solution
that satisfies (C1). For these reasons, and since for ouicapph, it is very important that the
constraints are satisfied, we treat (C1)-(C4) as hard aingdrthat cannot be violated. We propose
an efficient method for directly solving (1) in Section 4. Wisffipresent two instances of problem
(1) in Section 3, where we describe the proposed applicaitenrning salient object parts.

3 Learning by Matching

In this section, we present a novel framework to learn pasetabject model based on matching.
The core problems of learning part based object model aradigearch right locations of an object
part in all training images and how to select salient pantsdpresenting object. In our framework,
the two problems are formulated as finding maximal cliquetk Ward constraints.

3.1 Matching Image Patches

Given a batch of training imagds= {1, ..., Ix } showing objects from a given class, e.g., Fig. 1
(a), whereK is the total number of training images. For every trainingg®, we densely extract
image patches with overlap. We denote the set of patchesotadt from allimages 44, . . ., P, },
wheren is total number of patches. Each patch is describe®,as- {F;, L;, X;,Y;} fori €
[1,... n], whereF; is the appearance descriptor Bf (we use the descriptor from [19]]; is the
image label ofP;, (e.g., if P; is extracted from the 5th training image; = 5), X; andY; indicate
the position ofP; in its image. All the training images are normalized to thmeaize.

We treat all the patches as the set of vertices of g@phe., V = {Py,..., P,}. The affinity
relation between the patches, i.e., the graph edge wemetslefined as;; = F; - Fj, if ¢ # j, and
a;; = 0 otherwise, wheréd"; - F; is the dot product of two feature vectors, which are nornealiat
measures the appearance similarity of patdhesnd P;. In addition, if the distance between patch
positions(X;,Y;) and (X;,Y;) is Iarger than 0.2 of the mean of all bounding box heights, ete s
a;;=0. This ensures that matrix A is sparse.



We have exactly< mutex constraints\t = {M;, ..., Mg}, where)M; contains all patches from
imagel;, i.e., M; = {P, € V|L; = j},j € [1,...,K]. This means that we do not want two
patches from the same image to belong to the same maximaécliq

Suppose that the firstpatchesP,, . .., P, are in thelst training image, i.e.L; = 1 if and only if
i =1,...,r. The part learning algorithm by finding maximal cliques igagi in Alg. 1.

Algorithm 1 Part learning by finding maximal cliques with hard constigin
Input: A, M, K, andr.
for i=1—rdo
1. Setl/ = {i}.
2. Solve problem (1), get the solutiari, and its valugV (i) = f(z*) = =** Az*.
3. Set the solution patches @%i) = {P;|z} = 1}.
end for
Output: PartsQ = {Q(1),...,Q(r)} and their matching weights) = {W (1), ..., W (r)}.

We recall that each learned p&p{i) is defined as a set df patches, e.g., Fig. 1 (c). Due to our
mutex constraint, eacf (i) contains exactly one patch from eachftraining images. We treat
the learned parts as candidate object parts, because tieemeraobject areas inside the bounding
box images. Each valué& (i) represents a matching score of(@fi).

3.2 Selecting Salient Partsfor Part Based Object Representation

In order to select a set of object parts that best represerlifect class, our strategy is to find a
subset of@ that maximizes the sum of the matching scores. We formutageproblem as finding
maximal clique with hard constraints again. We define a neaplyf with verticesV = Q and
adjacency matriB = (b;;), whereb;; = W (i) if ¢ = j, andb;; = 0 otherwise. Thus, the matrix of
graphH has nonzero entries only on diagonal. It may appear thatrtitdgmm is trivial, since there
is no edges between different verticestof but this is not the case due to the mutex relations.

The mutex seM? = {Mf ... MH}is defined asd! = {j | D(i,5) < 7} fori,j € [1,...,7],
wherer is a distance threshold ad(i, j) is the average distance between patch&g(in andQ(j)
that belong to the same image.Qfi) is selected as a salient part, the mulé¥’ ensures that the
patches of other salient parts are not too close to the patfi@(i). For example@(1) andQ(2)
in Fig. 1(c) both have good matching weights, but the avethistance betwee®(1) andQ(2) is
smaller thanr, so they cannot be selected as salient parts at the same time.

As initialization (C2), we set/ to a one element set containiagg max; W (i), so the part with
maximal matching score is always selected as a salientWersetk in (C4) to K, whereK is
the maximal number of salient part&” = 6 in all our experiments.

By solving the second instance of problem (1) foy UH, M*, K we obtain the set of salient
parts as the solution*. We denote is a8P = {Q(j) | z*(j) = 1}.

4 ParticleFilter Inferencefor U — M Maximal Clique

By associating a random variable (RX) with each vertex € S of graphG, we introduce a Gibbs
random field (GRF) with the neighborhood structure of gréptiEach RV can be assigned either 1
or 0, whereX; = 1 means that the vertex is selected as part of the solution. The probability of
the assignment of values to all RVs is defined as

T
PXy=z1,..., X, =x,) =p(x) x exp (@) :expx A:C, (2
v Y

where we recall that = (z1,...,2,) € {0,1}" andy > 0. We observe that the definition in (2)
also applies to a subset of RVs, i.e., we can use it to comp(#é;, = z;,,...,X;, = z;,) =

(ﬂlil oLy

P(Tiyy .-, Tip) X €XP ! ) for k < n. Thisis equivalent to setting other coordinates in the
indicator vectorr to zero.
Sinceexp is a monotonically increasing function, the maximum of @pbtained at the same point

as the maximum of in (1). We propose to utilize Particle Filter (PF) framewookmaximize (2)
subject to the constraints in (1). The goal of PF is to appnaxép(x) with a set of with weighted



samplegz® , w(2)} N, drawn from some proposal distributignUnder reasonable assumptions
on p(x) this approximation is possible with any precisiomiVfis sufficiently large [3].

Since it is still computationally intractable to draw sasgfromg due to high dimensionality of,
PF utilizes Sequential Importance Sampling (SIS). In tlaesibal PF approaches, samples are gen-

erated recursively following the order of the RVs accordimgg” ~ q(zi|1—1) fOrt =1,...n,

and the particles are built sequentiatlyl) = (z{)_,, z{") fori = 1,..., N. The subscript in z,
in ¢(z¢|z1..—1) indicates from which RV the samples are generated. Weﬁ#as a shorthand nota-
tion for (2\”, ..., z{")). Whent = m we obtain that:\" ~ g(z1.,,). In other words, by sampling

recursivelya:gi) from proposal distributiog(x;|z1..—1) of RV with indext, we obtain a sample from
q(z1.m,) att = m. Asis common in PF applications, we g€t:;|z1.:—1) = p(z¢|z1.4-1), i.€., the
proposal distribution is set to the conditional distributof p.

We observe that the order of sampling follows the indexin®@$ with the index sef. However,
there is not natural order of RVs on GRF, and the order of R\cegslin .S does not have any
particular meaning in that this order is not related in any waour objective functionf. The
classical PF framework has been developed for sequerdig sstimation like tracking or robot
localization [5], where observations arrive sequentjaiyd consequently, determine a natural order
of RVs representing the states like locations. In a recenk&9], PF framework has been extended
to work with unordered set of RVs for solving image jigsaw zles. Inspired by this work, we
extend PF framework to solvVE — M maximal clique problem in the weighted graph. Unlike
tracking a moving object, in our problem, the observatiarskaown from the beginning and are
given by the affinity matrixA.

The key idea of [20] is to explore different orders of thees$ét:;, , . . ., z;, ) as opposed to utilizing
the fix order of the states = (x4, ...,x,) determined by the index of RVs as in the standard PF.
(States are assigned values of RVs.) To achieve this thetagtof the PF algorithm is modified so
that the importance sampling is performed for every RV notrgpresented by the current particle.
To formally define the sampling rule, we need to explicitipnesent different orders of states with
an index selection functiosr : {1,...,t} — {1,...,n} for 1 < t < n, which is one-to-one.
In particular, whert = n, o is a permutation. We use the shorthand notati¢h : ¢) to denote
(0(1),0(2),...,0(t)) fort < n, and similarly,z, 1.1y = (To(1); To(2), - - To@r)). Each particle
xf;()u) can now have a different permutatiott”) representing the indices of RVs with assigned
values. Thus, a sequence of RVs visited before tinsedescribed by a subsequericg, . . ., i;) of

t different numbersirt = {1,...,n}.

We define an index set of indices of graph vertices that arepatible with selected vertices in
o@(1:t)ask(c@(1:t)) =5\ (o™ (1:t) U muteXoc®(1:1t)). Hencex(c® (1 : t)) contains
indices fromS that that are both not present#i”) (1 : ¢) and not have mutex relation with the
members ot () (1 : ¢).

We are now ready to formulate the proposed importance sagiphit each iteratiom < n, for each
particle(i) and for eachs € k(@ (1 : t—1)), we samples!” ~ p(xs\xff()l:t_l)). The subscript at
the conditional pdp indicates that we sample values for RV with indexX\e generate at least one

sample for eack € x(c(?(1 : t —1)). This means that the single partid{;i()lztil) is multiplied
and extended to several follower particlzefj%:t_l)ks.
Based on (2), it is easy to derive a formula for the proposattion:
f(@o@1:t—1),Ts) )
p(xd(l:t—l)vxs) exp ¥ f(la(l:t—l)vxs) - f(xa(l:t—l))
p($s|$a(1:t—1)) = = T@on. = exp
p('ra(l:tfl)) exp L Polit=1)) Y
ol
3)

We observe thaff (z,, To(1:4-1)) — f(To(:t—1)) = oL Axs + 207 Az, 14_1) is the gain in the
target functionf obtained after assigning the value to R/. Since we are interested in making
this gain as large as possible, and assigning- 0 leads to zero gain, we focus only on assigning
zs = 1. Consequently, the pdf in (3) can be treated as a probaildgs function (pmf) over



s € k(oW (1 :t— 1)) and sampling from it becomes equivalent to sampling
@~ p(sloD (1t = 1)) = plas = 1oy, ). @)
Hence, we can interpret a partlch((éy()1 4—1)

c@(1:t—1), sinceacff()1 1) is @ vector of ones assigned to RVs with indicesffi(1 : ¢ — 1).

In other words, it holds in@:"" )1 1)) = 0@(1:t—1), whereind: {0,1}" — 2% is a function

that assigns ta a set of |nd|ces of coordinates ofthat are equal to one. For examplegif=
(0,1,1,0,0) € {0,1}5, then indz) = {2, 3}, which means that graph vertices with indices 2 and 3
are selected by.

as a sequence of indices of selected graph vertices

In order to construct the pmf in (4), we only need to assignptababilities to all indices €
k(@ (1 : t — 1)) according to the definition in (3). Ther? is sampled from the discrete pmf
constructed this way. Now we are ready to summarize the gexpBF framework in Algorithm 2.

Algorithm 2 Particle Filter Algorithm forl/' — M Maximal Clique
Input: A, U, M, K, N, ~.
Initialize: ¢ = 1, initialize every particlei) with o\ = U fori =1,..., N.
Whi|e/<5(0'(1)(1 t—1))U...Uk(e™M(1:t—1)) # 0 andt < K do
fori=1— Ndo
if K(c@(1:t—1)) #0 then
1. Importance sampling / proposal: Sample followers:\"” of particle (i) from

w0~ plaslal), 1) = exp((Flae, 2l ) = FESh, /)

and set:7)), = (20,1, 2") ando9(1) = 5,ie,00) (1 1) = (o(1: £~ 1),5).
2. Importance weighting / evaluation: An individual importance weight is assigned to
each follower particle according to

w(xt(fl(f)t)) = exp(f(z{",z o—(l t— 1))/7)

else

we carry over the partlclez:(l %) Ty = x((f()u_l) andw(z (1)t)) w(w ((f()l:t_l)).
end if
end for
3. Resampling: Sample with replacemeri¥ new particle filters from{az(l(’f)t), c %st))}
according to weights, and assign the sampled s@ti@zw T t)} sett «+ t + 1.
end while
Output: {%()u ff;’l):t)}

We take the particle with maximal value ¢fas solution of (2), or equivalently, as solution of (1):

Tt = x(k()l -, wherek = arg maxqf( (1 t)) As proven in [20],z* approximatesnax, p(x) with

any precision for sufficiently large number of particlgs

5 Object Detection with the Deformable Part M odel

In Section 3.2, we find<H salient parts denoted &P = {Q;|i = 1,..., K} to represent an
object class, each paf}; containsk image patches, one patch from each training image. Now we
describe the object model constructed fr6.

We train a linear SVM classifier for each pgJt, which we denote aSV M (Q);). To train the linear
SVM classifierSV M (Q;), positive examples are the patchesthf The negatives examples are
obtained by an iterative procedure described in [10]. Tlit@lrtraining set consists of randomly
chosen background windows and objects from other clas$esreBulting classifier is used to scan
images and select the top false positives as hard exampleseThard examples are added to the
negative set and a new classifier is learned. This proceduspeated several times to obtain the
final classifier.



As in [6], we capture the spatial distribution of salienttgan SP with a star model, where the
location of each part is expressed as an offset vector wihet to the model center. The offset is
learned from the offsets of the patchegjnto the centers of their training images (bounding boxes)
containing them.

In order to be able to directly compare to Latent SVM [6], we tise same object detection frame-
work. Thus, the detection is performed in the sliding wind@ashion followed by non maxima
suppression. However, we do not use the root filter, whicmiagpearance classifier of the whole
detection window. Thus, our detection is purely part based.

6 Experimental Evaluation

We validate our method on two datasets with deformable tdhjdeETHZ Giraffes dataset [9] and
TUD-Pedestrians dataset [1]. For ETHZ Giraffes datasetioll@w the train/test split described in
[18]: the first 43 giraffe images are positive training exdsp The remaining 44 giraffe images in
ETHZ dataset are used for testing as positive images. Wesalsot 43 images from other categories
as negative training images. As negative test images wealakemaining images from the other
categories. Thus, we have the total of 86 training imaged,tha total of 169 test images. For
learning the salient parts, the giraffe bounding boxes armalized to the area of 3000 pixels with
aspect ratio kept.

For TUD-Pedestrians dataset, we use the provided 400 infagerining and 250 images for
testing. The background of training images is used to eimagative examples. The training
pedestrian bounding boxes are normalized to the height@p2Is with aspect ratio kept.

For both datasets, the size of each patchlis 61 pixels, number of patches per image is about
1000. We sef{ ¥ in (C4) to 6 meaning that our goal is to learn 6 salient panté&zh object class.
The number of salient part was determined experimentahg Minimal distance between salient
parts is 60 pixels for the giraffe class and 45 pixels for tedgstrian class. In Algorithm 2, the
normalization parameteris set to the median value i times the size of expected maximal clique
times2, the number of particles & = 500, and for each particle we sample 10 followers. In order
to compare to [6], we used the released latent SVM code [esame training and testing images
as for our approach.

6.1 Detection Performance

We plot the precision/recall (PR) curves to show the detaectierformance of the latent SVM
method [6] and our method on both test dataset in Fig. 2. OrEféZ giraffe class our aver-
age precision (AP) is 0.841, it is much better than AP of thenaSVM which is 0.610. Our
result significantly outperforms the currently best repdrtesult in [18], which has AP of 0.787.
On the TUD-Pedestrian dataset, our AP of 0.862 is compatahtilee latent SVM, whose AP is
0.875. These results show that our method can learn objed¢isithat yield very good detection
performance. Our method is particularly suitable for l&@agrpart models of objects with large de-
formation like giraffes. The significant nonrigid defornuet of giraffes leads to a large variation in
the position of patches representing the same object pade &tent SVM learning is based on in-
cremental improvement in the position of parts, it seemstoriable to deal with large variations of
part positions. In contrast, this does not influence thegoernce of our method, since it is match-
ing based. Because the variance in the part positions in Pé@estrian dataset is smaller than in
giraffes, the performance of both methods becomes comigar&8bme of our detection results are
shown in Fig. 3. They demonstrate that our learned part meddk to detection performance that is
robust to the scale changes, appearance variance, pdibtoeariance, and substantial occlusion.

ETHZ Giraffes TUD-Pedestrians

precision
precision

31— our method, AP=0.862
02} | — Latent SVM, AP=0.875

8 3 02

21" [—— our method, AP=0.841
01 | = Latent SVM, AP=0.610

0 02

06 06 08
recall recall

Figure 2: Precision/recall curves for Latent SVM methodirand our method (blue) on ETHZ
Giraffe dataset (left) and TUD-Pedestrian dataset (right)



Figure 3: Some of our detection results for giraffe classedestrian dataset. The detected patches
with the same color belong to the same salient part. The ot are the same as in Fig. 4.
Detected bounding boxes are shown in blue.

6.2 Tree Structure of Salient Parts

In our framework, it is also possible to learn a tree struetofr the salient parts. Given a set of
learned salient part§P = {Q;|i = 1,..., K"} as vertices, we construct a new graph, called
Salient Part Graph (SPG). The edge Welghts of SPG are glvﬂretgverage distance between pairs
of salient parts); andQ, given byD(i, j) fori,j =1,..., KH.

Figure 4: The learned salient parts and graph structurehéogiraffe class and pedestrian dataset.
The patches that belong to the same salient part are in the calor.

We obtain a minimum spanning tree of SPG using the Kruskfgsrdhm [11]. The learned trees
for two object classes of giraffes and pedestrians aretifited in Fig. 4. Their connections yield
a salient part structure in accord with our intuition. We dat utilize this tree structure for object
detection. Instead we used the star model in our detectBuitsdn order to have a fair comparison
to [6].

7 Conclusions

An object part is defined as a set of image patches. Learnijegtoparts is formulated as two
instances of the problem of finding maximal cliques in wedghgraphs that satisfy hard constraints,
and solved with the proposed Particle Filter inference &anrk. By utilizing the spatial relation of
the obtained salient parts, we are also able to learn a megiwte of the deformable object model.
The application of the proposed inference framework is imoitéd to learning object part models.
There exist many other applications where it is importargnforce hard constraints like common
pattern discovery and solving constrained matching proble
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