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Abstract

We introduce a variational Bayesian inference algorithm which can be widely
applied to sparse linear models. The algorithm is based on the spike and slab prior
which, from a Bayesian perspective, is the golden standard for sparse inference.
We apply the method to a general multi-task and multiple kernel learning model
in which a common set of Gaussian process functions is linearly combined with
task-specific sparse weights, thus inducing relation between tasks. This model
unifies several sparse linear models, such as generalized linear models, sparse
factor analysis and matrix factorization with missing values, so that the variational
algorithm can be applied to all these cases. We demonstrate our approach in multi-
output Gaussian process regression, multi-class classification, image processing
applications and collaborative filtering.

1 Introduction

Sparse inference has found numerous applications in statistics and machine learning [1, 2, 3]. It is a
generic idea that can be combined with popular models, such as linear regression, factor analysis and
more recently multi-task and multiple kernel learning models. In the regularization theory literature
sparse inference is tackled via `1 regularization [2], which requires expensive cross-validation for
model selection. From a Bayesian perspective, the spike and slab prior [1, 4, 5], also called two-
groups prior [6], is the golden standard for sparse linear models. However, the discrete nature of
the prior makes Bayesian inference a very challenging problem. Specifically, for M linear weights,
inference under a spike and slab prior distribution on those weights requires a combinatorial search
over 2M possible models. The problems found when working with the spike and slab prior led
several researchers to consider soft-sparse or shrinkage priors such as the Laplace and other related
scale mixtures of normals [3, 7, 8, 9, 10]. However, such priors are not ideal since they assign zero
probability mass to events associated with weights having zero value.

In this paper, we introduce a simple and efficient variational inference algorithm based on the spike
and slab prior which can be widely applied to sparse linear models. The novel characteristic of this
algorithm is that the variational distribution over sparse weights has a factorial nature, i.e., it can be
written as a mixture of 2M components where M is the number of weights. Unlike the standard
mean field approximation which uses a unimodal variational distribution, our variational algorithm
can more precisely match the combinational nature of the posterior distribution over the weights.
We will show that the proposed variational approach is more accurate and robust to unfavorable
initializations than the standard mean field variational approximation.

We apply the variational method to a general multi-task and multiple kernel learning model that
expresses the correlation between tasks by letting them share a common set of Gaussian process
latent functions. Each task is modeled by linearly combining these latent functions with task-
specific weights which are given a spike and slab prior distribution. This model is a spike and
slab Bayesian reformulation of previous Gaussian process-based single-task multiple kernel learning
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methods [11, 12, 13] and multi-task Gaussian processes (GPs) [14, 15, 16, 17]. Further, this model
unifies several sparse linear models, such as generalized linear models, factor analysis, probabilistic
PCA and matrix factorization with missing values. In the experiments, we apply the variational in-
ference algorithms to all the above models and present results in multi-output regression, multi-class
classification, image denoising, image inpainting and collaborative filtering.

2 Spike and slab multi-task and multiple kernel learning

Section 2.1 discusses the spike and slab multi-task and multiple kernel learning (MTMKL) model
that linearly combines Gaussian process latent functions. Spike and slab factor analysis and proba-
bilistic PCA is discussed in Section 2.2, while missing values are dealt with in Section 2.3.

2.1 The model

Let D = {X,Y}, with X ∈ RN×D and Y ∈ RN×Q, be a dataset such that the n-th row of X is
an input vector xn and the n-th row of Y is the set of Q corresponding tasks or outputs. We use
yq to refer to the q-th column of Y and ynq to the (n, q) entry. Outputs Y are then assumed to be
generated according to the following hierarchical Bayesian model:

ynq ∼ N (ynq|fq(xn), σ2
q ), ∀n,q (1a)

fq(x) =

M∑
m=1

wqmφm(x) = w>q φ(x), ∀q (1b)

wqm ∼ πN (wqm|0, σ2
w) + (1− π)δ0(wqm), ∀q,m (1c)

φm(x) ∼ GP(µm(x), km(xi,xj)), ∀m. (1d)

Here, each µm(x) is a mean function, km(xi,xj) a covariance function, wq = [wq1, . . . , wqM ]>,
φ(x) = [φ1(x), . . . , φM (x)]> and δ0(wqm) denotes the Dirac delta function centered at zero. Since
each of the Q tasks is a linear combination of the same set of latent functions {φm(x)}Mm=1 (where
typically M < Q ), correlation is induced in the outputs. Sharing a common set of features means
that “knowledge transfer” between tasks can occur and latent functions are inferred more accurately,
since data belonging to all tasks are used.

Several linear models can be expressed as special cases of the above. For instance, a generalized
linear model is obtained when the GPs are Dirac delta measures (with zero covariance functions)
that deterministically assign each φm(x) to its mean function µm(x). However, the model in (1) has
a number of additional features not present in standard linear models. Firstly, the basis functions are
no longer deterministic, but they are instead drawn from different GPs, so an extra layer of flexibility
is added to the model. Thus, a posterior distribution over the basis functions of the generalized linear
model can be inferred from data. Secondly, a truly sparse prior, the spike and slab prior (1c), is
placed over the weights of the model. Specifically, with probability 1−π, eachwqm is zero, and with
probability π, it is drawn from a Gaussian. This contrasts with previous approaches [3, 7, 8, 9, 13]
in which soft-sparse priors that assign zero probability mass to the weights being exactly zero were
used. Hyperparameters π and σ2

w are learnable in order to determine the amount of sparsity and
the discrepancy of nonzero weights, respectively. Thirdly, the number of basis functions M can be
inferred from data, since the sparse prior on the weights allows basis functions to be “switched off”
as necessary by setting the corresponding weights to zero.

Further, the model in (1) can be considered as a spike and slab Bayesian reformulation of multi-
task [14, 15] and multiple kernel learning previous methods [11, 12] that learn the weights using
maximum likelihood. By assuming the weights wq are given, each output function yq(x) is a GP
with covariance function

Cov[(yq(xi), yq(xj)] =

M∑
m=1

w2
qmkm(xi,xj),

which clearly consists of a conic combination of kernel functions. Therefore, the proposed model
can be reinterpreted as multiple kernel learning in which the weights of each kernel are assigned
spike and slab priors in a full Bayesian formulation.
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2.2 Sparse factor and principal component analysis
An interesting case arises when µm(x) = 0 and km(xi,xj) = δij ∀m, where δij is the Kronecker
delta. This says that each latent function is drawn from a white process so that it consists of indepen-
dent values each following the standard normal distribution. We first define matrices Φ ∈ RN×M

and W ∈ RQ×M , whose elements are, respectively, φnm = φm(xn) and wqm. Then, the model in
(1) reduces to

Y = ΦW> + ξ, (2a)

wqm ∼ πN (wqm|0, σ2
w) + (1− π)δ0(wqm), ∀q,m (2b)

φnm ∼ N (φnm|0, 1), ∀n,m (2c)

ξnq ∼ N (ξnq|0, σ2
q ), ∀n,q, (2d)

where ξ is an N ×Q noise matrix with entries ξnq . The resulting model thus corresponds to sparse
factor analysis or sparse probabilistic PCA (when the noise is homoscedastic, i.e., σ2

q is constant for
all q). Observe that the sparse spike and slab prior is placed on the factor loadings W.

2.3 Missing values
The method can easily handle missing values and thus be applied to problems involving matrix
completion and collaborative filtering. More precisely, in the presence of missing values we have
a binary matrix Z ∈ RN×Q that indicates the observed elements in Y. Using Z the likelihood in
(1a) is modified according to ynq ∼ N (ynq|fq(xn), σ2

q ), ∀n,q s.t. [Z]nq = 1. In the experiments we
consider missing values in applications such as image inpainting and collaborative filtering.

3 Efficient variational inference

The presence of the Dirac delta mass function makes the application of variational approximate
inference algorithms in spike and slab Bayesian models troublesome. However, there exists a sim-
ple reparameterization of the spike and slab prior that is more amenable to approximate inference
methods. Specifically, assume a Gaussian random variable w̃qm ∼ N (w̃qm|0, σ2

w) and a Bernoulli
random variable sqm ∼ πsqm(1 − π)1−sqm . The product sqmw̃qm forms a new random variable
that follows the probability distribution in eq. (1c). This allows to reparameterize wqm according to
wqm = sqmw̃qm and assign the above prior distributions on sqm and w̃qm. Thus, the reparameter-
ized spike and slab prior takes the form:

p(w̃qm, sqm) = N (wqm|0, σ2
w)πsqm(1− π)1−sqm , ∀q,m. (3)

Notice that the presence of wqm in the likelihood function in (1a) is now replaced by the product
sqmw̃qm. After the above reparameterization, a standard mean field variational method that uses the
factorized variational distribution over W̃ = {w̃q}Qq=1 and S = {sq}Qq=1 takes the form q(W̃,S) =∏Q

q=1 q(w̃q, sq), where

q(w̃q, sq) = q(w̃q)q(sq) = N (w̃q|µwq
,Σwq

)

M∏
m=1

γsqmqm (1− γqm)1−sqm (4)

and where (µwq
,Σwq

,γq) are variational parameters. Such an approach has extensively used in [18]
and also considered in [19]. However, the above variational distribution leads to a very inefficient
approximation. This is because (4) is a unimodal distribution, and therefore has limited capacity
when approximating the factorial true posterior distribution which can have exponentially many
modes. To analyze the nature of the true posterior distribution, we consider the following two
properties derived by assuming for simplicity a single output (Q = 1) so index q is dropped.

Property 1: The true marginal posterior p(w̃|Y) can be written as a mixture distribution having 2M

components. This is an obvious fact since p(w̃|Y) =
∑

s p(w̃|s,Y)p(s|Y), where the summation
involves all 2M possible values of the binary vector s.

The second property characterizes the nature of each conditional p(w̃|s,Y) in the above sum.

Property 2: Assume the conditional distribution p(w̃|s,Y). We can write s = s1 ∪ s0, where
s1 denotes the elements in s with value one and s0 the elements with value zero. Using the

3



correspondence between s and w̃, we have w̃ = w̃1 ∪ w̃0. Then, p(w̃|s,Y) factorizes as
p(w̃|s,Y) = p(w̃1|Y)N (w̃0|0, σ2

wI|w̃0|), which says that the posterior over w̃0 given s0 = 0
is equal to the prior over w̃0. This property is obvious because w̃0 and s0 appear in the likelihood
as an elementwise product w̃0 ◦ s0, thus when s0 = 0, w̃0 becomes disconnected from the data.

The standard variational distribution in (4) ignores these properties and approximates the marginal
p(w̃|Y), which is a mixture with 2M components, with a single Gaussian distribution. Next we
present an alternative variational approximation that takes into account the above properties.

3.1 The proposed variational method

In the reparameterized spike and slab prior, each pair of variables {w̃qm, sqm} is strongly correlated
since their product is the underlying variable that interacts with the data. Thus, a sensible approxi-
mation must treat each pair {w̃qm, sqm} as a unit so that {w̃qm, sqm} are placed in the same factor
of the variational distribution. The simplest factorization that achieves this is:

q(w̃q, sq) =

M∏
m=1

q(w̃qm, sqm). (5)

This variational distribution yields a marginal q(w̃q) which has 2M components. This can be seen by
writing q(w̃q) =

∏M
m=1 [q(w̃qm, sqm = 1) + q(w̃qm, sqm = 0)] and then by multiplying the terms

a mixture of 2M components is obtained. Therefore, Property 1 is satisfied by (5). In turns out
that Property 2 is also satisfied. This can be shown by taking the stationary condition for the factor
q(w̃qm, sqm) when maximizing the variational lower bound (on the true marginal likelihood):〈

log
p(Y, w̃qm, sqm,Θ)p(Θ)N (w̃qm|0, σ2

w)πsqm(1− π)1−sqm

q(w̃qm, sqm)q(Θ)

〉
q(w̃qm,sqm)q(Θ)

, (6)

where Θ are the remaining random variables in the model (i.e., excluding {w̃qm, sqm}) and q(Θ)
their variational distribution. The stationary condition for q(w̃qm, sqm) is

q(w̃qm, sqm) =
1

Z
e〈log p(Y,w̃qm,sqm,Θ)〉q(Θ)N (w̃qm|0, σ2

w)πsqm(1− π)1−sqm , (7)

where Z is a normalizing constant that does not depend on {w̃qm, sqm}. Therefore, we
have q(w̃qm|sqm = 0) ∝ q(w̃qm, sqm = 0) = C

ZN (w̃qm|0, σ2
w)(1 − π), where C =

e〈log p(Y,w̃qm,sqm=0,Θ)〉q(Θ) is a constant that does not depend on w̃qm. From the last expression
we obtain q(w̃qm|sqm = 0) = N (w̃qm|0, σ2

w) which implies that Property 2 is satisfied.

The above remarks regarding variational distribution (5) are general and can hold for many spike and
slab probability models as long as the weights w̃ and binary variables s interact inside the likelihood
function according to w̃ ◦ s.

3.2 Application to the multi-task and multiple kernel learning model

Here, we briefly discuss the variational method applied to the multi-task and multiple kernel model
described in Section 2.1 and refer to supplementary material for variational EM update equations.

The explicit form of the joint probability density function on the training data of model (1) is

p(Y,W̃,S,Φ) = N (Y|Φ(W̃◦S)>,Σ)
∏
q,m

[
N (w̃qm|0, σ2

w)πsqm(1− π)sqm
] M∏
m=1

N (φm|µm,Km),

where {W̃,S,Φ} is the whole set of random variables that need to be marginalized out to compute
the marginal likelihood. The marginal likelihood is analytically intractable, so we lower bound it
using the following variational distribution

q(W̃,S,Φ) =

Q∏
q=1

M∏
m=1

q(w̃qm, sqm)

M∏
m=1

q(φm). (8)
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The stationary conditions of the lower bound result in analytical updates for all factors above. More
precisely, q(φm) is an N -dimensional Gaussian distribution and each factor q(w̃qm, sqm) leads to
a marginal q(w̃qm) which is a mixture of two Gaussians where one component is q(w̃qm|sqm =
0) = N (w̃qm|0, σ2

w), as shown in the previous section. The optimization proceeds using an EM
algorithm that at the E-step updates the factors in (8) and at the M-step updates hyperparameters
{{σq}Qq=1, σ

2
w, π, {θm}Mm=1} where θm parameterize kernel matrix Km. There is, however, one

surprise in these updates. The GP hyperparameters θm are strongly dependent on the factor q(φm)
of the corresponding GP latent vector, so updating θm by keeping fixed the factor q(φm) exhibits
slow convergence. This problem is efficiently resolved by applying a Marginalized Variational step
[20] which jointly updates the pair (q(φm),θm). This more advanced update together with all
remaining updates of the EM algorithm are discussed in detail in the supplementary material.

4 Assessing the accuracy of the approximation
In this section we compare the proposed variational inference method, in the following called
paired mean field (PMF), against the standard mean field (MF) approximation. For simplicity,
we consider a single-output linear regression problem where the data are generated according to:
y = (w̃ ◦ s)Tx + ξ. Moreover, to remove the effect of hyperparameter learning from the com-
parison, (σ2, π, σ2

w) are fixed to known values. The objective of the comparison is to measure the
accuracy when approximating the true posterior mean value for the parameter vector wtr = E[w̃ ◦ s]
where the expectation is under the true posterior distribution. wtr is obtained by running a very
long run of Gibbs sampling. PMF and MF provide alternative approximations wPMF and wMF, and
absolute errors between these approximations and wtr are used to measure accuracy. Since initial-
ization is crucial for variational non-convex algorithms, the accuracy of PMF and MF is averaged
over many random initializations of their respective variational distributions.

soft-error soft-bound extreme-error extreme-bound

MF 0.917 [0.002,1.930] -628.9 [-554.6,-793.5] 1.880 [0.965, 2.561] -895.0 [-618.9,-1483.3]
PMF 0.208 [0.002,0.454] -560.7 [-557.8, -564.1] 0.204 [0.002, 0.454] -560.6 [-557.8, -564.0]

Table 1: Comparison of MF and PMF in Boston-housing data in terms of approximating the ground-truth.
Average errors (

∑13
m=1 |w

tr
m−wappr

m |) together with 95% confidence intervals (given by percentiles) are shown
for soft and extreme initializations. Average values for the variational lower bound are also shown.

For the purpose of the comparison we also derived an efficient paired Gibbs sampler that follows
exactly the same principle as PMF. This Gibbs sampler iteratively samples the pair (w̃m, sm) from
the conditional p(w̃m, sm|w̃\m, s\m,y) and has been observed to mix much faster than the standard
Gibbs sampler that samples w̃ and s separately. More details about the paired Gibbs sampler are
given in the supplementary material.

We considered the Boston-housing dataset which consists of 456 training examples and 13 inputs.
Hyperparameters were fixed to values (σ2 = 0.1×var(y), π = 0.25, σ2

w = 1) where var(y) denotes
the variance of the data. We performed two types of experiments each repeated 300 times. Each
repetition of the first type uses a soft random initialization of each q(sm = 1) = γm from the range
(0, 1). The second type uses an extreme random initialization so that each γm is initialized to either
0 or 1. For each run PMF and MF are initialized to the same variational parameters.

Table 1 reports average absolute errors and also average values of the variational lower bounds.
Clearly, PMF is more accurate than MF, achieves significantly higher values for the lower bound
and exhibits smaller variance under different initializations. Further, for the more difficult case
of extreme initializations the performance of MF becomes worse, while the performance of PMF
remains unchanged. This shows that optimization in PMF, although non-convex, is very robust to
unfavorable initializations. Similar experiments in other datasets have confirmed the above remarks.

5 Experiments
Toy multi-output regression dataset. To illustrate the capabilities of the proposed model, we first
apply it to a toy multi-output dataset with missing observations. Toy data is generated as follows:
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Ten random latent functions are generated by sampling i.i.d. from zero-mean GPs with the following
non-stationary covariance function

k(xi, xj) = exp
(−x2

i − x2
j

20

)
(4 cos(0.5(xi − xj)) + cos(2(xi − xj))),

at 201 evenly spaced points in the interval x ∈ [−10, 10]. Ten tasks are then generated by adding
Gaussian noise with standard deviation 0.2 to those random latent functions, and two additional tasks
consist only of Gaussian noise with standard deviations 0.1 and 0.4. Finally, for each of the 12 tasks,
we artificially simulate missing data by removing 41 contiguous observations, as shown in Figure
1. Missing data are not available to any learning algorithm, and will be used to test performance
only. Note that the above covariance function is rank-4, so ten out of the twelve tasks will be related,
though we do not know how, or which ones.

All tasks are then learned using both independent GPs with squared exponential (SE) covariance
function kSE(xi, xj) = exp(−(xi − xj)

2/(2`)) and the proposed MTMKL with M = 7 latent
functions, each of them also using the SE prior. Hyperparameter `, as well as noise levels are
learned independently for each latent function. Figure 1 shows the inferred posterior means.
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Figure 1: Twelve related tasks and predictions according to independent GPs (blue, continuous line) and
MTMKL (red, dashed line). Missing data for each task is represented using green circles.

The mean square error (MSE) between predictions and missing observations for each task are dis-
played in Table 2. MTMKL is able to infer how tasks are related and then exploit that information
to make much better predictions. After learning, only 4 out of the 7 available latent functions re-
main active, while the other ones are pruned by setting the corresponding weights to zero. This is in
correspondence with the generating covariance function, which only had 4 eigenfunctions, showing
how model order selection is automatic.

Method \ Task # 1 2 3 4 5 6 7 8 9 10 11 12

Independent GPs 6.51 11.70 7.52 2.49 1.53 18.25 0.41 7.43 2.73 1.81 19.93 93.80
MTMKL 1.97 4.57 7.71 1.94 1.98 2.09 0.41 1.96 1.90 1.57 1.20 2.83

Table 2: MSE performance of independent GPs vs. MTMKL on the missing observations for each task.
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Inferred noise standard deviations for the noise-only tasks are 0.10 and 0.45, and the average for the
remaining tasks is 0.22, which agrees well with the stated actual values.

The flowers dataset. Though the proposed model has been designed as a tool for regression, it
can also be used approximately to solve classification problems by using output values to identify
class membership. In this section we will apply it to the challenging flower identification problem
posed in [21]. There are 2040 instances of flowers for training and 6149 for testing, mainly acquired
from the web, with varying scales, resolutions, etc., which are labeled into 102 categories. In [21],
four relevant features are identified: Color, histogram of gradient orientations and the scale invariant
feature transform, sampled on both the foreground region and its boundary. More information is
available at http://www.robots.ox.ac.uk/˜vgg/data/flowers/.

For this type of dataset, state of the art performance has been achieved using a weighted linear
combination of kernels (one per feature) in a support vector machine (SVM) classifier. A different
set of weights is learned for each class. In [22] it is shown that these weights can be learned by
solving a convex optimization problem. I.e., the standard approach to tackle the flower classification
problem would correspond to solving 102 independent binary classification problems, each using a
linear combination of 4 kernels. We take a different approach: Since all the 102 binary classification
tasks are related, we learn all of them at once as a multi-task multiple-kernel problem, hoping that
knowledge transfer between them will enhance performance.

For each training instance, we set the corresponding output to +1 for the desired task, whereas the
output for the remaining tasks is set to -1. Then we consider both using 10 and 13 latent functions
per feature (i.e., M = 40 and M = 52). We measure performance in terms of the recognition
rate (RR), which is the average of break-even points (where precision equals recall) for each class;
average area under the curve (AUC); and the multi-class accuracy (MA) which is the rate of correctly
classified instances. As baseline, recall that a random classifier would yield a RR and AUC of 0.5
and a MA of 1/102 = 0.0098. Results are reported in Table 3.

Method Latent function # AUC on test set RR on test set MA on test set

MTMKL M = 40 0.944 0.889 0.329
MTMKL M = 52 0.952 0.893 0.400
MKL from [21] M = 408 - 0.728 -
MKL from [13] M = 408 0.957 - -

Table 3: Performance of the different multiple kernel learning algorithms on the flowers dataset.

MTMKL significantly outperforms the state-of-the-art method in [21], yielding a performance in
line with [13], due to its ability to share information across tasks.

Image denoising and dictionary learning. Here we illustrate denoising on the 256× 256 “house”
image used in [19]. Three noise levels (standard deviations 15, 25 and 50) are considered. Follow-
ing [19], we partition the noisy image in 62,001 overlapping 8 × 8 blocks and regard each block
as a different task. MTMKL is then run using M = 64 “latent blocks”, also known as “dictionary
elements” (bigger dictionaries do not result in significant performance increase). For the covariance
of the latent functions, we consider two possible choices: Either a white covariance function (as

in [19]) or an exponential covariance of the form kEXP(xi,xj) = e−
|xi−xj |

` , where x are the pixel
coordinates within each block. The first option is equivalent to placing an independent standard nor-
mal prior on each pixel of the dictionary. The second one, on the other hand, introduces correlation
between neighboring pixels in the dictionary. Results are shown in Table 4. The exponential co-
variance clearly enhances performance and produces a more structured dictionary, as can be seen in
Figure 3.(a). The Peak-to-Signal Ratio (PSNR) obtained using the proposed approach is comparable
to the state-of-the-art results obtained in [19].

Image inpainting and dictionary learning. We now address the inpainting problem in color im-
ages. Following [19], we consider a color image in which a random 80% of the RGB components
are missing. Using an analogous partitioning scheme as in the previous section we obtain 148,836
blocks of size 8×8×3, each of which is regarded as a different task. A dictionary size of M = 100
and a white covariance function (which is used in [19]) are selected. Note that we do not apply any
other preprocessing to data or any specific initialization as it is done in [19]. The PSNR of the image
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Figure 2: Noisy “house” image with σ = 25 and re-
stored version using Exponential cov. function.

PSNR (dB)

Noise std Noisy image White Expon.

σ = 15 24.66 33.98 34.29
σ = 25 20.22 30.98 31.88
σ = 50 14.20 26.14 28.08

Table 4: PSNR for noisy and restored image using
several noise levels and covariance functions.

after it is restored using MTMKL is 28.94 dB, see Figure 3.(b). This result is similar to the results
reported in [19] and close to the state-of-the-art result of 29.65 dB achieved in [23].

(a) House: Dict. for white and Exponential (b) Castle: Missing values, restored and original

Figure 3: Dictionaries inferred from noisy (σ = 25) “house” image; and “castle” inpainting results.

Collaborative filtering. Finally, we performed an experiment on the 10M MovieLens data
set that consists of 10 million ratings for 71,567 users and 10,681 films, with ratings ranging
{1, 0.5, 2, . . . , 4.5, 5}. We followed the setup in [24] and used the ra and rb partitions provided
with the database, that split the data into a training and testing, so that they are 10 ratings per user
in the test set. We applied the sparse factor analysis model (i.e. sparse PCA but with heteroscedastic
noise for the columns of the observation matrix Y which corresponds to films) with M = 20 latent
dimensions. The RMSE for the ra partition was 0.88 for the rb partition was 0.85 so one average
0.865. This result is slightly better than 0.8740 RMSE reported in [24] using GP-LVM.

6 Discussion
In this work we have proposed a spike and slab multi-task and multiple kernel learning model. A
novel variational algorithm to perform inference in this model has been derived. The key contri-
bution in this regard that explains the good performance of the algorithm is the choice of a joint
distribution over w̃qm and sqm in the variational posterior, as opposed to the usual independence
assumption. This has the effect of using exponentially many modes to approximate the posterior,
thus rendering it more accurate and much more robust to poor initializations of the variational pa-
rameters. The relevance and wide applicability of the proposed model has been illustrated by using
it on very diverse tasks: multi-output regression, multi-class classification, image denoising, image
inpainting and collaborative filtering. Prior structure beliefs were introduced in image dictionaries,
which is also a novel contribution to the best of our knowledge. Finally an interesting topic for future
research is to optimize the variational distribution proposed here with alternative approximate infer-
ence frameworks such as belief propagation or expectation propagation. This could allow to extend
current methodologies within such frameworks that assume unimodal approximations [25, 26].
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