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Abstract

Variational Bayesian matrix factorization (VBMF) efficiently approximates the
posterior distribution of factorized matrices by assuming matrix-wise indepen-
dence of the two factors. A recent study on fully-observed VBMF showed that,
under a stronger assumption that the two factorized matrices are column-wise in-
dependent, the global optimal solution can be analytically computed. However,
it was not clear how restrictive the column-wise independence assumption is. In
this paper, we prove that the global solution under matrix-wise independence is
actually column-wise independent, implying that the column-wise independence
assumption is harmless. A practical consequence of our theoretical finding is that
the global solution under matrix-wise independence (which is a standard setup)
can be obtained analytically in a computationally very efficient way without any
iterative algorithms. We experimentally illustrate advantages of using our analytic
solution in probabilistic principal component analysis.

1 Introduction

The goal of matrix factorization (MF) is to approximate an observed matrix by a low-rank one. In
this paper, we consider fully-observed MF where the observed matrix has no missing entry1. This
formulation includes classical multivariate analysis techniques based on singular-value decomposi-
tion such as principal component analysis (PCA) [9] and canonical correlation analysis [10].

In the framework of probabilistic MF [20, 17, 19], posterior distributions of factorized matrices are
considered. Since exact inference is computationally intractable, the Laplace approximation [3],
the Markov chain Monte Carlo sampling [3, 18], and the variational Bayesian (VB) approximation
[4, 13, 16, 15] were used for approximate inference in practice. Among them, the VB approximation
seems to be a popular choice due to its high accuracy and computational efficiency.

In the original VBMF [4, 13], factored matrices are assumed to be matrix-wise independent, and a
local optimal solution is computed by an iterative algorithm. A simplified variant of VBMF (sim-
pleVBMF) was also proposed [16], which assumes a stronger constraint that the factored matrices

1This excludes the collaborative filtering setup, which is aimed at imputing missing entries of an observed
matrix [12, 7].
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are column-wise independent. A notable advantage of simpleVBMF is that the global optimal solu-
tion can be computed analytically in a computationally very efficient way [15].

Intuitively, it is suspected that simpleVBMF only possesses weaker approximation ability due to its
stronger column-wise independence assumption. However, it was reported that no clear performance
degradation was observed in experiments [14]. Thus, simpleVBMF would be a practically useful
approach. Nevertheless, the influence of the stronger column-wise independence assumption was
not elucidated beyond this empirical evaluation.

The main contribution of this paper is to theoretically show that the column-wise independence
assumption does not degrade the performance. More specifically, we prove that a global optimal
solution of the original VBMF is actually column-wise independent. Thus, a global optimal so-
lution of the original VBMF can be obtained by the analytic-form solution of simpleVBMF—no
computationally-expensive iterative algorithm is necessary. We show the usefulness of the analytic-
form solution through experiments on probabilistic PCA.

2 Formulation

In this section, we first formulate the problem of probabilistic MF, and then introduce the VB ap-
proximation and its simplified variant.

2.1 Probabilistic Matrix Factorization

The probabilistic MF model is given as follows [19]:

p(Y |A,B) ∝ exp
(
− 1

2σ2
∥Y − BA⊤∥2

Fro

)
, (1)

p(A) ∝ exp
(
−1

2
tr

(
AC−1

A A⊤))
, p(B) ∝ exp

(
−1

2
tr

(
BC−1

B B⊤))
, (2)

where Y ∈ RL×M is an observed matrix, A ∈ RM×H and B ∈ RL×H are parameter matrices to be
estimated, and σ2 is the noise variance. Here, we denote by ⊤ the transpose of a matrix or vector, by
∥ · ∥Fro the Frobenius norm, and by tr(·) the trace of a matrix. We assume that the prior covariance
matrices CA and CB are diagonal and positive definite, i.e.,

CA = diag(c2
a1

, . . . , c2
aH

), CB = diag(c2
b1 , . . . , c

2
bH

) for cah
, cbh

> 0, h = 1, . . . ,H.

Without loss of generality, we assume that the diagonal entries of the product CACB are arranged
in the non-increasing order, i.e., cah

cbh
≥ cah′ cbh′ for any pair h < h′.

Throughout the paper, we denote a column vector of a matrix by a bold smaller letter, and a row
vector by a bold smaller letter with a tilde, namely,

A = (a1, . . . , aH) = (ã1, . . . , ãM )⊤ ∈ RM×H , B = (b1, . . . , bH) =
(
b̃1, . . . , b̃L

)⊤
∈ RL×H .

2.2 Variational Bayesian Approximation

The Bayes posterior is written as

p(A,B|Y ) =
p(Y |A, B)p(A)p(B)

Z(Y )
, (3)

where Z(Y ) = 〈p(Y |A, B)〉p(A)p(B) is the marginal likelihood. Here, 〈·〉p denotes the expecta-
tion over the distribution p. Since the Bayes posterior (3) is computationally intractable, the VB
approximation was proposed [4, 13, 16, 15].

Let r(A,B), or r for short, be a trial distribution. The following functional with respect to r is called
the free energy:

F (r|Y ) =
〈

log
r(A,B)

p(Y |A, B)p(A)p(B)

〉
r(A,B)

=
〈

log
r(A,B)

p(A, B|Y )

〉
r(A,B)

− log Z(Y ). (4)
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In the last equation, the first term is the Kullback-Leibler (KL) distance from the trial distribution
to the Bayes posterior, and the second term is a constant. Therefore, minimizing the free energy (4)
amounts to finding the distribution closest to the Bayes posterior in the sense of the KL distance. In
the VB approximation, the free energy (4) is minimized over some restricted function space.

A standard constraint for the MF model is matrix-wise independence [4, 13], i.e.,

rVB(A,B) = rVB
A (A)rVB

B (B). (5)

This constraint breaks off the entanglement between the parameter matrices A and B, and leads to
a computationally-tractable iterative algorithm. Using the variational method, we can show that,
under the constraint (5), the VB posterior minimizing the free energy (4) is written as

rVB(A,B) =
M∏

m=1

NH(ãm; ˜̂am, ΣA)
L∏

l=1

NH(b̃l;
˜̂
bl, ΣB),

where the parameters satisfy

Â =
(˜̂a1, . . . , ˜̂aM

)⊤
= Y ⊤B̂

ΣA

σ2
, ΣA = σ2

(
B̂⊤B̂ + LΣB + σ2C−1

A

)−1

, (6)

B̂ =
(˜̂

b1, . . . ,
˜̂
bL

)⊤

= Y Â
ΣB

σ2
, ΣB = σ2

(
Â⊤Â + MΣA + σ2C−1

B

)−1

. (7)

Here, Nd(·; µ, Σ) denotes the d-dimensional Gaussian distribution with mean µ and covariance ma-
trix Σ. Iteratively updating the parameters Â, ΣA, B̂, and ΣB by Eqs.(6) and (7) until convergence
gives a local minimum of the free energy (4).

When the noise variance σ2 is unknown, it can also be estimated based on the free energy minimiza-
tion. The update rule for σ2 is given by

σ2 =
∥Y ∥2

Fro − tr(2Y ⊤B̂Â⊤) + tr
(
(Â⊤Â + MΣA)(B̂⊤B̂ + LΣB)

)
LM

. (8)

Furthermore, in the empirical Bayesian scenario, the hyperparameters CA and CB are also estimated
from data. In this scenario, CA and CB are updated in each iteration by the following formulas:

c2
ah

= ∥âh∥2/M + (ΣA)hh , c2
bh

= ∥b̂h∥2/L + (ΣB)hh . (9)

2.3 SimpleVB Approximation

A simplified variant, called the simpleVB approximation, assumes column-wise independence of
each matrix [16, 15], i.e.,

rsimpleVB(A,B) =
H∏

h=1

rsimpleVB
ah

(ah)
H∏

h=1

rsimpleVB
bh

(bh). (10)

This constraint restricts the covariances ΣA and ΣB to be diagonal, and thus necessary memory stor-
age and computational cost are substantially reduced [16]. The simpleVB posterior can be written
as

rsimpleVB(A,B) =
H∏

h=1

NM (ah; âh, σ2
ah

IM )NL(bh; b̂h, σ2
bh

IL),

where the parameters satisfy

âh =
σ2

ah

σ2

Y −
∑
h′ ̸=h

b̂h′ â⊤
h′

⊤

b̂h, σ2
ah

= σ2
(
∥b̂h∥2 + Lσ2

bh
+ σ2c−2

ah

)−1

, (11)

b̂h =
σ2

bh

σ2

Y −
∑
h′ ̸=h

b̂h′ â⊤
h′

 âh, σ2
bh

= σ2
(
∥âh∥2 + Mσ2

ah
+ σ2c−2

bh

)−1
. (12)
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Here, Id denotes the d-dimensional identity matrix. Iterating Eqs.(11) and (12) until convergence,
we can obtain a local minimum of the free energy. Eqs.(8) and (9) are similarly applied if the noise
variance σ2 is unknown and in the empirical Bayesian scenario, respectively.

A recent study has derived the analytic solution for simpleVB when the observed matrix has no
missing entry [15]. This work made simpleVB more attractive, because it did not only provide sub-
stantial reduction of computation costs, but also guaranteed the global optimality of the solution.
However, it was not clear how restrictive the column-wise independence assumption is, beyond its
experimental success [14]. In the next section, we theoretically show that the column-wise indepen-
dence assumption is actually harmless.

3 Analytic Solution of VBMF under Matrix-wise Independence

Under the matrix-wise independence constraint (5), the free energy (4) can be written as
F = 〈log r(A) + log r(B) − log p(Y |A, B)p(A)p(B)〉r(A)r(B)

=
LM

2
log σ2 +

M

2
log

|CA|
|ΣA|

+
L

2
log

|CB |
|ΣB |

+
∥Y ∥2

2σ2
+ const.

+
1
2

tr
{

C−1
A

(
Â⊤Â + MΣA

)
+ C−1

B

(
B̂⊤B̂ + LΣB

)
+σ−2

(
−2Â⊤Y ⊤B̂ +

(
Â⊤Â + MΣA

)(
B̂⊤B̂ + LΣB

))}
. (13)

Note that Eqs.(6) and (7) together form the stationarity condition of Eq.(13) with respect to Â, B̂,
ΣA, and ΣB .

Below, we show that a global solution of ΣA and ΣB is diagonal. When the product CACB is non-
degenerate (i.e., cah

cbh
> cah′ cbh′ for any pair h < h′), the global solution is unique and diagonal.

On the other hand, when CACB is degenerate, the global solutions are not unique because arbitrary
rotation in the degenerate subspace is possible without changing the free energy. However, still one
of the equivalent solutions is always diagonal.

Theorem 1 Diagonal ΣA and ΣB minimize the free energy (13).

The basic idea of our proof is that, since minimizing the free energy (13) with respect to A, B, ΣA,
and ΣB is too complicated, we focus on a restricted space written in a particular form that includes
the optimal solution. From necessary conditions for optimality, we can deduce that the solutions ΣA

and ΣB are diagonal.

Below, we describe the outline of the proof for non-degenerate CACB . The complete proof for
general cases is omitted because of the page limit.

(Sketch of proof of Theorem 1) Assume that (A∗, B∗, Σ∗
A, Σ∗

B) is a minimizer of the free energy
(13), and consider the following set of parameters specified by an H × H orthogonal matrix Ω:

Â = A∗C
−1/2
A Ω⊤C

1/2
A , ΣA = C

1/2
A ΩC

−1/2
A Σ∗

AC
−1/2
A Ω⊤C

1/2
A ,

B̂ = B∗C
1/2
A Ω⊤C

−1/2
A , ΣB = C

−1/2
A ΩC

1/2
A Σ∗

BC
1/2
A Ω⊤C

−1/2
A .

Note that B̂Â⊤ is invariant with respect to Ω, and (Â, B̂, ΣA, ΣB) = (A∗, B∗, Σ∗
A, Σ∗

B) holds if
Ω = IH . Then, as a function of Ω, the free energy (13) can be simplified as

F (Ω) =
1
2

tr
{

C−1
A C−1

B ΩC
1/2
A

(
B∗⊤B∗ + LΣ∗

B

)
C

1/2
A Ω⊤

}
+ const.

This is necessarily minimized at Ω = IH , because we assumed that (A∗, B∗, Σ∗
A, Σ∗

B) is a mini-
mizer. We can show that F (Ω) is minimized at Ω = IH only if B∗⊤B∗ + LΣ∗

B is diagonal. This
implies that Σ∗

A (see Eq.(6)) should be diagonal.

Similarly, we consider another set of parameters specified by an H × H orthogonal matrix Ω′:

Â = A∗C
1/2
B Ω′⊤C

−1/2
B , ΣA = C

−1/2
B Ω′C

1/2
B Σ∗

AC
1/2
B Ω′⊤C

−1/2
B ,

B̂ = B∗C
−1/2
B Ω′⊤C

1/2
B , ΣB = C

1/2
B Ω′C

−1/2
B Σ∗

BC
−1/2
B Ω′⊤C

1/2
B .
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Then, as a function of Ω′, the free energy (13) can be expressed as

F (Ω′) =
1
2

tr
{

C−1
A C−1

B Ω′C
1/2
B

(
A∗⊤A∗ + MΣ∗

A

)
C

1/2
B Ω′⊤

}
+ const.

Similarly, this is minimized at Ω′ = IH only if A∗⊤A∗ + MΣ∗
A is diagonal. Thus, Σ∗

B should be
diagonal (see Eq.(7)). ¤
The result that ΣA and ΣB become diagonal would be natural because we assumed the independent
Gaussian prior on A and B: the fact that any Y can be decomposed into orthogonal components may
imply that the observation Y cannot convey any preference for singular-component-wise correlation.
Note, however, that Theorem 1 does not necessarily hold when the observed matrix has missing
entries.

Theorem 1 implies that the stronger column-wise independence constraint (10) does not degrade
approximation accuracy, and the VB solution under matrix-wise independence (5) essentially agrees
with the simpleVB solution. Consequently, we can obtain a global analytic solution for VB, by
combining Theorem 1 above with Theorem 1 in [15]:

Corollary 1 Let γh (≥ 0) be the h-th largest singular value of Y , and let ωah
and ωbh

be the
associated right and left singular vectors:

Y =
L∑

h=1

γhωbh
ω⊤

ah
.

Let γ̂h be the second largest real solution of the following quartic equation with respect to t:
fh(t) := t4 + ξ3t

3 + ξ2t
2 + ξ1t + ξ0 = 0, (14)

where the coefficients are defined by

ξ3 =
(L − M)2γh

LM
, ξ2 = −

(
ξ3γh +

(L2 + M2)η2
h

LM
+

2σ4

c2
ah

c2
bh

)
, ξ1 = ξ3

√
ξ0,

ξ0 =

(
η2

h − σ4

c2
ah

c2
bh

)2

, η2
h =

(
1 − σ2L

γ2
h

) (
1 − σ2M

γ2
h

)
γ2

h.

Let

γ̃h =

√√√√√ (L + M)σ2

2
+

σ4

2c2
ah

c2
bh

+

√√√√(
(L + M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

− LMσ4. (15)

Then, the global VB solution under matrix-wise independence (5) can be expressed as

ÛVB ≡ 〈BA⊤〉rVB(A,B) = B̂Â⊤ =
H∑

h=1

γ̂VB
h ωbh

ω⊤
ah

, where γ̂VB
h =

{
γ̂h if γh > γ̃h,

0 otherwise.

Theorem 1 holds also in the empirical Bayesian scenario, where the hyperparameters (CA, CB)
are also estimated from observation. Accordingly, the empirical VB solution also agrees with the
empirical simpleVB solution, whose analytic-form is given in Corollary 5 in [15]. Thus, we obtain
the global analytic solution for empirical VB:

Corollary 2 The global empirical VB solution under matrix-wise independence (5) is given by

ÛEVB =
H∑

h=1

γ̂EVB
h ωbh

ω⊤
ah

, where γ̂EVB
h =

{
γ̆VB

h if γh > γ
h

and ∆h ≤ 0,

0 otherwise.

Here,
γ

h
= (

√
L +

√
M)σ, (16)

c̆2
h =

1
2LM

(
γ2

h − (L + M)σ2 +
√

(γ2
h − (L + M)σ2)2 − 4LMσ4

)
, (17)

∆h = M log
( γh

Mσ2
γ̆VB

h + 1
)

+ L log
( γh

Lσ2
γ̆VB

h + 1
)

+
1
σ2

(
−2γhγ̆VB

h + LMc̆2
h

)
, (18)

and γ̆VB
h is the VB solution for cah

cbh
= c̆h.
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When we calculate the empirical VB solution, we first check if γh > γ
h

holds. If it holds, we
compute γ̆VB

h by using Eq.(17) and Corollary 1. Otherwise, γ̂EVB
h = 0. Finally, we check if

∆h ≤ 0 holds by using Eq.(18).

When the noise variance σ2 is unknown, it is optimized by a naive 1-dimensional search to minimize
the free energy [15]. To evaluate the free energy (13), we need the covariances ΣA and ΣB , which
neither Corollary 1 nor Corollary 2 provides. The following corollary, which gives the complete
information on the VB posterior, is obtained by combining Theorem 1 above with Corollary 2 in
[15]:

Corollary 3 The VB posteriors under matrix-wise independence (5) are given by

rVB
A (A) =

H∏
h=1

NM (ah; âh, σ2
ah

IM ), rVB
B (B) =

H∏
h=1

NL(bh; b̂h, σ2
bh

IL),

where, for γ̂VB
h being the solution given by Corollary 1,

âh = ±
√

γ̂VB
h δ̂h · ωah

, b̂h = ±
√

γ̂VB
h δ̂−1

h · ωbh
,

σ2
ah

=
−

(
η̂2

h − σ2(M − L)
)

+
√

(η̂2
h − σ2(M − L))2 + 4Mσ2η̂2

h

2M(γ̂VB
h δ̂−1

h + σ2c−2
ah )

,

σ2
bh

=
−

(
η̂2

h + σ2(M − L)
)

+
√

(η̂2
h + σ2(M − L))2 + 4Lσ2η̂2

h

2L(γ̂VB
h δ̂h + σ2c−2

bh
)

,

δ̂h =
(M − L)(γh − γ̂VB

h ) +
√

(M − L)2(γh − γ̂VB
h )2 + 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

,

η̂2
h =

{
η2

h if γh > γ̃h,
σ4

c2
ah

c2
bh

otherwise.

Note that the ratio cah
/cbh

is arbitrary in empirical VB, so we can fix it to, e.g., cah
/cbh

= 1 without
loss of generality [15].

4 Experimental Results

In this section, we first introduce probabilistic PCA as a probabilistic MF model. Then, we show
experimental results on artificial and benchmark datasets, which illustrate practical advantages of
using our analytic solution.

4.1 Probabilistic PCA

In probabilistic PCA [20], the observation y ∈ RL is assumed to be driven by a latent vector ã ∈ RH

in the following form:

y = Bã + ε.

Here, B ∈ RL×H specifies the linear relationship between ã and y, and ε ∈ RL is a Gaussian noise
subject to NL(0, σ2IL). Suppose that we are given M observed samples {y1, . . . , yM} generated
from the latent vectors {ã1, . . . , ãM}, and each latent vector is subject to ã ∼ NH(0, IH). Then,
the probabilistic PCA model is written as Eqs.(1) and (2) with CA = IH .

If we apply Bayesian inference, the intrinsic dimension H is automatically selected without prede-
termination [4, 14]. This useful property is called automatic dimensionality selection (ADS).

4.2 Experiment on Artificial Data

We compare the iterative algorithm and the analytic solution in the empirical VB scenario with
unknown noise variance, i.e., the hyperparameters (CA, CB) and the noise variance σ2 are also
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Figure 1: Experimental results for Artificial1 dataset, where the data dimension is L = 100, the
number of samples is M = 300, and the true rank is H∗ = 20.
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Figure 2: Experimental results for Artificial2 dataset (L = 70, M = 300, and H∗ = 40).

estimated from observation. We use the full-rank model (i.e., H = min(L,M)), and expect the
ADS effect to automatically find the true rank H∗.

Figure 1 shows the free energy, the computation time, and the estimated rank over iterations for an
artificial (Artificial1) dataset with L = 100, M = 300, and H∗ = 20. We randomly created true
matrices A∗ ∈ RM×H∗

and B∗ ∈ RL×H∗
so that each entry of A∗ and B∗ follows N1(0, 1). An

observed matrix Y was created by adding a noise subject to N1(0, 1) to each entry of B∗A∗⊤.

The iterative algorithm consists of the update rules (6)–(9). Initial values were set in the following
way: Â and B̂ are randomly created so that each entry follows N1(0, 1). Other variables are set to
ΣA = ΣB = CA = CB = IH and σ2 = 1. Note that we rescale Y so that ∥Y ∥2

Fro/(LM) = 1,
before starting iteration. We ran the iterative algorithm 10 times, starting from different initial
points, and each trial is plotted by a solid line in Figure 1. The analytic solution consists of applying
Corollary 2 combined with a naive 1-dimensional search for noise variance σ2 estimation [15]. The
analytic solution is plotted by the dashed line. We see that the analytic solution estimates the true
rank Ĥ = H∗ = 20 immediately (∼ 0.1 sec on average over 10 trials), while the iterative algorithm
does not converge in 60 sec.

Figure 2 shows experimental results on another artificial dataset (Artificial2) where L = 70, M =
300, and H∗ = 40. In this case, all the 10 trials of the iterative algorithm are trapped at local
minima. We empirically observed a tendency that the iterative algorithm suffers from the local
minima problem when H∗ is large (close to H).

4.3 Experiment on Benchmark Data

Figures 3 and 4 show experimental results on the Satellite and the Spectf datasets available from the
UCI repository [1], showing similar tendencies to Figures 1 and 2. We also conducted experiments
on various benchmark datasets, and found that the iterative algorithm typically converges slowly,
and sometimes suffers from the local minima problem, while our analytic-form gives the global
solution immediately.
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Ĥ

 

 

Analytic
Iterative

(c) Estimated rank

Figure 3: Experimental results for the Sat dataset (L = 36,M = 6435).
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Figure 4: Experimental results for the Spectf dataset (L = 44,M = 267).

5 Conclusion and Discussion

In this paper, we have analyzed the fully-observed variational Bayesian matrix factorization (VBMF)
under matrix-wise independence. We have shown that the VB solution under matrix-wise indepen-
dence essentially agrees with the simplified VB (simpleVB) solution under column-wise indepen-
dence. As a consequence, we can obtain the global VB solution under matrix-wise independence
analytically in a computationally very efficient way.

Our analysis assumed uncorrelated priors. With correlated priors, the posterior is no longer uncor-
related and thus it is not straightforward to obtain a global solution analytically. Nevertheless, there
exists a situation where an analytic solution can be easily obtained: Suppose there exists an H × H
non-singular matrix T such that both of C ′

A = TCAT⊤ and C ′
B = (T−1)⊤CBT−1 are diagonal.

We can show that the free energy (13) is invariant under the following transformation for any T :

A → AT⊤, ΣA → TΣAT⊤, CA → TCAT⊤,

B → BT−1, ΣB → (T−1)T ΣBT−1, CB → (T−1)⊤CBT−1.

Accordingly, the following procedure gives the global solution analytically: the analytic solution
given the diagonal (C ′

A, C ′
B) is first computed, and the above transformation is then applied.

We have demonstrated the usefulness of our analytic solution in probabilistic PCA. On the other
hand, robust PCA has gathered a great deal of attention recently [5], and its Bayesian variant has
been proposed [2]. We expect that our analysis can handle more structured sparsity, in addition to
the current low-rank inducing sparsity. Extension of the current work along this line will allow us to
give more theoretical insights into robust PCA and provide computationally efficient algorithms.

Finally, a more challenging direction is to handle priors correlated over rows of A and B. This
allows us to model correlations in the observation space, and capture, e.g., short-term correlation
in time-series data and neighboring pixels correlation in image data. Analyzing such a situation, as
well as missing value imputation and tensor factorization [11, 6, 8, 21] is our important future work.
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