Noise Thresholds for Spectral Clustering

Sivaraman Balakrishnan Poster: W056

Min Xu

Akshay Krishnamurthy

Aarti Singh

School of Computer Science Carnegie Mellon University

Traditional analyses of Spectral Clustering

- k-way spectral clustering
 - lacksquare Compute L = D W, $v_1, \dots, v_k \leftarrow$ smallest k eigenvectors of L
 - lacksquare Embed each data point i into k-dim space $\mathbf{x}(i) = [\mathbf{v}_1(i), \dots, \mathbf{v}_k(i)]$
 - Run k-means on embedded data points

<u>High-level justification</u>: Connection to graph cut, random walks on graph, electric network theory, Laplace-Beltrami operator on manifold – don't translate to cluster recovery guarantees

<u>Perturbation Analysis</u>: Rohe et. al. (2010) and McSherry (2001) – spectral algorithms for planted partition (structured random graph) model (constant block similarities, low rank)

Jordan, Weiss (2001), Huang, Yan, Jordan, Taft (2009) – eigenvectors are **stable in** l_2 **-norm** (Davis-Kahan Theorem) under small similarity perturbations

Our contributions – 1/2

- Study hierarchical spectral clustering and traditional k-way spectral clustering
- Characterization of general similarity conditions under which true eigenvectors reflect cluster structure, including eigenvectors of hierarchically-structured high-rank matrices
- $lue{}$ Stability of eigenvectors in l_{∞} -norm under sub-Gaussian perturbation
- □ Precise characterization of total clustering error of k-way and hierarchical spectral clustering
 - As a function of noise variance, number of objects, size of clusters and within v/s between cluster similarity gap

Our contributions -2/2

- **Information theoretic (minimax) optimality** of signal-to-noise thresholds
 - Minimax lower bound: No clustering method can succeed if

$$\sigma = \omega \left(\gamma \sqrt{\frac{\log n}{n}} \right)$$

- σ Noise std. dev. of perturbation, n number of objects
- γ Gap between inter and intra cluster similarity, γ/σ SNR
- Ratio min-cut (combinatorial) achieves this rate up to constants

Spectral clustering succeeds if
$$\sigma = o\left(\gamma\sqrt[4]{\frac{\log n}{n}}\right)$$

- Remarks:
 - Price of computational efficiency: ratio min-cut (combinatorial) outperforms spectral clustering (efficient)
 - Conjecture rate can be improved under different conditions on noise