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What We Do

* Sequential decision making: repeatedly choose among k actions
 “Experts” Setting: Learner sees rewards of all actions
* “Bandits” Setting: Learner sees only its own reward

Our (More General) Model

By picking an action, Learner gets side-information on
some subset of other actions. Captures:

Experts... ...bandits... ...and in between!
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Why

e Captures structure between the actions
— Web Advertising

— Sensor and communication networks

* Related work: Focus on affinity (Bandits in
Metric Spaces) or stochastic correlations,
while we make no such assumptions
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Results

* New Efficient Algorithms

* Regret upper and lower bounds

— Non-trivial dependence on
information feedback structure

* Experiments

* Many open questions!

>~ Come see our poster!
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Our Model:
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Extensions and Some Open
Questions
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