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Abstract

Factored Decentralized Partially Observable Markov Dexi$rocesses (Dec-
POMDPs) form a powerful framework for multiagent plannimgler uncertainty,
but optimal solutions require a rigid history-based poliepresentation. In this
paper we allow inter-agent communication which turns thebj@m in a central-
ized Multiagent POMDP (MPOMDP). We map belief distributiaover state fac-
tors to an agent’s local actions by exploiting structurehia joint MPOMDP pol-
icy. The key point is that when sparse dependencies betWweagents’ decisions
exist, often the belief over its local state factors is sidfit for an agent to un-
equivocally identify the optimal action, and communicatian be avoided. We
formalize these notions by casting the problem into conyeix@zation form, and
present experimental results illustrating the saving®mmunication that we can
obtain.

1 Introduction

Intelligent decision making in real-world scenarios reégaian agent to take into account its limita-
tions in sensing and actuation. These limitations lead teettainty about the state of environment,
as well as how the environment will respond to performingraage action. When multiple agents

interact and cooperate in the same environment, the optdieédion-making problem is particularly

challenging. For an agent in isolation, planning under uiag®ty has been studied using decision-
theoretic models like Partially Observable Markov DeaisRrocesses (POMDPs) [4]. Our focus
is on multiagent techniques, building on the factored Migiint POMDP model. In this paper, we
propose a novel method that exploits sparse dependencseglima model in order to reduce the
amount of inter-agent communication.

The major source of intractability for optimal Dec-POMDR&ss is that they typically reason over
all possible histories of observations other agents cagivec In this work, we consider factored
Dec-POMDPs in which communication between agents is plessilhich has already been explored
for non-factored models [10, 11, 15, 13] as well as for faatddec-MDPs [12]. When agents share
their observations at each time step, the decentralizdulgrroreduces to a centralized one, known
as a Multiagent POMDP (MPOMDP) [10]. In this work, we develogividual policies which map
beliefs over state factors to actions or communicationgieas.



Maintaining an exact, factorized belief state is typicalbt possible in cooperative problems. While
bounded approximations are possible for probabilistienemnce [2], these results do not carry over
directly to decision-making settings (but see [5]). Iritdty, even a small difference in belief can
lead to a different action being taken. However, when spdegendencies between the agents’
decisions exist, often the belief over its local state fects sufficient for an agent to identify the
action that it should take, and communication can be avoitléslformalize these notions as con-
vex optimization problems, extracting those situationg/iich communication is superfluous. We
present experimental results showing the savings in corwation that we can obtain, and the
overall impact on decision quality.

The rest of the paper is organized as follows. First, Se@ipnesents the necessary background
material. Section 3 presents the formalization of our megttwoassociate belief points over state
factors to actions. Next, Section 4 illustrates the coreejith experimental results, and Section 5
provides conclusions and discusses future work.

2 Background

In this section we provide background on factored Dec-POBIBRI Multiagent POMDPs.
A factoredDec-POMDP is defined as the following tuple [8]:

D ={1,...,n} is the set of agent®; will be used to refer to agerit

S = x;X;,i=1,...,ny is the state space, decomposable mfdactorsX; € {1,...,m;} which
lie inside a finite range of integer value¥.= {1, ..., X, } is the set of all state factors;

A = x;A;, 1 = 1,...,nis the joint action space. At each step, every ageakes an individual
actiona; € A;, resulting in thgoint actiona = (a1, ..., a,) € A;

O = x;0;,i = 1,...,nis the space of joint observations= (o, ..., 0,,), whereo; € O; are the
individual observations. An agent receives only its ownertgtion;

T:S8 xS x A—|[0,1] specifies the transition probabiliti®s (s'|s, a);

0:0 x § x A — [0,1] specifies the joint observation probabilites(o|s’, a);

R: S x A — R specifies the reward for performing actiare A in states € S;

by € B is the initial state distribution. The sBtis the space of all possible distributions o&r

h is the planning horizon.

The main advantage of factored (Dec-)POMDP models over stiedard formulation lies in their
more efficient representation. Existing methods for faedddec-POMDPSs can partition the decision
problem across local subsets of agents, due to the possd#eeéndence between their actions and
observations [8]. A natural state-space decomposition petform anagent-wisdactorization, in
which a state in the environment corresponds to a uniqugrasgint over the states of individual
agents. Note that this does not preclude the existenceteffatztors which are common to multiple
agents.

The possibility of exchanging information between agenéstly influences the overall complexity
of solving a Dec-POMDP. In a fully communicative Dec-POMEH® decentralized model can be
reduced to a centralized one, the so-caMadtiagent POMDP(MPOMDP) [10]. An MPOMDRP is

a regular single-agent POMDP but defined over the joint nsodehll agents. In a Dec-POMDP,
at eacht an agent knows onlya; ando;, while in an MPOMDP, it is assumed to knawando.

In the latter case, inter-agent communication is necedsasfiare the local observations. Solving
an MPOMDRP is of a lower complexity class than solving a DedvlB® (PSPACE-Complete vs.
NEXP-Complete) [1].

It is well-known that, for a given decision stepthe value functiorV’! of a POMDP is a piecewise
linear, convex function [4], which can be represented as
Vid') = maxa' b | (1)
a€elt
wherel" is a set of vectors (traditionally referred to @asvectors). Everyr € T has a particular

joint actiona associated to it, which we will denote @a&x). The transpose operator is here denoted
as(-)". In this work, we assume that a value function is given folthatiagent POMDP. However,



this value function need not be optimal, nor stationary. t@ahniques preserve the quality of the
supplied value function, even if it is an approximation.

A joint belief state is a probability distribution over the set aitesS, and encodes all of the
information gathered by all agents in the Dec-POMDP up torargtimet:

bi(s) = Pr(s'|o’~',a’ " 072, a2, ... o', al, b)

= Pr(Xf,..., X}, |) @)

A factored belief state is a representation of this very sminébelief as the product of » assumed
independent belief states over the state factgrsvhich we will refer to adelief factors

b = xb, 3)
Every factorb}i is defined over a subs&t, C X of state factors, so that:
b'(s) ~ Pr(Fi|-)Pr(F3l) - - - Pr(Fy,.|) 4)

With F; N F; = 0 ,Vi # j. A belief point over factor€ which are locally available to the agent
will be denoted ..

The marginalization of ontob £ is:
bt}_(]:t) — Pr (]:tlal,m,t—l’ Ol,m,t—l)

= Z Pr (XLX;... ’thlf ) - Z b'(s), (5)

XU\Ft X\ TFt
which can be viewed as a projectiontobnto the smaller subspat®-:
br = M7b (6)

where M3 is a matrix whereM/# (u,v) = 1 if the assignments to all state factors contained in
stateu € F are the same as in statee X, and0 otherwise. This intuitively carries out the
marginalization of points i onto B.

3 Exploiting Sparse Dependencies in Multiagent POMDPs

In the implementation of Multiagent POMDPs, an importarmtqical issue is raised: since the joint
policy arising from the value function maps joint beliefsjéint actions, all agents must maintain
and update the joint belief equivalently for their decisidn remain consistent. The amount of
communication required to make this possible can then beqmwblematically large. Here, we
will deal with a fully-communicative team of agents, but wélwe interested in minimizing the
necessary amount of communication. Even if agents can cocate with each other freely, they
might not need to always do so in order to act independentlyyen cooperatively.

The problem of when and what to communicate has been studfedd¥or Dec-MDPs [12], where
factors can be directly observed with no associated uringrtéy reasoning over the possible local
alternative actions to a particular assignment of obséevatate features. For MPOMDPs, this
had been approximated at runtime, but implied keeping teaxckreasoning over a rapidly-growing
number of possible joint belief points [11].

We will describe a method to map a belief factor (or sevectbis) directly to a local action, or to a
communication decision, when applicable. Our approadheditst to exploit, offline, the structure
of the value function itself in order to identify regions dllef space where an agent may act inde-
pendently. This raises the possibility of developing maegilile forms for joint policies which can
be efficiently decoupled whenever this is advantageousrimg®f communication. Furthermore,
since our method runs offline, it is not mutually exclusivehadnline communication-reduction
techniques: it can be used as a basis for further compusasibruntime, thereby increasing their
efficiency.



3.1 Decision-making with factored beliefs

Note that, as fully described in [2], the factorization (#pitally results in an approximation of the
true joint belief, since it is seldom possible to decoupke diynamics of a MDP into strictly inde-
pendent subprocesses. The dependencies between fautoied by the transition and observation
model of the joint process, quickly develop correlationewlthe horizon of the decision problem
is increased, even if these dependencies are sparseit8tdl proven in [2] that, if some of these
dependencies are broken, the resulting error (measurde & tdivergence) of the factored belief
state, with respect to the true joint belief, is bounded.dstuinately, even a small error in the belief
state can lead to different actions being selected, whichsigmificantly affect the decision quality
of the multiagent team in some settings [5, 9]. However, pidig-mixing processes (i.e., models
with transition functions which quickly propagate uncerty), the overall negative effect of using
this approximation is minimized.

Each belief factor's dynamics can be described using a tagesDynamic Bayesian Network

(DBN). For an agent to maintain, at each time step, a set eéfokelctors, it must have access
to the state factors contained in a particular time slicehef trespective DBNs. This can be ac-
complished either through direct observation, when péssiiy by requesting this information from

other agents. In the latter case, it may be necessary torpeddditional communication in order

to keep belief factors consistent. The amount of data to bexmanicated in this case, as well as its
frequency, depends largely on the factorization schemelwisiselected for a particular problem.
We will not be here concerned with the problem of obtainingitable partition scheme of the joint

belief onto its factors. Such a partitioning is typicallyngile to identify for multi-agent teams which

exhibit sparsity of interaction. Instead we will focus ore tamount of communication which is

necessary for the joint decision-making of the multi-ageam.

3.2 Formal model

We will hereafter focus on the value function, and its assted quantities, at a given decision step
and, for simplicity, we shall omit this dependency. Howewver restate that the value function does
not need to be stationary — for a finite-horizon problem, thieing methods can simply be applied
foreveryt =1,...,h.

3.2.1 Value Bounds Over Local Belief Space

Recall that, for a giver-vector,V, (b) = « - b represents the expected reward for selecting the
action associated with. Ideally, if this quantity could be mapped from a local bitieint b, then

it would be possible to select the best action for an agergdasly on its local information. This

is typically not possible since the projection (6) is noweirtible. However, as we will show, it is
possible to obtain bounds on the achievable value of anyngigetor, in local belief space.

The available information regardirig, (b) in local space can be expressed in the linear forms:

Va(b) =a-b
17p=1 7)
MEFb =0,
wherel, =[1 1 ... 1 ]T € R"™. Letm be size of the local belief factor which contais

Reducing this system, we can associdtéb) with b andb,, having at least — m free variables in
the leading row, induced by the locally unavailable dimensiofb. The resulting equation can be
rewritten as:

Va) =B-b+~v-bc+0d (8)
with 8 € R", v € R™ anddé € R. By maximizing (or minimizing) the terms associated witle th
potentially free variables, we can use this form to estaliie maximum (and minimum) value that
can be attained a..

Theorem 1. LetZ, = {v: M (

QERW : & : minjgzi ﬁj,i
pomt,bg, accordlng too, IS:

&

,U) = 1}, B eR™: B = maxjez, 5,4 = 1,...,m and
1,...,m. The maximum achievable value for a local belief

Valbe) = (B+7) be+6 . )
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Analogously, the minimum achievable value is
Valbe) = (B+7) -bc+6 (10)

Proof. First, we shall establish thaf, (b.) is an upper bound o#,(b). The setz; contains the
indexes of the elements dfwhich marginalize ontgb.);. From the definition ofs it follows that,

Vb € B: B
ZﬂiijZﬁjbj g=1,....m <
JEL; JEL;
< Bi(bﬁ)iZZijj d=1,...,m
JEL;

where we used the fact thaf_ b; = (bz);. Summing over alf, this implies that3 - b, > 3 - b.
J€TL;
Using (8) and (9),
Bbe+y-be+8>B-b+vy-be+d & Vi(bg) > Va(b)

Next, we need to show thab € B : V,(bz) = V. (b). Sincellb = 1andb;, > 0Vi, B-bis a
convex combination of the elements/in Consequently,

b= B-MFb= ;
I&aé(ﬁ I&aé(ﬁ ps Inzaxﬁ
Therefore, fo,,, = argrglaé(ﬂ - b, we have thal/, (M b,,,) = Vo (bm).
€
The proof for the minimum achievable valiig (b.) is analogous. O

By obtaining the bounds (9) and (10), we have taken a steprttsndentifying the correct action
for an agent to take, based on the local information conthiné,.. From their evaluation, the
following remarks can be made: if and«’ are such that, (bz) < Va(bz), thena' is surely
not the maximizing vector dt, if this property holds for alb’ such that¢(a’)); # (¢());, then

by following the action associated with, agent: will accrue at least as much value as with any
other vector for all possiblé subject to (6). That action can be safely selected withoatlimg to
communicate.

The complexity of obtaining the local value bounds for a givalue function is basically that of
reducing the system (7) for each vector. This is typicalljieeed through Gaussian Elimination,
with an associated complexity 6f(n(m + 2)?) [3]. Note that the dominant term corresponds to
the size of the local belief factor, which is usually expatily smaller thann. This is repeated

for all vectors, and if pruning is then done over the resglset (the respective costi|T'|?)), the

total complexity isO(|T'|n(m + 2)2 + |T'|?). The pruning process used here is the same as what is
typically done by POMDP solvers [14].

3.2.2 Dealing With Locally Ambiguous Actions

The definition of the value bounds (9) and (10) only allows gerd to act in atypical situations in
which an action is clearly dominant in terms of expected @aldowever, this is often not the case,
particularly when considering a large decision horizongsithe present effects of any given action
on the overall expected reward are typically not pronourezezligh for these considerations to be
practical. In a situation where multiple value bounds arefletiing (i.e. V. (bz) > Vi (bz) and

V.. (be) < Var (b)), an agent is forced to further reason about which of thoterexis best.

In order to tackle this problem, let us assume that two astioanda’ have conflicting bounds at

be. GivenI® = {a € ' : (¢(a)); = a} and similarly defined™®, we will define the matrices
A=[TYxn, i=1,...,0%andA’ = [ |pxn, i=1,...,|[T%|. Then, the vectors = Ab
andv’ = A’b (in R* andR¥ respectively) contain all possible values attainablé rough the
vectors inI'® andI"*. Naturally, we will be interested in the maximum of theseuesl for each
action. In particular, we want to determineifix; v; is greater thamax; v/; for all possibleb such
thatb, = be. If this is the case, themshould be selected as the best action, since it is guaranteed
to provide a higher value af thana'.



The problem of determining the minimum valuevof- v’ atb, can be expressed as the following
set of Linear Programs (LPs) [6]. Note that- y is here assumed to mean that> y; Vi:

Vi=1,...,]T maximize T¢b—s
subjectto Ab<1ys b= 0, (11)
MFb=0b, 1Xp=1

If the solutionb,,; to each of these LPs is such thatx; (Ab,y:); > max,;(A'byp);, then actior
can be safely selected basedign If this is not the case for any of the solutions, then it is not
possible to map the agent’s best action solely thrayghin order to disambiguate every possible
action, this optimization needs to be carried out for allficting pairs of actions. However, a less
computationally expensive alternative is to approximheedptimization (11) by a single LP (refer
to [6] for more details):

maximize 17.¢
subjectto Ab < 1,5 b=0, MXb=0b, (12)
Alb:]_k/S—Ff 151)21

3.2.3 Mapping Local Belief Points to Communication Decisins

For an environment with only two belief factors, the methedatibed so far could already incor-
porate an explicit communication policy: given the localiéfeb, of an agent, if it is possible to
unequivocally identify any action as being maximal, theat #iction can be safely executed without
any loss of expected value. Otherwise, the remaining bigabr should be requested from other
agents, in order to reconstructhrough (4), and map that agent’s action through the joifitpo
However, in most scenarios, it is not sufficient to know wieetbr not to communicate: equally
important are the issues of what to communicate, and withmvho

Let us consider the general problem with belief factors contained in the s&t In this case there
are2!”1-1 combinations of non-local factors which the agent can regu@ur goal is to identify one
such combination which contains enough information tordisiguate the agent’s actions. Central
to this process is the ability to quickly determine, for aagiwset of belief factorg C F, if there are
no points inbg with non-decidable actions. The exact solution to this frbwould require, in the
worst case, the solution ¢f¢| x |T'*'| LPs of the form (11) for every pair of actions with conflicting
value bounds. However, a modification of the approximate12 éllows us to tackle this problem
efficiently:

maximize 1},& +1.¢

subjectto Ab < 1;s Ab=1s5+¢ MFb =0, 13)
AY Z1ps’ AV =18+ ¢ MEY =0,
b= 0, V-0, Mgb= MgV

The rationale behind this formulation is that any solutiorthie LP, in whichmax; £; > 0 and
max; §; > 0 simultaneously, identifies two different poiritandb’ which map to the same point
be in G, but share different maximizing actionSanda respectively. This implies that, in order to
select an action unambiguously from the belief a¥eno such solution may be possible.

Equipped with this result, we can now formulate a generat@dare that, for a set of belief points
in local space, returns the corresponding belief factolishvimust be communicated in order for an
agent to act unambiguously. We refer to this as obtainingtimemunication mafor the problem.
This procedure is as follows (a more detailed version isuidet! in [6]): we begin by computing the
value bounds of” over local factorsC, and samplingV reachable local belief points:; for each
of these points, if the value bounds of the best action aremaflicting (see Section 3.2.1), or any
conflicting bounds are resolved by LP (12), we can nigrlassafe add it to the communication
map, and continue on to the next point; otherwise, using 3}, (e search for the minimum set of
non-local factorg; which resolves all conflicts; we then associtewith G and add it to the map.

During execution, an agent updates its local informatipnfinds the nearest neighbor point in the
communication map, and requests the corresponding fattorsthe other agents. The agent then
selects the action which exhibits the highest maximum vatuend given the resulting information.
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Figure 1: (a) Layout of th&kelay-Smalbroblem. (b) Layout of thdRelay-Largeproblem. (c)

Communication map for thRelay-Smalproblem.

4 Experiments

We now analyze the results of applying the aforementionideicommunication mapping process
to three different MPOMDP environments, each with a diffeédegrees of interdependency between
agents. The first and smallest of the test problems, showigiré-1a, is named thRelay-Small
problem, and is mainly used for explanatory purposes. Iawurld each agent is confined to a
two-state area. One of the agents possesses a package tahigst ihand over to the other agent,
through the non-traversable opening between the rdonadR 1. Each agent can move randomly
inside its own room (&5huffleaction), Exchangethe package with the other agent, ®ensdts
environment in order to find the opening. Afxchanges only successful if both agents are in
the correct positioiL1, R1) and if both agents perform this action at the same time, winiakes

it the only available cooperative action. The fact that,hiis fproblem, each belief factor is two-
dimensional (each factor spans one of the rooms) allows ustialize the results of our method. In
Figure 2, we see that some of the agent’s expected behawlbeady contained in the value bounds
over its local factor: if an agent is certain of being in ro® (i.e. (by,)1 = 0), then the action
with the highest-valued bound &huffle Likewise, anExchangeshould only be carried out when
the agent s certain of being Inl, but it is an ambiguous action since the agent needs to béfatre
its teammate can cooperate. In Figure 1c we represent themaaioation map which was obtained
offline through the proposed algorithm. Since there are bmtyfactors, the agent only needs to
make a binary decision of whether or not to communicate favarglocal belief point. The belief
points consideredafeare marked a¢, and those associated with a communication decision are
marked ad. In terms of quantitative results, we see thag0 — 40% of communication episodes
are avoided in this simple example, without a significans lofscollected reward.

Another test scenario is the OneDoor environment of [7],clhis further described in [6]. In this
49-state world, two agents lie inside opposite rooms, akirhRelay-Smalproblem, but each
agent has the goal of moving to the other room. There is ondyammmon passage between both
rooms, where the agents may collide. For shorter-horiztutieas, agents may not be able to reach
their goal, and they communicate so as to minimize nega¢iweaurd (collisions). For the infinite-
horizon case, however, typically only one of the agents camioates, while waiting for its partner
to clear the passage. Note that this relationship betwezprbblem’s horizon and the amount of
communication savings does not hold for all of the probleffise proposed method exploits the
invariance of local policies over subsets of the joint Hedigace, and this may arbitrarily change
with the problem’s horizon.

A larger example is displayed in Figure 1b. This is an adaptaif theRelay-Smalproblem (aptly
namedRelay-Largéto a setting in which each room has four different stated,esch agent may be
carrying a package at a given time. Agéht may retrieve new packages from positibh, andD-

Relay-Small OneDoor Relay-Large
h. | FullComm. | Red. Comm.| FullComm. | Red. Comm.| Full Comm. Red. Comm.
6 | 15.4,100%| 14.8,56.9%| 0.35, 100%| 0.30, 89.0%| 27.4,100% | 25.8,44.1%
10 | 39.8, 100%| 38.7,68.2%| 1.47,100%| 1.38, 76.2%| -19.7, 100%| -21.6,62,5%
oo | 77.5,100%| 73.9,46.1%| 2.31, 100%]| 2.02, 61.3%| 134.0, 100%| 129.7, 58.9%

Table 1: Results of the proposed method for various enviarim For settings assuming full and

reduced communication, we show empirical control quatibfine communication usage.




Relay-Small OneDoor Relay-Large
h 6 10 | © 6 10 | © 6 10 00
Perseus | 1.1| 43 [0.1] 7.3 | 33.3|5.3|239.5|643.0] 315
Comm. Map| 591|214 74| 12.4| 57.7| 5.9 368.7| 859.5| 138.1

Table 2: Running time (in seconds) of the proposed methodrimparison to the Perseus point-based
POMDP solver.

Value Bounds (Relay) Pruned Value Bounds (Relay)

160 160
140 I shufile
120 /// [ Exchange
00—=——C_ _ __z=====--7-"2" I sense
sor ~ "7
60
40

20O 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(b, )1 (b, )1

Figure 2: Value bounds for thHeelay-Smalproblem. The dashed lines indicate the minimum value
bounds, and the filled lines represent the maximum valuedgdar each action.

can deliver them t@.2, receiving for that a positive reward. There are a totaldpossible states for
the environment. Here, since the agents can act indepdnftara longer time, the communication
savings are more pronounced, as shown in Table 1.

Finally, we argue that the running time of the proposed atlgor is comparable to that of general
POMDP solvers for these same environments. Even thoughtbetbkolver and the mapper algo-
rithms must be executed in sequence, the results in Tablewv ttat they are typically both in the
same order of magnitude.

5 Conclusions and Future Work

Traditional multiagent planning on partially observablevieonments mostly deals with fully-
communicative or non-communicative situations. For a mesdistic scenario where communi-
cation should be used only when necessary, state-of-thraethods are only capable of approxi-
mating the optimal policy at run-time [11, 15]. Here, we hawalyzed the properties of MPOMDP
models which can be exploited in order to increase the effigi@f communication between agents.
We have shown that these properties hold, for various MPOME&#narios, and that the decision
quality can be maintained while significantly reducing theant of communication, as long as the
dependencies within the model are sparse.

Although one of the main features of these techniques istliegt may be applied to any given
MPOMDP value function, in some situations this value fumctinay be costly to obtain. As future
work, we will investigate methods for obtaining MPOMDP wvaluinctions that are easy to partition
using our techniques.
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