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Abstract

Multi-structure model fitting has traditionally taken a two-stage approach: First,
sample a (large) number of model hypotheses, then select the subset of hypotheses
that optimise a joint fitting and model selection criterion. This disjoint two-stage
approach is arguably suboptimal and inefficient — if the random sampling did not
retrieve a good set of hypotheses, the optimised outcome will not represent a good
fit. To overcome this weakness we propose a new multi-structure fitting approach
based on Reversible Jump MCMC. Instrumental in raising the effectiveness of our
method is an adaptive hypothesis generator, whose proposal distribution is learned
incrementally and online. We prove that this adaptive proposal satisfies the dimin-
ishing adaptation property crucial for ensuring ergodicity in MCMC. Our method
effectively conducts hypothesis sampling and optimisation simultaneously, and
yields superior computational efficiency over previous two-stage methods.

1 Introduction

Multi-structure model fitting is concerned with estimating the multiple instances (or structures) of
a geometric model embedded in the input data. The task manifests in applications such as mixture
regression [21], motion segmentation [27, 10], and multi-projective estimation [29]. Such a prob-
lem is known for its “chicken-and-egg” nature: Both data-to-structure assignments and structure
parameters are unavailable, but given the solution of one subproblem, the solution of the other can
be easily derived. In practical settings the number of structures is usually unknown beforehand, thus
model selection is required in conjunction to fitting. This makes the problem very challenging.

A common framework is to optimise a robust goodness-of-fit function jointly with a model selection
criterion. For tractability most methods [25, 19, 17, 26, 18, 7, 31] take a “hypothesise-then-select”
approach: First, randomly sample from the parameter space a large number of putative model hy-
potheses, then select a subset of the hypotheses (structures) that optimise the combined objective
function. The hypotheses are typically fitted on minimal subsets [9] of the input data. Depending on
the specific definition of the cost functions, a myriad of strategies have been proposed to select the
best structures, namely tabu search [25], branch-and-bound [26], linear programming [19], dirichlet
mixture clustering [17], message passing [18], graph cut [7], and quadratic programming [31].

While sampling is crucial for tractability, a disjoint two-stage approach raises an awkward situa-
tion: If the sampled hypotheses are inaccurate, or worse, if not all valid structures are sampled, the
selection or optimisation step will be affected. The concern is palpable especially for higher-order
geometric models (e.g., fundamental matrices in motion segmentation [27]) where enormous sam-
pling effort is required before hitting good hypotheses (those fitted on all-inlier minimal subsets).
Thus two-stage approaches are highly vulnerable to sampling inadequacies, even with theoretical
assurances on the optimisation step (e.g., globally optimal over the sampled hypotheses [19, 7, 31]).

The issue above can be viewed as the lack of a stopping criterion for the sampling stage. If there
is only one structure, we can easily evaluate the sample quality (e.g., consensus size) on-the-fly

1



and stop as soon as the prospect of obtaining a better sample becomes insignificant [9]. Under
multi-structure data, it is unknown what a suitable stopping criterion is (apart from solving the
overall fitting and model selection problem itself). One can consider iterative local refinement of the
structures or re-sampling after data assignment [7], but the fact remains that if the initial hypotheses
are inaccurate, the results of the subsequent fitting and refinement will be affected.

Clearly, an approach that simultaneously samples and optimises is more appropriate. To this end
we propose a new method for multi-structure fitting and model selection based on Reversible Jump
Markov Chain Monte Carlo (RJMCMC) [12]. By design MCMC techniques directly optimise via
sampling. Despite their popular use [3] the method has not been fully explored in multi-structure
fitting (a few authors have applied Monte Carlo techniques for robust estimation [28, 8], but mostly
to enhance hypothesis sampling on single-structure data). We show how to exploit the reversible
jump mechanism to provide a simple and effective framework for multi-structure model selection.

The bane of MCMC, however, is the difficulty in designing efficient proposal distributions. Adaptive
MCMC techniques [4, 24] promise to alleviate this difficulty by learning the proposal distribution
on-the-fly. Instrumental in raising the efficiency of our RJMCMC approach is a recently proposed
hypothesis generator [6] that progressively updates the proposal distribution using generated hy-
potheses. Care must be taken in introducing such adaptive schemes, since a chain propagated based
on a non-stationary proposal is non-Markovian, and unless the proposal satisfies certain proper-
ties [4, 24], this generally means a loss of asymptotic convergence to the target distribution.

Clearing these technical hurdles is one of our major contributions: Using emerging theory from
adaptive MCMC [23, 4, 24, 11], we prove that the adaptive proposal, despite its origins in robust es-
timation [6], satisfies the properties required for convergence, most notably diminishing adaptation.

The rest of the paper is organised as follows: Sec. 2 formulates our goal within a clear optimisation
framework, and outlines our RJMCMC approach. Sec. 3 describes the adaptive hypothesis proposal
used in our method, and develops proof that it is a valid adaptive MCMC sampler. We present our
experimental results in Sec. 4 and draw conclusions in Sec. 5.

2 Multi-Structure Fitting and Model Selection

Give input data X = {xi}Ni=1, usually with outliers, our goal is to recover the instances or structures
θk = {θc}kc=1 of a geometric model M embedded in X. The number of valid structures k is
unknown beforehand and must also be estimated from the data. The problem domain is therefore
the joint space of structure quantity and parameters {k,θk}. Such a problem is typically solved by
jointly minimising fitting error and model complexity. Similar to [25, 19, 26], we use the AIC [1]

{k∗,θ∗k∗} = arg min
{k,θk}

−2 logL(θk) + 2αn(θk).

Here L(θk) is the robust data likelihood and n(θk) the number of parameters to define θk. We
include a positive constant α to allow reweighting of the two components. Assuming i.i.d. Gaussian
noise with known variance σ, the above problem is equivalent to minimising the function

f(k,θk) =

N∑
i=1

ρ

(
minc ric
1.96σ

)
+ αn(θk), (1)

where ric = g(xi, θc) is the absolute residual of xi to the c-th structure θc in θk. The residuals
are subjected to a robust loss function ρ(·) to limit the influence of outliers; we use the biweight
function [16]. Minimising a function like (1) over a vast domain {k,θk} is a formidable task.

2.1 A reversible jump simulated annealing approach

Simulated annealing has proven to be effective for difficult model selection problems [2, 5]. The
idea is to propagate a Markov chain for the Boltzmann distribution encapsulating (1)

bT (k,θk) ∝ exp(−f(k,θk)/T ) (2)
where temperature T is progressively lowered until the samples from bT (k,θk) converge to the
global minima of f(k,θk). Algorithm 1 shows the main body of the algorithm. Under weak regu-
larity assumptions, there exist cooling schedules [5] that will guarantee that as T tends to zero the
samples from the chain will concentrate around the global minima.
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To simulate bT (k,θk) we adopt a mixture of kernels MCMC approach [2]. This involves in each
iteration the execution of a randomly chosen type of move to update {k,θk}. Algorithm 2 sum-
marises the idea. We make available 3 types of moves: birth, death and local update. Birth and
death moves change the number of structures k. These moves effectively cause the chain to jump
across parameter spaces θk of different dimensions. It is crucial that these trans-dimensional jumps
are reversible to produce correct limiting behaviour of the chain. The following subsections explain.

Algorithm 1 Simulated annealing for multi-structure fitting and model selection
1: Initialise temperature T and state {k,θk}.
2: Simulate Markov chain for bT (k,θk) until convergence.
3: Lower temperature T and repeat from Step 2 until T ≈ 0.

Algorithm 2 Reversible jump mixture of kernels MCMC to simulate bT (k,θk)

Require: Last visited state {k,θk} of previous chain, probability β (Sec. 4 describes setting β).
1: Sample a ∼ U[0,1].
2: if a ≤ β then
3: With probability rB(k), attempt birth move, else attempt death move.
4: else
5: Attempt local update.
6: end if
7: Repeat from Step 1 until convergence (e.g., last V moves all rejected).

2.1.1 Birth and death moves

The birth move propagates {k,θk} to {k′,θ′k′}, with k′ = k+1. Applying Green’s [12, 22] seminal
theorems on RJMCMC, the move is reversible if it is accepted with probability min{1, A}, where

A =
bT (k′,θ′k′)[1− rB(k′)]/k′

bT (k,θk)rB(k)q(u)

∣∣∣∣ ∂θ′k′

∂(θk,u)

∣∣∣∣ . (3)

The probability of proposing the birth move is rB(k), where rB(k) = 1 for k = 1, rB(k) = 0.5
for k = 2, . . . , kmax − 1, and rB(kmax) = 0. In other words, any move that attempts to move k
beyond the range [1, kmax] is disallowed in Step 3 of Algorithm 2. The death move is proposed with
probability 1 − rB(k). An existing structure is chosen randomly and deleted from θk. The death
move is accepted with probability min{1, A−1}, with obvious changes to the notations in A−1.

In the birth move, the extra degrees of freedom required to specify the new item in θ′k′ are given
by auxiliary variables u, which are in turn proposed by q(u). Following [18, 7, 31], we estimate
parameters of the new item by fitting the geometric modelM onto a minimal subset of the data. Thus
u is a minimal subset of X. The size p of u is the minimum number of data required to instantiate
M, e.g., p = 4 for planar homographies, and p = 7 or 8 for fundamental matrices [15]. Our
approach is equivalently minimising (1) over collections {k,θk} of minimal subsets of X, where
now θk ≡ {uc}kc=1. Taking this view the Jacobian ∂θ′k′/∂(θk,u) is simply the identity matrix.

Considering only minimal subsets somewhat simplifies the problem, but there are still a colossal
number of possible minimal subsets. Obtaining good overall performance thus hinges on the ability
of proposal q(u) to propose minimal subsets that are relevant, i.e., those fitted purely on inliers of
valid structures in the data. One way is to learn q(u) incrementally using generated hypotheses. We
describe such a scheme [6] in Sec. 3 and prove that the adaptive proposal preserves ergodicity.

2.1.2 Local update

A local update does not change the model complexity k. The move involves randomly choosing a
structure θc in θk to update, making only local adjustments to its minimal subset uc. The outcome
is a revised minimal subset u′c, and the move is accepted with probability min{1, A}, where

A =
bT (k,θ′k)q(uc|θ′c)
bT (k,θk)q(u′c|θc)

. (4)

As shown in the above our local update is also accomplished with the adaptive proposal q(u|θ), but
this time conditioned on the selected structure θc. Sec. 3 describes and anlyses q(u|θ).
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3 Adaptive MCMC for Multi-Structure Fitting

Our work capitalises on the hypothesis generation scheme of Chin et al. called Multi-GS [6] origi-
nally proposed for robust geometric fitting. The algorithm maintains a series of sampling weights
which are revised incrementally as new hypotheses are generated. This bears similarity to the pio-
neering Adaptive Metropolis (AM) method of Haario et al. [13]. Here, we prove that our adaptive
proposals q(u) and q(u|θ) based on Multi-GS satisfy conditions required to preserve ergodicity.

3.1 The Multi-GS algorithm

Let {θm}Mm=1 aggregate the set of hypotheses fitted on the minimal subsets proposed thus far in all
birth and local update moves in Algorithm 1. To build the sampling weights, first for each xi ∈ X
we compute its absolute residuals as measured to the M hypotheses, yielding the residual vector

r(i) := [ r
(i)
1 r

(i)
2 · · · r(i)M ].

We then find the permutation
a(i) := [ a

(i)
1 a

(i)
2 · · · a(i)M ]

that sorts the elements in r(i) in non-descending order. The permutation a(i) essentially ranks the
M hypotheses according to the preference of xi; The higher a hypothesis is ranked the more likely
xi is an inlier to it. The weight wi,j between the pair xi and xj is obtained as

wi,j = Ih(xi,xj) :=
1

h

∣∣∣a(i)h ∩ a
(j)
h

∣∣∣ , (5)

where |a(i)h ∩a
(j)
h | is the number of identical elements shared by the first-h elements of a(i) and a(j).

Clearly wi,j is symmetric with respect to the input pair xi and xj , and wi,i = 1 for all i. To ensure
technical consistency in our later proofs, we add a small positive offset γ to the weight1, or

wi,j = max(Ih(xi,xj), γ), (6)
hence γ ≤ wi,j ≤ 1. The weight wi,j measures the correlation of the top h preferences of xi and
xj , and this value is typically high iff xi and xj are inliers from the same structure; Figs. 1 (c)–(g)
illustrate. Parameter h controls the discriminative power ofwi,j , and is typically set as a fixed ratio k
of M , i.e., h = dkMe. Experiments suggest that k = 0.1 provides generally good performance [6].

Multi-GS exploits the preference correlations to sample the next minimal subset u = {xst}
p
t=1,

where xst ∈ X and st ∈ {1, . . . , N} indexes the particular datum from X; henceforth we regard
u ≡ {st}pt=1. The first datum s1 is chosen purely randomly. Beginning from t = 2, the selection of
the t-th member st considers the weights related to the data s1, . . . , st−1 already present in u. More
specifically, the index st is sampled according to the probabilities

Pt(i) ∝
t−1∏
z=1

wsz,i, for i = 1, . . . , N, (7)

i.e., if Pt(i) > Pt(j) then i is more likely than j to be chosen as st. A new hypothesis θM+1 is then
fitted on u and the weights are updated in consideration of θM+1. Experiments comparing sampling
efficiency (e.g., all-inlier minimal subsets produced per unit time) show that Multi-GS is superior
over previous guided sampling schemes, especially on multi-structure data; See [6] for details.

3.2 Is Multi-GS a valid adaptive MCMC proposal?

Our RJMCMC scheme in Algorithm 2 depends on the Multi-GS-inspired adaptive proposals qM (u)
and qM (u|θ), where we now add the subscript M to make explicit their dependency on the set of
aggregated hypotheses {θm}Mm=1 as well as the weights {wi,j}Ni,j=1 they induce. The probability of
proposing a minimal subset u = {st}pt=1 from qM (u) can be calculated as

qM (u) =
1

N

∏
a<b
b≤p

wsa,sb

[
p−1∏
d=1

1T
d⊙

e=1

wse

]−1
, (8)

1It can be shown if both xi and xj are uniformly distributed outliers, the expected value of wi,j is h/M ,
i.e., a given pair xi and xj will likely have non-zero preference correlation.
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where wi is the column vector [ wi,1 . . . wi,N ]T and
⊙

is the sequential Hadamard product over
the given multiplicands. The term with the inverse in Eq. (8) relates to the normalising constants for
Eq. (7). As an example, the probability of selecting the minimal subset u = {s1, s2, s3, s4} is

qM (u) =
1

N

ws1,s2ws1,s3ws2,s3ws1,s4ws2,s4ws3,s4

1Tws11
T (ws1 �ws2)1T (ws1 �ws2 �ws3)

.

The local update proposal qM (u|θ) differs only in the manner in which the first datum xs1 is se-
lected. Instead of chosen purely randomly, the first index s1 is sampled according to

Ps1(i) ∝ exp

(
−O(g(xi, θ))

n

)
, for i = 1, . . . , N, (9)

where O(g(xi, θ)) is the order statistic of the absolute residual g(xi, θ) as measured to θ; to define
qM (u|θ) the 1/N term in Eq. (8) is simply replaced with the appropriate probability from Eq. (9).
For local updates an index i is more likely to be chosen as s1 if xi is close to θ. Parameter n relates
to our prior belief of the minimum number of inliers per structure; we fix this to n = 0.1N .

Since our proposal distributions are updated with the arrival of new hypotheses, the corresponding
transition probabilities are inhomogeneous (they change with time) and the chain non-Markovian
(the transition to a future state depends on all previous states). We aim to show that such contin-
ual adaptations with Multi-GS will still lead to the correct target distribution (2). First we restate
Theorem 1 in [11] which is distilled from other work on Adaptive MCMC [23, 4, 24].

Theorem 1. Let Z = {Zn : n > 0} be a stochastic process on a compact state space Ξ evolving
according to a collection of transition kernels

Tn(z, z′) = pr(Zn+1|Zn = z, Zn−1 = zn−1, . . . , Z0 = z0),

and let p(z) be the distribution of Zn. Suppose for every n and z0, . . . , zn−1 ∈ Ξ and for some
distribution π(z) on Ξ, ∑

zn

π(zn)Tn(zn, zn+1) = π(zn+1), (10)

|Tn+k(z, z′)− Tn(z, z′)| ≤ anck, an = O(n−r1), ck = O(k−r2), r1, r2 > 0, (11)

Tn(z, z′) ≥ επ(z′), ε > 0, (12)
where ε does not depend on n, z0, . . . , zn−1. Then, for any initial distribution p(z0) for Z0,

sup
zn

|p(zn)− π(zn)| → 0 for n→∞.

Diminishing adaptation. Eq. (11) dictates that the transition kernel, and thus the proposal distri-
bution in the Metropolis-Hastings updates in Eqs. (3) and (4), must converge to a fixed distribution,
i.e., the adaptation must diminish. To see that this occurs naturally in qM (u), first we show that wi,j

for all i, j converges as M increases. Without loss of generality assume that b new hypotheses are
generated between successive weight updates wi,j and w′i,j . Then,

lim
M→∞

∣∣∣w′i,j − wi,j

∣∣∣ = lim
M→∞

∣∣∣∣∣∣
|a′(i)

k(M+b)
∩ a
′(j)
k(M+b)

|

k(M + b)
−
|a(i)

kM ∩ a
(j)
kM |

kM

∣∣∣∣∣∣ ≤ lim
M→∞

∣∣∣∣∣ |a
(i)
kM ∩ a

(j)
kM | ± b(k + 1)

k(M + b)
−
|a(i)

kM ∩ a
(j)
kM |

kM

∣∣∣∣∣
= lim

M→∞

∣∣∣∣∣ |a
(i)
kM ∩ a

(j)
kM |/M ± b(k + 1)/M

k + kb/M
−
|a(i)

kM ∩ a
(j)
kM |/M

k

∣∣∣∣∣ = 0,

where a′(i) is the revised preference of xi in consideration of the b new hypotheses. The result is
based on the fact that the extension of b hypotheses will only perturb the overlap between the top-k
percentile of any two preference vectors by at most b(k + 1) items. It should also be noted that the
result is not due to w′i,j and wi,j simultaneously vanishing with increasing M ; in general

lim
M→∞

|a(i)kM ∩ a
(j)
kM |/M 6= 0

since a(i) and a(j) are extended and revised as M increases and this may increase their mutual
overlap. Figs. 1 (c)–(g) illustrate the convergence of wi,j as M increases. Using the above result, it
can be shown that the product of any two weights also converges

lim
M→∞

∣∣w′i,jw′p,q − wi,jwp,q

∣∣ = lim
M→∞

∣∣w′i,j(w′p,q − wp,q) + wp,q(w′i,j − wi,j)
∣∣

≤ lim
M→∞

∣∣w′i,j∣∣ ∣∣w′p,q − wp,q

∣∣+
∣∣wp,q

∣∣ ∣∣w′i,j − wi,j

∣∣ = 0.
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This result is readily extended to the product of any number of weights. To show the convergence
of the normalisation terms in (8), we first observe that the sum of weights is bounded away from 0

∀i, 1Twi ≥ L, L > 0,

due to the offsetting (6) and the constant element wi,i = 1 in wi (although wi,i will be set to zero to
enforce sampling without replacement [6]). It can thus be established that

lim
M→∞

∣∣∣∣ 1

1Tw′i
− 1

1Twi

∣∣∣∣ = lim
M→∞

∣∣∣∣ 1Tw′i − 1Twi

(1Tw′i)(1
Twi)

∣∣∣∣ ≤ lim
M→∞

∣∣∣∣1Tw′i − 1Twi

L2

∣∣∣∣ = 0

since the sum of the weights also converges. The result is readily extended to the inverse of the sum
of any number of Hadamard products of weights, since we have also previously established that the
product of any number of weights converges. Finally, since Eq. (8) involves only multiplications of
convergent quantities, qM (u) will converge to a fixed distribution as the update progresses.

Invariance. Eq. (10) requires that transition probabilities based on qM (u) permits an invariant dis-
tribution individually for all M . Since we propose and accept based on the Metropolis-Hastings
algorithm, detailed balance is satisfied by construction [3], which means that a Markov chain prop-
agated based on qM (u) will asymptotically sample from the target distribution.

Uniform ergodicity. Eq. (12) requires that qM (u) for all M be individually ergodic, i.e., the re-
sulting chain using qM (u) is aperiodic and irreducible. Again, since we simulate the target using
Metropolis-Hastings, every proposal has a chance of being rejected, thus implying aperiodicity [3].
Irreducibility is satisfied by the offsetting in (6) and renormalising [20], since this implies that there
is always a non-zero probability of reaching any state (minimal subset) from the current state.

The above results apply for the local update proposal qM (u|θ) which differs from qM (u) only in the
(stationary) probability to select the first index s1. Hence qM (u|θ) is also a valid adaptive proposal.

4 Experiments

We compare our approach (ARJMC) against state-of-the-art methods: message passing [18]
(FLOSS), energy minimisation with graph cut [7] (ENERGY), and quadratic programming based on
a novel preference feature [31] (QP-MF). We exclude older methods with known weaknesses, e.g.,
computational inefficiency [19, 17, 26], low accuracy due to greedy search [25], or vulnerability to
outliers [17]. All methods are run in MATLAB except ENERGY which is available in C++2.

For ARJMC, standard deviation σ in (1) is set as t/1.96, where t is the inlier threshold [9] obtained
using ground truth model fitting results— The same t is provided to the competitors. In Algorithm 1
temperature T is initialiased as 1 and we apply the geometric cooling schedule Tnext = 0.99T .
In Algorithm 2, probability β is set as equal to current temperature T , thus allowing more global
explorations in the parameter space initially before concentrating on local refinement subsequently.
Such a helpful strategy is not naturally practicable in disjoint two-stage approaches.

4.1 Two-view motion segmentation

The goal is to segment point trajectories X matched across two views into distinct motions [27].
Trajectories of a particular motion can be related by a distinct fundamental matrix F ∈ R3×3 [15].
Our task is thus to estimate the number of motions k and the fundamental matrices {Fc}kc=1 corre-
sponding to the motions embedded in data X. Note that X may contain false trajectories (outliers).
We estimate fundamental matrix hypotheses from minimal subsets of size p = 8 using the 8-point
method [14]. The residual g(xi,F) is computed as the Sampson distance [15].

We test the methods on publicly available two-view motion segmentation datasets [30]. In particular
we test on the 3- and 4-motion datasets provided, namely breadtoycar, carchipscube, toycubecar,
breadcubechips, biscuitbookbox, cubebreadtoychips and breadcartoychips; see the dataset home-
page for more details. Correspondences were established via SIFT matching and manual filtering
was done to obtain ground truth segmentation. Examples are shown in Figs. 1(a) and 1(b).

2http://vision.csd.uwo.ca/code/#Multi-label optimization
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(a) breadtoycar dataset with 3 motions (37,
39 and 34 inliers, 56 outliers)

(b) cubebreadtoychips dataset with 4 mo-
tions (71, 49, 38 and 81 inliers, 88 outliers)
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(g) M = 10000
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(h) Value of function f(k,θk) (best viewed in colour)
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(i) Segmentation error (best viewed in colour)

(j) M = 100 (k) M = 200 (l) M = 500 (m) M = 1000

Figure 1: (a) and (b) show respectively a 3- and 4-motion dataset (colours show ground truth la-
belling). To minimise clutter, lines joining false matches are not drawn. (c)–(g) show the evolution
of the matrix of pairwise weights (5) computed from (b) as the number of hypothesesM is increased.
For presentation the data are arranged according to their structure membership, which gives rise to
a 4-block pattern. Observe that the block pattern, hence weights, converge as M increases. (h) and
(i) respectively show performance measures (see text) of four methods on the dataset in (b). (j)–(m)
show the evolution of the labelling result of ARJMC as M increases (only one view is shown).

Figs. 1(c)–(g) show the evolution of the pairwise weights (5) asM increases until 10,000 for the data
in Fig. 1(b). The matrices exhibit a a four-block pattern, indicating strong mutual preference among
inliers from the same structure. This phenomenon allows accurate selection of minimal subsets in
Multi-GS [6]. More pertinently, as we predicted in Sec. 3.2, the weights converge as M increases,
as evidenced by the stabilising block pattern. Note that only a small number of weights are actually
computed in Multi-GS [6]; the full matrix of weights are calculated here for illustration only.

We run ARJMC and record the following performance measures: Value of the objective function
f(k,θk) in Eq. (1), and segmentation error. The latter involves assigning each datum xi ∈ X
to the nearest structure in θk if the residual is less than the threshold t; else xi is labelled as an
outlier. The overall labelling error is then obtained. The measures are recorded at time intervals
corresponding to the instances when M = 100, 200, . . . , 1000 number of hypotheses generated so
far in Algorithm 1. Median results over 20 repetitions on the data in Fig. 1(b) are shown in Figs. 1(h)
and 1(i). Figs. 1(j)–1(m) depict the evolution of the segmentation result of ARJMC as M increases.
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For objective comparisons the competing two-stage methods were tested as follows: First, M =
100, 200, . . . , 1000 hypotheses are accumulatively generated (using both uniform random sam-
pling [9] and Multi-GS [6]). A new instance of each method is invoked on each set ofM hypotheses.
We ensure that each method returns the true number of structures for all M ; this represents an ad-
vantage over ARJMC, since the “online learning” nature of ARJMC means the number of structures
is not discovered until closer to convergence. Results are also shown in Figs. 1(h) and 1(i).

Firstly, it is clear that the performance of the two-stage methods on both measures are improved
dramatically with the application of Multi-GS for hypothesis generation. From Fig. 1(h) ARJMC is
the most efficient in minimising the function f(k,θk); it converges to a low value in significantly
less time. It should be noted however that the other methods are not directly minimising AIC or
f(k,θk). The segmentation error (which no method here is directly minimising) thus represents a
more objective performance measure. From Fig. 1(i), it can be seen that the initial error of ARJMC
is much higher than all other methods, a direct consequence of not having yet estimated the true
number of structures. The error is eventually minimised as ARJMC converges. Table 1 which
summarises the results on the other datasets (all using Multi-GS) conveys a similar picture. Further
results on multi-homography detection also yield similar outcomes (see supplementary material).

Dataset breadtoycar (3 structures) carchipscube (3 structures) toycubecar (3 structures)
# inliers, outliers 37, 39 and 34 inliers, 56 outliers 19, 33 and 53 inliers, 60 outliers 45, 69 and 14 inliers, 72 outliers
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100 25.22 31.74 24.78 68.70 21.82 29.70 23.64 52.73 31.75 26.25 29.00 81.50
200 14.13 26.74 18.91 61.96 15.76 36.97 30.30 58.18 23.00 27.25 19.25 75.75
300 10.43 33.48 18.70 54.13 12.73 24.24 26.67 49.09 22.75 25.25 18.00 65.00
400 9.57 27.83 18.26 48.48 10.30 32.73 28.48 24.24 22.00 26.25 22.50 52.75
500 9.57 27.39 26.30 10.87 10.30 30.91 27.27 13.33 22.50 22.50 23.00 45.75
600 8.70 25.87 20.43 8.48 9.09 28.48 23.03 9.70 21.75 26.50 20.75 37.75
700 8.91 30.43 21.30 7.17 8.48 22.42 27.88 9.70 17.50 26.50 23.00 23.50
800 7.83 21.09 22.17 6.52 10.30 26.67 25.45 9.70 21.50 26.50 20.00 18.50
900 7.39 25.22 26.74 6.52 8.48 36.36 26.06 9.70 18.75 20.75 15.75 19.75

1000 7.17 20.43 25.22 6.52 9.09 28.48 23.64 9.70 15.50 23.00 18.25 19.50
Time (seconds) 12.88 9.40 21.57 5.44 9.57 7.02 16.23 5.16 11.73 8.14 18.94 4.95

Dataset breadcubechip (3 structures) breadcartoychip (4 structures) biscuitbookbox (3 structures)
# inliers, outliers 34, 57 and 58 inliers, 81 outliers 33, 23, 41 and 58 inliers, 82 outliers 67, 41 and 54 inliers, 97 outliers
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100 23.49 21.08 24.10 81.93 36.92 35.86 32.07 54.01 17.57 25.87 18.15 49.03
200 16.27 13.25 15.06 78.92 28.90 27.00 20.04 61.60 11.00 17.95 17.76 31.85
300 12.65 10.84 18.07 70.48 19.41 21.30 17.09 61.18 7.92 17.95 9.27 6.95
400 13.86 11.45 14.46 48.80 17.51 20.88 15.19 56.54 8.49 14.86 13.51 6.37
500 12.05 13.25 13.25 37.95 13.92 18.56 13.50 21.94 7.92 18.73 10.04 4.44
600 12.05 12.05 12.05 11.45 11.81 19.83 13.92 18.99 5.79 17.18 11.39 5.21
700 10.84 11.45 9.04 9.64 10.76 15.18 12.66 18.14 5.79 18.92 14.67 4.83
800 10.84 12.05 11.45 9.64 10.55 18.56 12.24 10.97 5.79 16.60 13.51 5.21
900 10.84 10.24 10.24 7.83 10.34 14.55 11.39 9.70 5.79 18.53 12.36 5.21

1000 10.84 10.84 10.84 8.43 9.70 15.18 11.60 9.70 5.79 13.71 13.13 5.79
Time (seconds) 9.57 6.96 16.38 4.47 13.40 9.86 22.46 5.39 15.46 10.66 24.36 5.47

Table 1: Median segmentation error (%) at different number of hypotheses M . Time elapsed at
M = 1000 is shown at the bottom. The lowest error and time achieved on each dataset is boldfaced.

5 Conclusions

By design, since our algorithm conducts hypothesis sampling, geometric fitting and model selection
simultaneously, it minimises wastage in the sampling process and converges faster than previous
two-stage approaches. This is evident from the experimental results. Underpinning our novel Re-
versible Jump MCMC method is an efficient hypothesis generator whose proposal distribution is
learned online. Drawing from new theory on Adaptive MCMC, we prove that our efficient hypoth-
esis generator satisfies the properties crucial to ensure convergence to the correct target distribution.
Our work thus links the latest developments from MCMC optimisation and geometric model fitting.
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