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Abstract

We propose a robust filtering approach based on semi-supervised and mul-
tiple instance learning (MIL). We assume that the posterior density would
be unimodal if not for the effect of outliers that we do not wish to explic-
itly model. Therefore, we seek for a point estimate at the outset, rather
than a generic approximation of the entire posterior. Our approach can
be thought of as a combination of standard finite-dimensional filtering (Ex-
tended Kalman Filter, or Unscented Filter) with multiple instance learning,
whereby the initial condition comes with a putative set of inlier measure-
ments. We show how both the state (regression) and the inlier set (classi-
fication) can be estimated iteratively and causally by processing only the
current measurement. We illustrate our approach on visual tracking prob-
lems whereby the object of interest (target) moves and evolves as a result
of occlusions and deformations, and partial knowledge of the target is given
in the form of a bounding box (training set).

1 Introduction

Algorithms for filtering and prediction have a venerable history studded by quantum leaps by
Wiener, Kolmogorov, Mortensen, Zakai, Duncan among others. Many attempts to expand
finite-dimensional optimal filtering beyond the linear-Gaussian case failed,1 which explains
in part the resurgence of general-purpose approximation methods for the filtering equation,
such as weak-approximations (particle filters [6, 16]) as well as parametric ones (e.g., sum-
of-Gaussians or interactive multiple models [5]). Unfortunately, in many applications of
interest, from visual tracking to robotic navigation, the posterior is not unimodal. This has
motivated practitioners to resort to general-purpose approximations of the entire posterior,
mostly using particle filtering. However, in many applications one has reason to believe that
the posterior would be unimodal if not for the effect of outlier measurements, and therefore
the interest is in a point estimate, for instance the mode, mean or median, rather than in the
entire posterior. So, we tackle the problem of filtering, where the data is partitioned into
two unknown subsets (inliers and outliers). Our goal is to devise finite-dimensional filtering
schemes that will approximate the dominant mode of the posterior distribution, without
explicitly modeling the outliers. There is a significant body of related work, summarized
below.

1.1 Prior related work

Our goal is naturally framed in the classical robust statistical inference setting, whereby
classification (inlier/outlier) is solved along with regression (filtering). We assume that an
initial condition is available, both for the regressor (state) as well as the inlier distribution.

1Also due to the non-existence of invariant family of distributions for large classes of Fokker-
Planck operators.
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The latter can be thought of as training data in a semi-supervised setting. Robust filtering
has been approached from many perspectives: Using a robust norm (typically H∞ or `1)
for the prediction residual yields worst-case disturbance rejection [14, 9]; rejection sampling
schemes in the spirit of the M-estimator [11] “robustify” classical filters and their extensions.
These approaches work with few outliers, say 10−20%, but fail in vision applications where
one typically has 90% or more. Our approach relates to recent work in detection-based
tracking [3, 10] that use semi-supervised learning [4, 18, 13], as well as multiple-instance
learning [2] and latent-SVM models [8, 20].

In [3] an ensemble of pixel-level weak classifiers is combined on-line via boosting; this is
efficient but suffers from drift; [10] improves stability by using a static model trained on
the first frame as a prior for labeling new training samples used to update an online clas-
sifier. MILTrack [4] addressed the problem of selecting training data for model update so
as to maintain maximum discriminative power. This is related to our approach, except
that we have an explicit dynamical model, rather than a scanning window for detection.
Also, our discrimination criterion operates on a collection of parts/regions rather than a
single template. This allows more robustness to deformations and occlusions. We adopt an
incremental SVM with a fast approximation of a nonlinear kernel [21] rather than online
boosting. Our part based representation and explicit dynamics allow us to better handle
scale and shape changes without the need for a multi-scale image search [4, 13]. PROST [18]
proposed a cascade of optical flow, online random forest, and template matching. The P-N
tracker [13] combined a median flow tracker with an online random forest. New training
samples were collected when detections violated structural constraints based on estimated
object position. In an effort to control drift, new training data was not incorporated into
the model until the tracked object returned to a previously confirmed appearance with high
confidence. This meant that if object appearance never returned to the “key frames,” the
online model would never be updated. In the aforementioned works objects are represented
as a bounding box. Several recent approaches have also used segmentation to improve the
reliability of tracking: [17] did not leverage temporal information beyond adjacent frames,
[22] required several annotated input frames with detailed segmentations, and [7] relied on
trackable points on both sides of the object boundary. In all methods above there was no
explicit temporal modeling beyond adjacent frames; therefore the schemes had poor pre-
dictive capabilities. Other approaches have used explicit temporal models together with
sparsity constraints to model appearance changes [15].

We propose a semi-supervised approach to filtering, with an explicit temporal model, that
assumes imperfect labeling, whereby portions of the image inside the bounding box are
“true positives” and others are outliers. This enables us to handle appearance changes, for
instance due to partial occlusions or changes of vantage point.

1.2 Formalization

We denote with x(t) ∈ Rn the state of the model at time t ∈ Z+. It describes a discrete-
time trajectory in a finite-dimensional (vector) space. This can be thought of as a real-
ization of a stochastic process that evolves via some kind of ordinary difference equation

x(t + 1) = f(x(t)) + ν(t), where ν(t)
IID∼ pν is a temporally independent and identically

distributed process. We will assume that, possibly after whitening, the components of ν(t)
are independent.

We denote the set of measurements at time t with y(t) = {yi(t)}m(t)
i=1 , yi(t) ∈ Rk. We

assume each can be represented by some fixed dimensionality descriptor, φ : Rk → Rl; (y)→
φ(y). In classical filtering, the measurements are a known function of the state, y(t) =
h(x(t)) + n(t), up to the measurement noise, n(t), that is a realization of a stochastic
process that is often assumed to be temporally independent and identically distributed,
and also independent of ν(t). In our case, however, the components of the measurement
process y1(t), . . . , ym(t)(t) are divided into two groups: those that behave like standard
measurements in a filtering process, and those that do not.

This distinction is made by an indicator variable χ(t) ∈ {−1, 1}m(t) of the same dimension-
ality as the number of measurements, whose values are unknown, and can change over time.
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For brevity of notation we denote the two sets of indexes as χ(t)+ = {i | χi(t) = 1} and
χ(t)− = {i | χi(t) = −1}. For the first set we have that {yi(t)}i∈χ(t)+ = h(x(t), t)+n(t), just
like in classical filtering, except that the measurement model h(·, t) is time-varying in a way
that includes singular perturbations, since the number of measurements changes over time,
so the function h : Rn × R → Rm(t); (x, t) 7→ h(x, t) changes dimension over time. For the
second group, unlike particle filtering, we do not care to model their states, and instead just
discount them as outliers. The measurements are thus samples from a stochastic process
that includes two independent sources of uncertainty: the measurement noise, n(t), and the
selection process χ(t).

Our goal is that of determining a point-estimate of the state x(t) given measurements up
to time t. This will be some statistic (the mean, median, mode, etc.) of the conditional
density p(x(t)|{y(k)}tk=1), where the process χ(t) has to be marginalized.

In order to design a filter, we first consider the full forward model of how the various
samples of the inlier measurements are generated. To this end, we assume that the inlier
set is separable from the outlier set by a hyper-plane in some feature space, represented
by the normal vector w(t) ∈ Rl. So, given the assignment of inliers and outliers χ(t), we
have that the new maximal-margin boundary can be obtained from w(t − 1) by several
iterations of a stochastic subgradient descent procedure [19], which for brevity we denote as
w(t) = stochSubgradIters(w(t−1), y(t), χ(t)) and describe in Sec. 2 and Sec. 2.2. Conversely,
if we are given the hyperplane w(t), and state x(t), the measurements can be classified via
χ(t) = argminχE(y(t), w(t), x(t), χ). The energy function, E(y(t), w(t), x(t), χ) depends on
how one chooses to model the object and what side information is applied to constrain the
selection of training data. In the implementation details we give examples of how appearance
continuity can be used as a constraint in this step. Further, motion similarity and occlusion
boundaries could also be used.

Finally, the forward (data-formation) model for a sample (realization) of the measurement
process is given as follows: At time t = 0, we will assume that we have available an initial
distribution p(x0) together with an initial assignment of inliers and outliers χ0, so x(0) ∼
p(x0); χ(0) = χ0. Given χ(0), we bootstrap our classifier by minimizing a standard

support vector machine cost function: w(1) = argminw(λ2 ||w||
2 + 1

m(0)

∑m(0)
i=1 max(0, 1 −

χi(0))〈w, φ(yi(0))〉), where λ ∈ R is the tradeoff between the importance of margin size
versus loss. At all subsequent times t, each realization evolves according to:

x(t+ 1) = f(x(t)) + v(t),

w(t+ 1) = stochSubgradIters(w(t), y(t), χ(t)),

χ(t) = argminχE(y(t), w(t), x(t), χ),

{yi(t)}i∈χ(t)+ = h(x(t), t) + n(t).

(1)

where the first two equations can be thought of as the “model equations” and the last two
as the “measurement equations.” The presence of χ0 makes this a semi-supervised learning
problem, where χ0 is the “training set” for the process χ(t). Note that it is possible for the
model above to proceed in open-loop, when no inliers are present.

The model (1) can easily be extended to the case when the measurement equation is in
implicit form, h(x(t), {yi(t)}i∈χ(t)+ , t) = n(t), since all that matters is the innovation pro-
cess e(t)

.
= h({yi(t)}i∈χ(t)+ , x̂(t), t). Additional extensions can be entertained where the

dynamics f depends on the classifier w, so that x(t+ 1) = f(x(t), w(t)) +v(t), and similarly
for the measurement equation h(x(t), w(t), t), although we will not consider them here.

1.3 Application example: Visual tracking with shape and appearance changes

Objects of interest (e.g. humans, cars) move in ways that result in a deformation of their
projection onto the image plane, even when the object is rigid. Further changes of ap-
pearance occur due to motion relative to the light source and partial occlusions. Because
of the ambiguities in shape and appearance, one can fix one factor and model the other.
For instance, one can fix a bounding box (shape) and model change of appearance inside,
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including outliers (due to occlusion) and inliers (newly visible portions of the object). Al-
ternatively, one can enforce constancy of the reflectance function, but then shape changes
as well as illumination must be modeled explicitly, which is complex [12].

Our approach tracks the motion of a bounding box, enclosing the data inliers. Call c(t) ∈ R2

the center of this bounding box, vc(t) ∈ R2 the velocity of the center, d(t) ∈ R2 the
length of the sides of the bounding box, and vd(t) ∈ R2 its rate of change. Thus, we have
x(t) = [c(t), vc(t), d(t), vd(t)]

T . As before χ(t) indicates a binary labeling of the measurement
components, where χ(t)+ is the set of samples that correspond to the object of interest. We
have tested different versions of our framework where the components are superpixels as
well as trajectories of feature points. For reasons of space limitation, below we describe the
case of superpixels, and report results for trajectories as supplementary material.

Consider a time-varying image I(t) : D ⊂ R2 → R+; (u, v) 7→ I(u, v, t): superpixels {Si}
are just a partition of the domain D = ∪ri=1Si with Si ∩ Sj = δij ; χ(t) becomes a binary
labeling of the superpixels, with χ(t)+ collecting the indices of elements on the object of
interest, and χ(t)− on the background.

The measurement equation is obtained as the centroid and diameter of the restriction of the
bounding box to the domain of the inlier super-pixels: If y(t) = I(t) ∈ RN×M is an image,
then h1({I(u, v, t)}(u,v)∈Si

) ∈ R2 is the centroid of the superpixels {Si}i∈χ(t)+ computed

from I(t), and h2({I(u, v, t)}(u,v)∈Si
) ∈ R2 is the diameter of the same region. This is in

the form (1), with h constant (the time dependency is only through y(t) and χ(t)). The
resulting model is: 

x(t+ 1) = Fx(t) + ν(t)

w(t+ 1) = stochSubgradIters(w(t), y(t), χ(t))

χ(t) = argminχE(y(t), w(t), x(t), χ)

h(yi(t)i∈χ(t)+) = Cx(t) + n(t)

(2)

where F ∈ R8×8 is block-diagonal with each 4×4 block given by

[
I I
0 I

]
, C ∈ R4×8, C =[

I 0 0 0
0 0 I 0

]
, and I is the 2× 2 identity matrix. Similarly, ν(t)

IID∼ N (0, Q), Q ∈ R8×8

and n(t)
IID∼ N (0, R), R ∈ R4×4.

2 Algorithm development

We focus our discussion in this section on the development of the discriminative appearance
model at the heart of the inlier/outlier classification, w(t). For simplicity, pretend for now
that each frame contains m observations.We assume an object is identified with a subset of
the observations (inliers); at time t, we have {yi(t)}i∈χ(t)+ . Also pretend that observations

from all frames, Y = {y(t)}Nf

t=1, were available simultaneously; Nf is the number of frames
in the video sequence. If all frames were labeled, (χ(t) known ∀ t), a maximum margin
classifier ŵ could be obtained by minimizing the objective (3) over all samples in all frames:

ŵ = argmin
w

λ
2
||w||2 +

1

mNf

Nf∑
t=1

m∑
i=1

`(w, φ(yi(t)), χi(t))

 . (3)

where λ ∈ R, and `(w, φ(yi(t)), χi(t)) is a loss that ensures data fit. We use the hinge loss
`(w, φ(yi(t)), χi(t)) = max(0, 1−χi(t)〈w, φ(yi(t))〉) in which slack is implicit, so we can use
an efficient sequential optimization in the primal form.

In reality an exact label assignment at every frame is not available, so we must infer the latent
labeling χ simultaneously while learning the hyperplane w. Continuing our hypothetical
batch processing scenario, pretend we have estimates of some state of the object throughout

time, X̂ = {x̂(t)}Nf

t=1. This allows us to identify a reduced subset of candidate inliers
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(in MIL terminology a positive bag), within which we assume all inliers are contained. The
specification of a positive bag helps reduce the search space, since we can assume all samples
outside of a positive bag are negative. This changes the SVM formulation to a mixed integer
program similar to the mi-SVM [2], except that [2] assumed a positive/negative bag partition
was given, whereas we use the estimated state and add a term to the decision boundary
cost function to express the dependence between the labeling, χ(t), and state estimate, x̂,
at each time:

ŵ, χ̂ = argmin
w,χ

λ
2
||w||2 +

1

mNf

Nf∑
t=1

(
m∑
i=1

max (0, 1− χi(t)〈w, φ(yi(t))〉) + E (y(t), χ, x̂(t))

) .

(4)
Here E(y(t), χ(t), x̂(t)) represents a general mechanism to enforce constraints on label assign-
ment on a per-frame basis within a temporal sequence.2 A standard optimization procedure
alternates between updating the decision boundary w, subject to an estimated labeling χ̂,
followed by relabeling the original data to satisfy the positive bag constraints generated
from the state estimates, x̂, while keeping w fixed:ŵ = argminw

(
λ
2 ||w||

2 + 1
mNf

∑Nf

t=1

∑m
i=1 max(0, 1− χ̂i(t)〈w, φ(yi(t))〉)

)
,

χ̂ = argminχ
1

mNf

∑Nf

t=1 (
∑m
i=1 max(0, 1− χi(t)〈ŵ, φ(yi(t))〉) + E(y(t), χ(t), x̂(t))) .

(5)
In practice, annotation is available only in the first frame, and the data must be processed
causally and sequentially. Recently, [19] proposed an efficient incremental scheme, PEGA-
SOS, to solve the hinge loss objective in the primal form. This enables straightforward
incremental training of w as new data becomes available. The algorithm operates on a
training set consisting of tuples of labeled descriptors: T = {(φ(yi), χi)}mi=1}. In a nutshell,
at each PEGASOS iteration we select a subset of training samples from the current train-
ing set Aj ⊆ T , and update w according to wj+1 = wj − ηj5j . The subgradient of the
hinge loss is given by 5j = λwj − 1

|Aj |
∑
i∈Aj

χiφ(yi). To finalize the update and accelerate

convergence wj+1 is projected onto the set {w : ||w|| ≤ 1√
λ
}, which [19] show is the space

containing the optimal solution.

The second objective of Eq. (5) seeks a solution to the binary integer program of inlier
selection given ŵ and x̂. Instead of tackling this NP-hard problem, we re-interpret it as a
constraint enforcement step based on additional cues within a search area specified by our the
current state estimate. One example constraint for a superpixel based object representation
is to re-interpret the given objective as a graph cut problem, with pairwise terms enforcing
appearance consistency. See supplementary material for details, as well as for experiments
with other choices of constraints for tracks, rather than superpixels.

2.1 Initialization
At t = 0 we are given initial observations y(0) and a bounding box indicating the object of
interest {c(0)± d(0)}. We initialize χ(0) with positive indices corresponding to superpixels
that have a majority of their area |yi(0)| within the bounding box:

χi(0) =

{
1 if |{c(0)±d(0)} ∩ yi(0)|

|yi(0)| > εy,

−1 otherwise.
(6)

The area threshold is εy = 0.7 throughout all experiments. This represents a bootstrap
training set, T1 from which we learn an initial classifier w(1) for distinguishing object ap-
pearance. Each element of the training set is a triplet (φ(yi(t)), χi(t), τi = t), where the
last element is the time at which the feature is added to the training set. We start by
selecting all positive samples and a set number of negatives, nf , sampled randomly from
χ(0)−, giving T1 = {(φ(yi(0)), χi(0), 0)}∀i∈χ(0)+ ∪ {(φ(yj(0)), χj(0), 0) | j ∈ χ(0)−rand ⊆
χ(0)−, |χ(0)−rand| = nf}.

2It represents the side information necessary to avoid zero information gain in the semi-
supervised inference procedure.
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2.2 Prediction Step

At time t, given the current estimate of the object state and classification χ(t), we add all
positive samples and difficult negative samples lying outside of the estimated bounding box
to the new training set Tt+1|t. We then propagate the object state with the model of motion
dynamics and finally update the decision boundary with the newly updated training set.

x̂(t+ 1|t) = Fx̂(t|t)
P (t+ 1|t) = FP (t|t)FT +Q

Tt+1 = Tt+1,old ∪ Tt+1,new

Tt+1,old = {(φ(yi), χi, τi) | χi〈φ(yi), w(t)〉 < 1, t− τi ≤ τmax}
Tt+1,new = {(φ(yi(t)), χi(t), t) | χi(t) = 1} ∪

{(φ(yi(t)),−1, t) | |D/{ĉ(t|t)±d̂(t|t)} ∩ yi(t)|
|yi(t)| ≥ 1− εy, 〈φ(yi(t)), w(t)〉 > −1}

w(t+ 1) ← for j = nT , ..., N (update starting with wnT
= w(t))

choose Aj ⊆ Tt+1

nj = 1
λj

wj+1 = (1− ηjλ)wj +
ηj
|Aj |

∑
i∈Aj

χi(t)φ(yi(t))

wj+1 = min{1, 1/
√
λ

||wj+1||}wj+1

end
(7)

It is typically not necessary to update w at every step, so training data can be collected
over several frames during which w(t + 1) = w(t) and the update above can be invoked
either at some regular interval, on demand, or upon some form of model validation as
in [13]. The parameter τmax determines memory of the classifier update procedure for
difficult examples. If τmax = 0, no memory is used and training data for model update
consists only of observations from the current image. Such a memory of recent training
samples is analogous to the training cache used in [8] for training the latentSVM model.
During each classifier update we perform N − nT iterations of the stochastic subgradient
descent algorithm, starting from the current best estimate of the separating hyperplane
wnT

= w(t). The overall number of iterations N is set as N = 20/λ, where λ is a function
of the bootstrap training set size, λ = 1/(10|T1|). The number in the denominator is used
as a parameter to set the relative importance of the margin size and the loss, but we fix
it at 10 for our experiments. The number of iterations at a new time is then decided by
nT = max(1−|Tt|/N, 0.75) in order to limit how much the hyperplane can change in a single
update. These parameters can also be viewed as tuning the learning rates and forgetting
factors of the classifier.

2.3 Update Step

The innovation is in implicit form with h(yi(t+ 1)i∈χ(t+1)+) ∈ R4 giving a tight bounding

box around the selected foreground regions in the same form as they appear in the state.
In the update equations r specifies the size of the search region around the predicted state
within which we consider observations as candidates for foreground; ξ specifies the indices
of candidate observations (positive bag).



r = λr(
[
I 0

]
diag(CP (t+ 1|t)CT ) +

[
0 I

]
diag(CP (t+ 1|t)CT ),

ξ = {i | |{c(t+1|t)±(d(t+1|t)+r)} ∩ yi(t+1)|
|yi(t+1)| > Ey},

χ(t+ 1) = argminχ∈{−1,1}m E(w(t+ 1), {yi(t+ 1)}i∈ξ, x̂(t+ 1|t), χ)

e(t+ 1) = h(yi(t+ 1)i∈χ(t+1)+)− Cx̂(t+ 1|t)
L = Pt+1|tC

T (CPt+1|tC
T +R)−1

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + Le(t+ 1)

P (t+ 1|t+ 1) = (I − LC)P (t+ 1|t)(I − LC)T + LRLT .

(8)
Above λr ∈ R is a factor (we fix it at 3) for scaling the region size based on filter covariance.
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Figure 1: Ski sequence: Left panel shows frame number, search area (black rectangle), filter
prediction (blue), observation (red), and updated filter estimate (green). The center panels overlay
the SVM scores for each region (solid blue = −1, solid red = 1). Right panels show the regions
selected as inliers. This challenging sequence includes viewpoint and scale changes, deformation,
changing background. The algorithm performs well and successfully recovers from missed detection
(from frame 349 to 352 shown above).

Figure 2: P-N tracker [13] (above) and MILTrack [4] (below) initialized with the same bounding box
as our approach. Original implementations by the respective authors were used for this comparison.
The P-N tracker fails because of the absence of stable low-level tracks on the target and quickly
locks onto a patch of trees in the background. MILTrack survives longer but does not adapt scale
quickly enough, eventually drifting to become a detector of the tree line.

3 Experiments

To compare with [18, 4, 13], we first evaluate our discriminative model without maintaining
any training data history τmax = 0 and updating w every 6 frames, with training data
collected between incremental updates. Even with τmax = 0 we can track highly deforming
objects (a skier) with significant scale changes through most of the 1496 frames (Fig. 1).
We also recover from errors due to the implicit memory in the decision boundary from
incremental updating. For comparison, [4, 13] quickly drift and fail to recover (Fig. 2).

For a quantitative comparison we test our full algorithm against the state of the art on
the PROST dataset [18] consisting of 4 videos with fast motion, occlusions, scale changes,
translucency, and small background motions. In all experiments τmax = 25, and all other
parameters were fixed as described earlier and in supplementary material. Two evaluation
metrics are reported: the mean center location error in pixels [4], and percentage of correctly

tracked frames as computed by the bounding box overlap criteria area(ROID∩ROIGT )
area(ROID∪ROIGT ) > 0.5,
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Figure 3: Convergence of the classifier: Samples from frames 113, 125, 733, and 1435 of the “liquor”
sequence. The leftmost image shows the probabilities returned by the initial classifier trained using
only the first frame, the second image shows the foreground probabilities returned from the current
classifier, the third image shows the foreground selection made by the graph-cut step, and the final
image shows the smoothed score used to select bounding box location.

where ROID is the detected region and ROIGT is the ground truth region. The ground
truth for the PROST dataset is reported using a constant sized bounding box. Table 1
compares to [18, 4, 1, 13].

In the liquor sequence our method correctly shrinks the bounding box to the label, since the
rest of the bottle is not discriminative. Unfortunately, this is penalized in the Pascal score
since the area ratio drops below 0.5 of the initial bounding box despite perfect tracking. This
causes the score to drop to 18.9. If we modify the criterion to count as valid a detection
where > 99% of the detection area lies within the annotated ground truth region, the score
becomes 75.6%. If we allow for > 90% of the detected area to lie within the ground truth
box, the final pascal result for the liquor sequence becomes 79.1%. See Figure 3. The same
phenomenon occurs in the box sequence, where our approach adapts to tracking the label
at the bottom of the box. Note, this additional detection criteria has no effect on any other
scores. Additional results, including failure modes as well as successful tracking where other
approaches fail, are reported in the supplementary material, both for the case of superpixels
and tracks.

Overall board box lemming liquor
pascal pascal distance pascal distance pascal distance pascal distance

ours 74.7 92.1 13.7 42.9* 63.7 88.1 19.4 75.6* 42.5*
P-N [13] 37.15 12.9 139.5 36.9 99.3* 34.3 26.4* 64.5 17.4*
PROST [18] 80.4 75.0 39.0 90.6 13.0 70.5 25.1 85.4 21.5
MILTrack [4] 49.2 67.9 51.2 24.5 104.6 83.6 14.9 20.6 165.1
FragTrack [1] 66.0 67.9 90.1 61.4 57.4 54.9 82.8 79.9 30.7

Table 1: Comparison with recent methods on the PROST dataset. Best scores for each sequence
and metric are shown in bold. Our method and the P-N tracker [13] do not always detect the
object. Ground truthed frames in which no location was reported by the method of [13] were not
counted into the final distance score. The method of [13] missed 2 detections on the box sequence,
1 detection on the lemming sequence, and 80 on the liquor sequence. When our approach failed to
detect the object, we used the predicted bounding box from the state of the filter as our reported
result.

4 Discussion

We have proposed an approach to robust filtering embedding a multiple instance learn-
ing SVM within a filtering framework, and iteratively performing regression (filtering) and
classification (inlier selection) in hope of reaching an approximate estimate of the domi-
nant mode of the posterior for the case where other modes are due to outlier processes in
the measurements. We emphasize that our approach comes with no provable properties or
guarantees, other than for the trivial case when the dynamics are linear, the inlier-outlier
sets are linearly separable, the noises are Gaussian, zero-mean, IID white and independent
with known covariance, and when the initial inlier set is known to include all inliers but is
not necessarily pure. In this case, the method proposed converges to the conditional mean
of the posterior p(x(t)|{y(k)}tk=1). However, we have provided empirical validation of our
approach on challenging visual tracking problems, where it exceeds the state of the art, and
illustrated some of its failure modes.
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