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Abstract

We are motivated by an application to extract a representative subset of machine
learning training data and by the poor empirical performance we observe of the
popular minimum norm algorithm. In fact, for our application, minimum norm can
have a running time of about O(n7) (O(n5) oracle calls). We therefore propose
a fast approximate method to minimize arbitrary submodular functions. For a
large sub-class of submodular functions, the algorithm is exact. Other submodular
functions are iteratively approximated by tight submodular upper bounds, and then
repeatedly optimized. We show theoretical properties, and empirical results suggest
significant speedups over minimum norm while retaining higher accuracies.

1 Introduction

Submodularity has been and continues to be an important property in many fields. A set function
f : 2V → R defined on subsets of a finite ground set V is submodular if it satisfies the inequality
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ V . Submodular functions include entropy,
graph cuts (defined as a function of graph nodes), potentials in many Markov Random Fields
[3], clustering objectives [23],covering functions (e.g., sensor placement objectives), and many
more. One might consider submodular functions as being on the boundary between “efficiently”,
i.e., polynomial-time, and “not efficiently” optimizable set functions. Submodularity is gaining
importance in machine learning too, but many machine learning data sets are so large that mere
“polynomial-time” efficiency is not enough. Indeed, the submodular function minimization (SFM)
algorithms with proven polynomial running time are practical only for very small data sets. An
alternative, often considered to be faster in practice, is the minimum-norm point algorithm [7]. Its
worst-case running time however is still an open question.

Contrary to current wisdom, we demonstrate that for certain functions relevant in practice (see
Section 1.1), the minimum-norm algorithm has an impractical empirical running time of about
O(n7), requiring about O(n5) oracle function calls. To our knowledge, and interesting from an
optimization perspective, this is worse than any results reported in the literature, where times of
O(n3.3) were obtained with simpler graph cut functions [22].

Since we found the minimum-norm algorithm to be either slow (when accurate), or inaccurate (when
fast), in this work we take a different approach. We view the SFM problem as an instance of a larger
class of problems that includes NP-hard instances. This class admits approximation algorithms, and
we apply those instead of an exact method. Contrary to the possibly poor performance of “exact”
methods, our approximate method is fast, is exact for a large class of submodular functions, and
approximates all other functions with bounded deviation.

Our approach combines two ingredients: 1) the representation of functions by graphs; and 2) a recent
generalization of graph cuts that combines edge-costs non-linearly. Representing functions as graph
cuts is a popular basis for optimization, but cuts cannot efficiently represent all submodular functions.
Contrary to previous constructions, including 2) leads to exact representations for any submodular
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function. To optimize an arbitrary submodular function f represented in our formalism, we construct
a graph-representable tractable submodular upper bound f̂ that is tight at a given set T ⊆ V , i.e.,
f̂(T ) = f(T ), and f̂(S) ≥ f(S) for all S ⊆ V . We repeat this “submodular majorization” step and
optimize, in at most a linear number of iterations. The resulting algorithm efficiently computes good
approximate solutions for our motivating application and other difficult functions as well.

1.1 Motivating application and the failure of the minimum-norm point algorithm

Our motivating problem is how to empirically evaluate new or expensive algorithms on large data sets
without spending an inordinate amount of time doing so [20, 21]. If a new idea ends up performing
poorly, knowing this sooner will avoid futile work. Often the complexity of a training iteration is
linear in the number of samples n but polynomial in the number c of classes or types. For example,
for object recognition, it typically takes O(ck) time to segment an image into regions that each
correspond to one of c objects, using an MRF with non-submodular k-interaction potential functions.
In speech recognition, moreover, a k-gram language model with size-c vocabulary has a complexity
of O(ck), where c is in the hundreds of thousands and k can be as large as six.

To reduce complexity one can reduce k, but this can be unsatisfactory since the novelty of the
algorithm might entail this very cost. An alternative is to extract and use a subset of the training data,
one with small c. We would want any such subset to possess the richness and intricacy of the original
data while simultaneously ensuring that c is bounded.

This problem can be solved via SFM using the following Bipartite neighborhoods class of submodular
functions: Define a bipartite graphH = (V,U , E , w) with left/right nodes V /U , and a modular weight
function w : U → R+. A function is modular if w(U) =

∑
u∈U w(u). Let the neighborhood of a

set S ⊆ V be N (S) = {u ∈ U : ∃ edge (i, u) ∈ E with i ∈ S}. Then f : 2V → R+, defined as
f(S) =

∑
u∈N (S) w(u), is non-decreasing submodular. This function class encompasses e.g. set

covers of the form f(S) = |
⋃
i∈S Ui| for sets Ui covered by element i. We say f is the submodular

function induced by modular function w and graphH.
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Figure 1: Running time of MN

Let U be the set of types in a set of training samples V . More-
over, let w measure the cost of a type u ∈ U (this corresponds
e.g. to the “undesirability” of type u). Define also a modular
function m : 2V → R+, m(S) =

∑
i∈Sm(i) as the benefit

of training samples (e.g., in vision, m(i) is the number of dif-
ferent objects in an image i ∈ V , and in speech, this is the
length of utterance i). Then the above optimization problem
can be solved by finding argminS⊆V w(N (S)) − λm(S) =
argminS⊆V w(N (S))+λm(V\S) where λ is a tradeoff coeffi-
cient. As shown below, this can be easily represented and solved
efficiently via graph cuts. In some cases, however, we prefer to
pick certain subclasses of U together. We partition U = U1∪U2
into blocks, and make it beneficial to pick items from the same block. Benefit restricted to blocks can
arise from non-negative non-decreasing submodular functions g : 2U → R+ restricted to blocks. The
resulting optimization problem is minS⊆V

∑
i g(Ui ∩N (S))+λm(V \S); the sum over i expresses

the obvious generalization to a partition into more than just two blocks. Unfortunately, this class of
submodular functions is no longer representable by a bipartite graph, and general SFM must be used.

With such a function, f(S) = m(S) + 100
√
w(N (S)), the empirical running time of the minimum

norm point algorithm (MN) scales as O(n7), with O(n5) oracle calls (Figure 1). This rules out large
data sets for our application, but is interesting with regard to the unknown complexity of MN.

1.2 Background on Algorithms for submodular function minimization (SFM)

The first polynomial algorithm for SFM was by Grötschel et al. [13], with further milestones being the
first combinatorial algorithms [15, 27] ([22] contains a survey). The currently fastest strongly polyno-
mial combinatorial algorithm has a running time ofO(n5T+n6) [24] (where T is function evaluation
time), far from practical. Thus, the minimum-norm algorithm [7] is often the method of choice.
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Luckily, many sub-families of submodular functions permit specialized, faster algorithms. Graph
cut functions fall into this category [1]. They have found numerous applications in computer vision
[2, 12], begging the question as to which functions can be represented and minimized using graph
cuts [9, 6, 31]. Z̆ivný et al. [32] show that cut representations are indeed limited: even when allowing
exponentially many additional variables, not all submodular functions can be expressed as graph cuts.
Moreover, to maintain efficiency, we do not wish to add too many auxiliary variables, i.e., graph
nodes. Other specific cases of relatively efficient SFM include graphic matroids [25] and symmetric
submodular functions, minimizable in cubic time [26].

A further class of benign functions are those of the form f(S) = ψ(
∑
i∈S w(i)) + m(S) for

nonnegative weights w : V → R+, and certain concave functions ψ : R→ R. Fujishige and Iwata
[8] minimize such a function via a parametric max-flow, and we build on their results in Section 4.
However, restrictions apply to the effective number of breakpoints of ψ. Stobbe and Krause [29]
generalize this class to arbitrary concave functions and exploit Nesterov’s accelerated gradient descent.
Whereas Fujishige and Iwata [8] decompose ψ as a minimum of modular functions, Stobbe and
Krause [29] decompose it into a sum of truncated functions of the form f(A) = min{

∑
i∈A w

′(i), γ}
— this class of functions, however, is also limited. Truncations are expressible by graph cuts, as we
show in Figure 3(b). Thus, if truncations could express any submodular function, then so could
graph cuts, contradicting the results in [32]. This was proven independently in [30]. Moreover, the
formulation itself of some representable functions in terms of concave functions can be challenging.

In this paper, by contrast, we propose a model that is exact for graph-representable functions, and
yields an approximation for all other functions.

2 Representing submodular functions by generalized graph cuts
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We begin with the representation of a set function f : 2V → R by a graph
cut, and then extend this to submodular edge weights. Formally, f is
graph-representable if there exists a graph G = (V ∪ U ∪ {s, t}, E) with
terminal nodes s, t, one node for each element i in V , a set U of auxiliary nodes
(U can be empty), and edge weights w : E → R+ such that, for any S ⊆ V:

f(S) = min
U⊆U

w(δ(s ∪ S ∪ U)) = min
U⊆U

∑
e∈δs(S∪U)

w(e). (1)

δ(S) is the set of edges leaving S, and δs(S) = δ({s} ∪ S). Recall that any minimal (s, t)-cut
partitions the graph nodes into the set Ts ⊆ V∪U reachable from s and the set Tt = (V∪U)\Ts discon-
nected from s. That means, f(S) equals the weight of the minimum (s, t)-cut that assigns S to Ts and
V \S to Tt, and the auxiliary nodes to achieve the minimum. The nodes in U act as auxiliary variables.
As an illustrative example, Figure 2 represents the function f(S) = maxi∈S w(i) +

∑
j∈V\Sm(j)

for two elements V = {1, 2} and w(2) > w(1), using one auxiliary node u. For any query set S, u
might be joined with S (u ∈ Ts) or not (u ∈ Tt). If S = {1}, then w(δs({1, u})) = m(2) + w(2),
and w(δs({1})) = m(2) + w(1) = f(S) < w(δs({1, u})). If S = {1, 2}, then w(δs({1, 2, u})) =
w(2) < w(δs({1, 2})) = w(1)+w(2), and indeed f(S) = w(2). The graph representation (1) leads
to the equivalence between minimum cuts and the minimizers of f :
Lemma 1. Let S∗ be a minimizer of f , and let U∗ ∈ argminU⊆U w(δs(S

∗∪U)). Then the boundary
δs(S

∗ ∪ U∗) ⊆ E is a minimum cut in G.

The lemma (proven in [18]) is good news since minimum cuts can be computed efficiently. To derive
S∗ from a minimum cut, recall that any minimum cut is the boundary of some set T ∗s ⊆ V ∪ U that
is still reachable from s after cutting. Then S∗ = T ∗s ∩ V , so S∗ ⊆ T ∗s and (V \ S∗) ⊆ T ∗t . A large
sub-family of submodular functions can be expressed exactly in the form (1), but possibly with an
exponentially large U . For efficiency, the size of U should remain small. To express any submodular
function with few auxiliary nodes, in this paper we extend Equation (1) as is seen below.

Unless the submodular function f is already a graph cut function (and directly representable), we first
decompose f into a modular function and a nondecreasing submodular function, and then build up
the graph part by part. This accounts for any graph-representable component of f . To approximate
the remaining component of the function that is not exactly representable, we use submodular costs
on graph edges (in contrast with graph nodes), a construction that has been introduced recently in
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Figure 3: Example graph constructions. Dashed blue edges can have submodular weights; aux-
iliary nodes are white and ground set nodes are shaded. The bipartite graph can have arbitrary
representations between U and t, 3(e) is one example. (All figures are best viewed in color.)

computer vision [16]. We first introduce a relevant decomposition result by Cunningham [4]. A
polymatroid rank function is totally normalized if f(V \ i) = f(V) for all i ∈ V . The marginal costs
are defined as ρf (i|S) = f(S ∪ {i})− f(S) for all i ∈ V \ S.

Theorem 1 ([4, Thm. 18]). Any submodular function f can be decomposed as f(S) = m(S)+ g(S)
into a modular function m and a totally normalized polymatroid rank function g. The components
are defined as m(S) =

∑
i∈A ρf (i|V \ i) and g(S) = f(S)−m(S) for all S ⊆ V .

We may assume that m(i) < 0 for all i ∈ V . If m(i) ≥ 0 for any i ∈ V , then diminishing marginal
costs, a property of submodular functions, imply that we can discard element i immediately [5, 18].
To express such negative costs in a graph cut, we point out an equivalent formulation with positive
weights: since m(V) is constant, minimizing m(S) =

∑
i∈Sm(i) is equivalent to minimizing the

shifted function m(S) − m(V) = −m(V \ S). Thus, we instead minimize the sum of positive
weights on the complement of the solution. We implement this shifted function in the graph by adding
an edge (s, i) with nonnegative weight−m(i) for each i ∈ V . Every element j ∈ Tt (i.e., j /∈ S) that
is not selected must be separated from s, and the edge (s, j) contributes −m(j) to the total cut cost.

Having constructed the modular part of the function f by edges (s, i) for all i ∈ V , we address
its submodular part g. If g is a sum of functions, we can add a subgraph for each function. We
begin with some example functions that are explicitly graph-representable with polynomially many
auxiliary nodes U . The illustrations in Figure 3 include the modular part m as well.

Maximum. The function g(S) = maxi∈S w(i) for nonnegative weights w is an extension of
Figure 2. Without loss of generality, we assume the elements to be ordered by weight, so that
w(1) ≤ w(2) ≤ . . . w(n). We introduce n−1 auxiliary nodes uj , and connect them to form an imbal-
anced tree with leaves V , as illustrated in Figure 3(a). The minimum way to disconnect a set S from
t is to cut the single edge (uj−1, uj) with weight w(j) of the largest element j = argmaxi∈S w(i).

Truncations. Truncated functions f(S) = min{w(S), γ} for w, γ ≥ 0 can be modeled by one
extra variable, as shown in Figure 3(b). If w(S) > γ, then the minimization in (1) puts u in
Ts and cuts the γ-edge. This construction has been successfully used in computer vision [19].
Truncations can model piecewise linear concave functions of w(S) [19, 29], and also represent
negative terms in a pseudo-boolean polynomial [18]. Furthermore, these functions include rank
functions g(S) = min{|S|, k} of uniform matroids, and rank functions of partition matroids. If V
is partitioned into groups G ⊂ V , then the rank of the associated partition matroid counts the number
of groups that S intersects: f(S) = |{G|G ∩ S 6= ∅}| (Fig. 3(c)).

Bipartite neighborhoods. We already encountered bipartite submodular functions f(S) =∑
u∈N (S) w(u) in Section 1.1. The bipartite graph that defines N (S) is part of the representa-
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tion shown in Figure 3(d), and its edges get infinite weight. As a result, if S ∈ Ts, then all neighbors
N (S) of S must also be in Ts, and the edges (u, t) for all u ∈ N (S) are cut. Each u ∈ U has such
an edge (u, t), and the weight of that edge is the weight w(u) of u.

Additional examples are given in [18].

Of course, all the above constructions can also be applied to subsets Q ⊂ V of nodes. In fact, the
decomposition and constructions above permit us to address arbitrary sums and restrictions of such
graph-representable functions. These example families of functions already cover a wide variety of
functions needed in applications. Minimizing a graph-represented function is equivalent to finding
the minimum (s, t)-cut, and all edge weights in the above are nonnegative. Thus we can use any
efficient min-cut or max-flow algorithm for any of the above functions.

2.1 Submodular edge weights

Next we address the generic case of a submodular function that is not (efficiently) graph-representable
or whose functional form is unknown. We can still decompose this function into a modular part m
and a polymatroid g. Then we construct a simple graph as shown in Figure 3(f). The representation
of m is the same as above, but the cost of the edges (i, t) will be charged differently. Instead of
a sum of weights, we define the cost of a set of these edges to be a non-additive function on sets
of edges, a polymatroid rank function. Each edge (i, t) is associated with exactly one ground set
element i ∈ V , and selecting i (i ∈ Ts) is equivalent to cutting the edge (i, t). Thus, the cost of edge
(i, t) will model the cost g(i) of its element i ∈ V . Let Et be the set of such edges (i, t), and denote,
for any subset C ⊆ Et the set of ground set elements adjacent to C by V (C) = {i ∈ V|(i, t) ∈ C}.
Equivalently, C is the boundary of V (C) in Et: δs(V (C)) ∩ Et = C. We define the cost of C to be
the cost of its adjacent ground set elements, hg(C) , g(V (C)); this implies hg(δs(S ∩ Et)) = g(S).
The equivalent of Equation (1) becomes

f(S) = min
U⊆U

w(δs(S ∪ U) \ Et) + hg(δs(S ∪ U) ∩ Et) = −m(V \ S) + g(S), (2)

with U = ∅ in Figure 3(f). This generalization from the standard sum of edge weights to a nondecreas-
ing submodular function permits us to express many more functions, in fact any submodular function
[5]. Such expressiveness comes at a price, however: in general, finding a minimum (s, t)-cut with
such submodular edge weights is NP-hard, and even hard to approximate [17]. The graphs here that
represent submodular functions correspond to benign examples that are not NP-hard. Nevertheless,
we will use an approximation algorithm that applies to all such non-additive cuts. We describe the
algorithm in Section 3. For the moment, we assume that we can handle submodular costs on edges.

The simple construction in Figure 3(f) itself corresponds to a general submodular function mini-
mization. It becomes powerful when combined with parts of f that are explicitly representable. If g
decomposes into a sum of graph-representable functions and a (nondecreasing submodular) remainder
gr, then we construct a subgraph for each graph-representable function, and combine these subgraphs
with the submodular-edge construction for gr. All the subgraphs share the same ground set nodes V .
In addition, we are in no way restricted to separating graph-representable and general submodular
functions. The cost function in our application is a submodular function induced by a bipartite graph
H = (V,U , E). Let, as before, N (S) be the neighborhood of S ⊆ V in U . Given a nondecreasing
submodular function gU : 2U → R+ on U , the graph H defines a function g(S) = gU (N (S)). If
gU is nondecreasing submodular, then so is g [28, §44.6 g]. For any such function, we representH
explicitly in G, and then add submodular-cost edges from U to t with hg(δs(N (S))) = gU (N (S)),
as shown in Figure 3(d). If gU is itself exactly representable, then we add the appropriate subgraph
instead (Figure 3(e)).

3 Optimization

To minimize a function f , we find a minimum (s, t)-cut in its representation graph. Algorithm 1
applies to any submodular-weight cut; this algorithm is exact if the edge costs are modular (a sum of
weights). In each iteration, we approximate f by a function f̂ that is efficiently graph-representable,
and minimize f̂ instead. In this section, we switch from costs f, f̂ of node sets S, T to equivalent
costs w, h of edge sets A, B, C and back.

5



Algorithm 1: Minimizing graph-based approximations.
create the representation graph G = (V ∪ U ∪ {s, t}, E) and set S0 = T0 = ∅;
for i = 1, 2, . . . do

compute edge weights νi−1 = νδs(Ti−1) (Equation 4);
find the (maximal) minimum (s, t)-cut Ti = argminT ⊆ (V∪U) νi−1(δsT );
if f(Ti) = f(Ti−1) then

return Si = Ti ∩ V;
end

end

The approximation f̂ arises from the cut representation constructed in Section 2: we replace the
exact edge costs by approximate modular edge weights ν in G. Recall that the representation G has
two types of edges: those whose weights w are counted as the usual sum, and those charged via a
submodular function hg derived from g. We denote the latter set by Et, and the former by Em. For
any e ∈ Em, we use the exact cost ν(e) = w(e). The submodular cost hg of the remaining edges is
upper bounded by referring to a fixed set B ⊆ E that we specify later. For any A ⊆ Et, we define

ĥB(A) , hg(B) +
∑

e∈A\B

ρh(e|B ∩ Et)−
∑

e∈B\A

ρh(e|Et \ e) ≥ hg(A). (3)

This inequality holds thanks to diminishing marginal costs, and the approximation is tight at B,
ĥB(B) = hg(B). Up to a constant shift, this function is equivalent [16] to the edge weights:

νB(e) = ρh(e|B ∩ Et) if e ∈ Et \B; and νB(e) = ρh(e|Et \ e) if e ∈ B ∩ Et. (4)

Plugging νB into Equation (2) yields an approximation f̂ of f . In the algorithm, B is always the
boundary B = δs(T ) of a set T ⊆ (V ∪ U). Then G with weights νB represents

f̂(S) = min
U⊆U

νB(δs(S ∪ U) ∩ Em) + νB(δs(S ∪ U) ∩ Et)

= min
U⊆U

w(δs(S ∪ U) ∩ Em) +
∑

(u,t)∈δs(S∪U)∩B

ρg(u|V ∪ U \ u) +
∑

(u,t)∈δs(S∪U)\B

ρg(u|T ).

Here, we used the definition hg(C) , g(V (C)). Importantly, the edge weights νB are always
nonnegative, because, by Theorem 1, g is guaranteed to be nondecreasing. Hence, we can efficiently
minimize f̂ as a standard minimum cut. If in Algorithm 1 there is more than one set T defining a
minimum cut, then we pick the largest (i.e., maximal) such set. Lemma 2 states properties of the Ti.
Lemma 2. Assume G is any of the graphs in Figure 3, and let T ∗ ⊆ V∪U be the maximal set defining
a minimum-cost cut δs(T ∗) in G, so that S∗ = T ∗ ∩ V is a minimizer of the function represented by
G. Then, in any iteration i of Algorithm 1, it holds that Ti−1 ⊆ Ti ⊆ T ∗. In particular, S ⊆ S∗ for
the returned solution S.

Lemma 2 has three important implications. First, the algorithm never picks any element outside the
maximal optimal solution. Second, because the Ti are growing, there are at most |T ∗| ≤ |V ∪ U|
iterations, and the algorithm is strongly polynomial. Finally, the chain property permits more efficient
implementations. The proof of Lemma 2 relies on the definition of ν and submodularity [18].
Moreover, the weights ν lead to a bound the worst-case approximation factor [18].

3.1 Improvement via summarizations

The approximation f̂ is loosest if the sum of edge weights νi(A) significantly overestimates the true
joint cost hg(A) of sets of edges A ⊆ δsT ∗ \ δsTi still to be cut. This happens if the joint marginal
cost ρh(A|δsTi) is much smaller than the estimated sum of weights, νi(A) =

∑
e∈A ρh(e|δsTi).

Luckily, many of the functions that show this behavior strongly resemble truncations. Thus, to tighten
the approximation, we summarize the joint cost of groups of edges by a construction similar to
Figure 3(b). Then the algorithm can take larger steps and pick groups of elements.

We partition Et into disjoint groups Gk of edges (u, t). For each group, we introduce an auxiliary
node tk and re-connect all edges (u, t) ∈ Gk to end in tk instead of t. Their cost remains the
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same. An extra edge ek connects tk to t, and carries the joint weight νi(ek) of all edges in Gk;
a tighter approximation. The weight νi(ek) is also adapted in each iteration. Initially, we set
ν0(ek) = hg(Gk) = g(V (Gk)). Subsequent approximations νi refer to cuts δsTi, and such a cut can
contain either single edges from Gk, or the group edge ek. We set the next reference set Bi to be a
copy of δsTi in which each group edge ek was replaced by all its group members Gk. The joint group
weight νi(ek) for any k is then νi(ek) = ρh(Gk \Bi|Bi)+

∑
e∈Gk∩Bi

ρh(e|Et \ e) ≤
∑
e∈Gk

νi(e).
Formally, these weights represent the upper bound

ĥ′B(A) = hg(B)+
∑
Gk⊆A

ρh(Gk \B|B)+
∑

e∈(Gk∩A)\B,Gk 6⊆A

ρh(e|B)−
∑

e∈B\A

ρh(e|Et \e) ≤ ĥ(A),

where we replaceGk by ek wheneverGk ⊆ A. In our experiments, this summarization helps improve
the results while simultaneously reducing running time.

4 Parametric constructions for special cases

For certain functions of the form f(S) = m(S) + g(N (S)), the graph representation in Figure 3(d)
admits a specific algorithm. We use approximations that are exact on limited ranges, and eventually
pick the best range. For this construction, g must have the form g(U) = ψ(

∑
u∈U w̃(u)) for

weights w̃ ≥ 0 and one piecewise linear, concave function ψ with a small (polynomial) number
` of breakpoints. Alternatively, ψ can be any concave function if the weights w̃ are such that
w̃(U) =

∑
u∈U w̃(u) can take at most polynomially many distinct values xk; e.g., if w̃(u) = 1 for

all u, then effectively ` = |U|+ 1 by using the xk as breakpoints and interpolating. In all these cases,
ψ is equivalent to the minimum of at most ` linear (modular) functions.

We build on the approach in [8], but, whereas their functions are defined on V , g here is defined on U .
Contrary to their functions and owing to our decomposition, the ψ here is nondecreasing. We define `
linear functions, one for each breakpoint xk (and use x0 = 0):

ψk(t) = (ψ(xk)− ψ(xk−1))(t− xk) + ψ(xk) = αkt+ βk. (5)

The ψk are defined such that ψ(t) = mink ψk(t). Therefore, we approximate f by a series f̂k(S) =
−m(V \ S) + ψk(w̃(N (S))), and find the exact minimizer Sk for each k. To compute Sk via a
minimum cut in G (Fig. 3(d)), we define edge weights νk(e) = w(e) for edges e /∈ Et as in Section 3,
and νk(u, t) = αkw̃(u) for e ∈ Et. Then Tk = Sk ∪ N (Sk) defines a minimum cut δsTk in G. We
compute f̂k(Sk) = νk(δsTk)+βk+m(V); the optimal solution is the Sk with minimum cost f̂k(Sk).
This method is exact. To solve for all k within one max-flow, we use a parametric max-flow method
[10, 14]. Parametric max-flow usually works with both edges from s and to t. Here, νk ≥ 0 because
ψ is nondecreasing, and thus we only need t-edges which already exist in the bipartite graph G.

This method is limited to few breakpoints. For more general concave ψ and arbitrary w̃ ≥ 0, we
can approximate ψ by a piecewise linear function. Still, the parametric approach does not directly
generalize to more than one nonlinearity, e.g., g(U) =

∑
i gi(U ∩Wi) for sets Wi ⊆ U . In contrast,

Algorithm 1 (with the summarization) can handle all of these cases. We point out that without
indirection via the bipartite graph, i.e., f(S) = m(S) + ψ(w(S)) for a ψ with few breakpoints, we
can minimize f very simply: The solution for ψk includes all j ∈ V with αk ≤ −m(j)/w(j). The
advantage of the graph cut is that it easily combines with other objectives.

5 Experiments

In the experiments, we test whether the graph-based methods improve over the minimum-norm point
algorithm in the difficult cases of Section 1.1. We compare the following methods:
MN: a re-implementation of the minimum norm point algorithm in C++ that is about four times
faster than the C code in [7] (see [18]), ensuring that our results are not due to a slow implementation;
MC: a minimum cut with static edge weights ν(e) = hg(e);
GI: the graph-based iterative Algorithm 1, implemented in C++ with the max-flow code of [3], (i) by
itself; (ii) with summarization via

√
|Et| random groups (GIr); (iii) with summarization via groups

generated by sorting the edges in Et by their weights hg(e), and then forming groups Gk of edges
adjacent in the order such that for each e ∈ Gk, hg(e) ≤ 1.1hg(Gk) (GIs);
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Figure 4: (a) Running time, (b) relative and (c) absolute error with varying λ for a data set as described
in Section 1.1, |V| = 54915, |U| = 6871, and f(S) = −m(S) + λ

√
|N (S)|. Where f(S∗) = 0, we

show absolute errors. (d) Running times with respect to |V|, f(S) = −m(S) + λ
√
w(N (S)).

GP: the parametric method from Section 4, using |Et| equispaced breakpoints; based on C code
from RIOT1.

We also implemented the SLG method from [29] in C++ (public code is not available), but found
it to be impractical on the problems here, as gradient computation of our function requires finding
gradients of |U| truncation functions, which is quite expensive [18]. Thus, we did not include it in the
tests on the large graphs. We use bipartite graphs of the form described in Section 1.1, with a cost
function f(S) = m(S) + λg(N (S)). The function g uses a square root, g(U) =

√
w(U). More

results, also on other functions, can be found in [18].

Solution quality with solution size. Running time and results depend on the size of S∗. Thus, we
vary λ from 50 (S∗ ≈ V) to 9600 (S∗ = ∅) on a speech recognition data set [11]. The bipartite
graph represents a corpus subset extraction problem (Section 1.1) and has |V| = 54915, |U| = 6871
nodes, and uniform weights w(u) = 1 for all u ∈ U . The results look similar with non-uniform
weights, but for uniform weights the parametric method from Section 4 always finds the optimal
solution and thus allows us to report errors. Figure 4 shows the running times and the relative error
err(S) = |f(S)− f(S∗)|/|f(S∗)| (note that f(S∗) ≤ 0). If f(S∗) = 0, we report absolute errors.
Because of the large graph, we used the minimum-norm algorithm with accuracy 10−5. Still, it
takes up to 100 times longer than the other methods. It works well if S∗ is large, but as λ grows,
its accuracy becomes poor. In particular when f(S∗) = f(∅) = 0, it returns large sets with large
positive cost. In contrast, the deviation of the approximate edge weights νi from the true cost is
bounded [18]. All algorithms except MN return an optimal solution for λ ≥ 2000. Updating the
weights ν clearly improves the performance of Algorithm 1, as does the summarization (GIr/GIs
perform identically here). With the latter, the solutions are very often optimal, and almost always
very good.

Scaling: To test how the methods scale with the size |V|, we sample small graphs from the big
graph, and report average running times across 20 graphs for each size. As the graphs have non-
uniform weights, we use GP as an approximation method and estimate the nonlinearity

√
w(U) by

a piecewise linear function with |U| breakpoints. All algorithms find the same (optimal) solution.
Figure 4(d) shows that the minimum-norm algorithm with high accuracy is much slower than the
other methods. Empirically, MN scales as up to O(n5) (note that Figure 1 is a specific worst-case
graph), the parametric version approximately O(n2), and the variants of GI up to O(n1.5).

Acknowledgments: This material is based upon work supported in part by the National Science
Foundation under grant IIS-0535100, by an Intel research award, a Microsoft research award, and a
Google research award.
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[31] S. Z̆ivný and P.G. Jeavons. Classes of submodular constraints expressible by graph cuts. Constraints, 15:
430–452, 2010. ISSN 1383-7133.
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