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Abstract

Being able to predict the course of arbitrary chemical reactions is essential to the
theory and applications of organic chemistry. Previous approaches are not high-
throughput, are not generalizable or scalable, or lack sufficient data to be effective.
We describe single mechanistic reactions as concerted electron movements from
an electron orbital source to an electron orbital sink. We use an existing rule-based
expert system to derive a dataset consisting of2,989 productive mechanistic steps
and6.14 million non-productive mechanistic steps. We then pose identifying pro-
ductive mechanistic steps as a ranking problem: rank potential orbital interactions
such that the top ranked interactions yield the major products. The machine learn-
ing implementation follows a two-stage approach, in which we first train atom
level reactivity filters to prune94.0% of non-productive reactions with less than a
0.1% false negative rate. Then, we train an ensemble of ranking models on pairs of
interacting orbitals to learn a relative productivity function over single mechanis-
tic reactions in a given system. Without the use of explicit transformation patterns,
the ensemble perfectly ranks the productive mechanisms at the top89.1% of the
time, rising to99.9% of the time when top ranked lists with at most four non-
productive reactions are considered. The final system allows multi-step reaction
prediction. Furthermore, it is generalizable, making reasonable predictions over
reactants and conditions which the rule-based expert system does not handle.

1 Introduction

Determining the major products of chemical reactions giventhe input reactants and conditions is
a fundamental problem in organic chemistry. Reaction prediction is a necessary component of
retro-synthetic analysis or virtual library generation for drug design[1, 2] and has the potential to
increase our understanding of biochemical catalysis and metabolism[3]. There are a broad range
of approaches to reaction prediction falling around at least three main poles: physical simulations
of transition states using various quantum mechanical and other approximations[4, 5, 6], rule-based
expert systems[2, 7, 8, 9, 10, 11], and inductive machine learning methods[12]. However, none of
these approaches can successfully emulate the remarkable abilities of a human chemist.

1.1 Previous approaches and representations

The very concept of a “reaction” can be ambiguous, as it corresponds to a macroscopic abstraction,
hence simplification, of a very complex underlying microscopic reality, ultimately driven by the
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laws of quantum and statistical mechanics. However, even for relatively small systems, it is impos-
sible to find exact solutions to the Schrödinger equation. Thus in practice, energies are calculated
with varyingly accurate approximations, ranging from ab-initio Hartree-Fock approaches or density
functional theory to semi-empirical methods or mechanicalforce fields[6]. This leads to modeling
reactions as minimum energy paths between stable atom configurations on a high-dimensional po-
tential energy surface, where the path through the lowest energy transition state, i.e., saddle point, is
the most favorable[4, 5]. By explicitly modeling energies,these approaches can be highly accurate
and generalize to a diverse range of chemistries but requirecareful initialization and are computa-
tionally expensive (see [13] for a representative example). This branch of computational chemistry
provides invaluable tools for in-depth analysis but is currently not suitable for high-throughput re-
activity tasks and is far from being able to recapitulate theknowledge and ability of human experts.

In contrast, most rule-based expert systems for high-throughput reactivity tasks use a much more
abstract representation, in the form of general transformations over molecular graphs[2, 7, 8, 9, 10].
Reactions are predicted when a match is found in a library of allowable graph transformations. These
general transformations model only net molecular changes for processes that in reality involve a
sequence of transition states, as shown in Figure 1. These rule-based approaches suffer from at least
four drawbacks: (1) they use a representation that is too high-level, in that an overall transformation
obfuscates the underlying physical reality; (2) they require the manual curation of large amounts of
expert knowledge; (3) they become unmanageable at larger scales, in that adding a new graph pattern
often involves having to update a large proportion of existing transformations with exceptions; and
(4) they lack generality, in that particular chemistries must explicitly be encoded to be predicted.

[C;X3H0:1]=[C;X3:2].[H:3][Br:4]>>[Br:4][C:1][C:2][H:3]

Figure 1: Overall transformation of an alkene (hydrocarbonwith double bond) with hydro-
bromic acid (HBr) and corresponding mechanistic reactions. (a) shows the overall transform as
a SMIRKS[14] string pattern and as a graph representation. In a molecular graph, vertices represent
atoms, with carbons at unlabeled vertices. The number of edges between two vertices represents
bond order. +/− symbols represent formal charge. Standard valences are filled using implicit
hydrogens. (b) shows the two mechanistic reactions composing the overall transformation as arrow-
pushing diagrams[15, 16]. Dots represent non-bonded (lonepair) electrons, while arrows represent
concerted electron movement. In the first step, electrons inthe electron-rich carbon-carbon double
bond attack the hydrogen and break the electron-poor hydrogen-bromine single bond, producing an
anionic bromide (Br−) and a carbocation (C+). In the second step, electrons from the charged,
electron-rich bromide attack the electron-poor carbocation, yielding the final alkyl halide.

Somewhere between low-level QM treatment and abstract graph-based overall transformations, one
can consider reactions at the mechanistic level. A mechanistic, or elementary, reaction is a con-
certed electron movement through a single transition state[15, 16]. These mechanistic reactions can
be composed to yield overall transformations. For example,Figure 1 shows the overall transfor-
mation of an alkene interacting with hydrobromic acid to yield an alkyl halide, along with the two
elementary reactions which compose the transformation. A mechanistic reaction is described as an
idealized molecular orbital (MO) interaction between an electron source (donor) MO and an electron
sink (acceptor) MO. MOs represent regions of the molecule with high (source) or low (sink) electron
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density. In general, potential electron sources are composed of lone pairs of electrons and bonds, and
potential electron sinks are composed of empty atomic orbitals and bonds. Bonds can act as either
a source or a sink depending on the context. Because of space constraints, we cannot fully describe
subtle chemical details that must be handled, such as chaining for resonance rearrangement. For
details, see texts[15, 16] on mechanisms. Note that by considering all possible pairings of source
and sink MOs, this representation allows the exhaustive enumeration of all potential mechanistic
reactions over an arbitrary set of molecules.

Recent work by Chen and Baldi[11] introduces a rule-based expert system (Reaction Explorer) in
which each rearrangement pattern encompasses an elementary reaction. Here, the elementary reac-
tions represent “productive” mechanistic steps, i.e. those reactions which lead to the overall major
products. Thus, elementary reactions which are not the mostkinetically favorable, but which even-
tually lead to the overall thermodynamic transformation product may be considered “productive”.
This approach is a marked change from previous approaches using overall transformations, but as a
rule-based system still suffers from the problems of curation, scale, and generality.

While mechanistic reaction representations are approximations quite far from the Schrödinger equa-
tion, we expect them to be closer to the underlying reality and therefore more useful than overall
transformations. Furthermore, we expect them also to be easier to predict than overall transfor-
mations due to their more elementary nature and mechanisticinterpretation. In combination, these
arguments suggest that working with mechanistic steps may facilitate the application of statistical
machine learning approaches, and take advantage of their capability to generalize. Thus, in this
work, reactions are modeled as mechanisms, and for the remainder of the paper, we consider the
term “reaction” to denote a single elementary reaction. Furthermore, we consider the problem of
reaction prediction to be precisely that of identifying the“productive” reactions over a given set of
reactants under particular conditions.

There has been very little work on machine learning approaches to reaction prediction. The sole
example is a paper from 1990 on inductively extracting overall transformation patterns from reac-
tion databases[12], a method which was never actually incorporated into a full reaction prediction
system. This situation is surprising. Given improvements in both computing power and machine
learning methods over the past20 years, one could imagine a machine learning system that mines
reaction information to learn the grammar of chemistry, e.g., in terms of graph grammars[17]. One
potential reason behind the lack of progress in this area is the paucity of available data. Chemical
publishing is dominated by closed models, making literature information difficult to access. Further-
more, parsing scientific text and extracting relevant chemical information from text and image data
is an open problem of research[18, 19]. While commercial reaction databases exist, e.g., Reaxys[20]
or SPRESI[21], the reactions in these databases are mostly unbalanced, not atom-mapped, and lack
mechanistic detail[22]. This is in addition to suffering from a severe lack of openness; the databases
are exorbitantly priced or provided with a restrictive query interface which precludes serious statisti-
cal data mining. As a result, and to the best of our knowledge,effective machine learning approaches
to reaction prediction still need to be developed.

1.2 A new approach

The limitations of previous work motivate a new, fresh approach to reaction prediction combining
machine learning with mechanistic representations. The key idea is to first enumerate all potential
source and sink MOs, and thus all possible reactions by theirpairing, and then use classification
and ranking techniques to identify productive reactions. There are multiple benefits resulting from
such an approach. By using very general rules to enumerate possible reactions, the approach is not
restricted to manually curated reaction patterns. By detailing individual reactions at the mechanistic
level, the system may be able to statistically learn efficient predictive models based on physico-
chemical attributes rather than abstract overall transformations. And by ranking possible reactions
instead of making binary decisions, the system may provide results amenable to flexible interpreta-
tion. However, the new approach also faces three key challenges: (1) the development of appropri-
ate training datasets of productive reactions; (2) the development of a machine learning approach to
control the combinatorial complexity resulting from considering all possible pairs of electron donors
and acceptors among the reacting molecules; and (3) the development of machine learning solutions
to the problem of predictively ranking the possible mechanisms. These challenges are addressed
one-by-one in the following sections.
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2 The data challenge

A mechanistically defined dataset of reactions to use with the proposed approach does not currently
exist. To derive a dataset, we use a mechanistically defined rule-based expert system (Reaction
Explorer) together with its validation suite[11]. The validation suite is a manually composed set of
reactants, reagents, and products covering a complete undergraduate organic chemistry curriculum.

Entering a set of reactants and a reagent model into ReactionExplorer yields the complete sequence
of mechanistic steps leading to the final products, where allreactions in this sequence share the
conditions encoded by the corresponding reagent model. Each one of these mechanistic steps is
considered to be a distinct productive elementary reaction. For a given set of reactants and condi-
tions, which we call a(r, c) query tuple, the Reaction Explorer system labels a small setof reactions
productive, while all other reactions enumerated by pairing source and sink MOs over the reactants
are considered non-productive.

We then define two{0, 1} labels for each atom (up to symmetries) and conditions(a, c) tuple over
all (r, c) queries. An(a, c) tuple has labelsrcreact = 1 if it is the main atom of a source MO in
a productive reaction over any corresponding(r, c) query, and has labelsrcreact = 0 otherwise.
The labelsinkreact is defined similarly using sink MOs.

Reaction conditions are described with three parameters: temperature, anion solvation potential,
and cation solvation potential. Temperature is listed in Kelvin. The solvation potentials are unitless
numbers between0 and1 representing ease of cation or anion solvation, thus providing a quantita-
tive scale to describe polar protic, polar aprotic, and nonpolar solvents. Note that any mechanistic
interaction with the solvent or reagent is explicitly modeled, e.g. as in Figure 1.

As an initial validation of the method, we consider general ionic reactions from the Reaction Ex-
plorer validation suite involving C, H, N, O, Li, Mg, and the halides. Extensions to include stere-
oselective, pericyclic, and radical reactions are discussed in Section 5. The dataset consists of6.14
million reactions composed of84,825 source and74,725 sink MOs from2,752 distinct reactants
and reaction conditions, i.e.,(r, c) queries. Of these6.14 million reactions, the Reaction Explorer
system labels2,989 of them as productive. There are22,894 atom symmetry classes, which when
paired with reaction condition yields29,104 (a, c) tuples. Of these29,104 (a, c) tuples,1,262 have
labelsrcreact = 1 , and1,786 have labelsinkreact = 1.

Atom and MO interaction data is available at our chemoinformatics portal (http://cdb.ics.
uci.edu) under Supplements.

3 The combinatorial complexity challenge

In the dataset, the average molecule has44 source MOs and50 sink MOs. For this average molecule,
considering only intermolecular reactions with a second copy of the same molecule gives44 ×
50 = 2200 potential elementary reactions. Thus, the number of possible reactions is very large,
motivating identifying productive reactions given a(r, c) query in two stages. In the first stage, we
train filters using classification techniques on the source and sink reactivity labels. The idea is to
train highly sensitive classifiers which reduce the breadthof possible reactions without erroneously
filtering productive reactions. Then only those source and sink MOs where the main atom passes
the respective atom level filter are considered when enumerating reactions to consider in the second
ranking stage for predicting reaction productivity.

Here, we train two separate classifiers to predict the sourceand sink atom level reactivity labels,
each using the same feature descriptions and machine learning implementations. To assess the
performance of the reactive site filter training, we performfull 10-fold cross-validation (CV) over
all distinct tuples of molecules and conditions(m, c).

3.1 Feature representation

Each(a, c) tuple is represented as a vector of physicochemical and topological features. There are
14 real-valued physicochemical features such as the reactionconditions, the molecular weight of
the molecule, and the charge at and around the atom. Topological features are meant to capture the
neighboring context ofa in the molecular graph, for example counts over vertex-and-edge labeled
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paths and trees rooted ata. We compute paths to length4 and trees to depth2, producing743
molecular graph features. In addition to standard molecular graph features, we also include similar
topological features over a restricted alphabet pharmacophore point graph, where pharmacophore
point graph definitions are adapted from Hähnke, et al[23].Using paths of length4 and trees of
depth2 in the pharmacophore point graph yields another759 features. This results in a total of
1,516 features.

3.2 Training

Before training, all features are normalized to[0, 1] using the minimum and maximum values of
the training set. We oversample(a, c) tuples with label1 to ensure approximately balanced classes.
We experimented with a variety of architectures. Here we report the results obtained using artificial
neural networks using sigmoidal activation functions, with a single hidden layer and a single output
node with a cross-entropy error function. Grid search usinginternal three-fold CV on a single train-
ing set is used to fit the architecture size (converging to 10 hidden nodes) and the L2-regularization
(weight decay) parameter shared by all folds of the overall 10-fold CV. Weights are optimized by
stochastic gradient descent with per-weight adaptive learning rates[24]. Optimization is stopped
after100 epochs as this is observed to be sufficient for convergence.

As highly sensitive classifiers are desired, the choice of a decision threshold is important. We per-
form internal three-fold CV on the training set to find decision thresholds yielding a false negative
rate of 0 on each respective internal test set. The decision threshold for the overall CV fold is taken
as the average of these internal CV fold thresholds.

3.3 Results

We report the true negative rate (TNR) and the false negativerate (FNR) for both the source and
sink classification problems as well as for the the actual reaction filtering problem, as shown in
Table 1. In a CV regime, we are able to filter94.0% of the6.14 million non-productive reactions
with less than0.1% false negatives, effectively reducing the ranking problemimbalance by an order
of magnitude with minimal error. Having established excellent filtering results with rigorous CV,
we then train classifiers with all available data in order to independently assess the ranking method.
The results of these classifiers are shown in the last column of Table 1.

Table 1: Reactive site classification results. Source reactive and sink reactive rows show results
on the respective classification problems. The reaction rowshows results of using the two atom
classifiers for an initial reaction filtering. CV columns indicate results of full10-fold cross-validation
over (m, c) tuples. CV results show the mean and standard deviation overfolds. The best TNR
column shows results when trained with all available data.

Problem CV TNR % (SD) CV FNR% (SD) Best TNR%

Source Reactive 87.7(2.0) 0.1(0.2) 92.1
Sink Reactive 75.6(5.8) 0.2(0.4) 85.6

Reaction 94.0(1.5) < 0.1(< 0.1) 97.2

4 The ranking challenge

We pose the task of identifying the productive reactions as aranking problem. To assess perfor-
mance, we perform full10-fold CV over the2,752 distinct (r, c) queries. With the overall filtered
set of reactions, there are, on average,1.1 productive and62.5 non-productive reactions per(r, c)
query.

4.1 Feature representation

Each reaction is composed of a source and sink MO. The reaction feature vector is the concatenation
of the corresponding source and sink atom level feature vectors with some modifications. To keep
the size reasonable, only real valued and pharmacophore (path length3 and tree depth2) atom level
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features are included.124 features are calculated to describe the net difference between reactants
and products, such as counts over bond types, rings, and formal charges. And finally,450 features
describing the forward and inverse reactions are calculated, including atoms and bonds involved and
implied transition state geometry. This leads to a total of1,677 reaction features.

4.2 Training

We use a pairwise approach to ranking similar to [25], using two identical shared-weight artificial
neural networks linked to a single comparator output node with fixed ±1 weights. The general
architecture is shown in Figure 2. Each shared network receives as an input a potential reaction, i.e.
a source-sink pair. Training is performed via back-propagation with weight-sharing.

...
(Source, Sink) B(Source, Sink) A

...

Figure 2: Shared weight artificial neural network architecture for pairwise ranking. The goal is
to determine a productivity order between the (source, sink) A and (source, sink) B pairs. This
is done with a pair of shared-weight artificial neural networks with sigmoidal hidden nodes and a
linear output node. The output of these internal networks are tied to a single sigmoidal output node
with fixed weights. The final output will approach1 if the (source, sink) A pair is predicted to be
relatively more productive than the (source, sink) B pair, and0 otherwise.

Training details are similar to the reactive site classification. All features are normalized to[0, 1]
and grid search with internal three-fold CV on a single training set is used to fit the architecture
size (converging to 20 hidden nodes) and L2-regularization(weight decay) parameter shared by all
folds of the overall10-fold CV. Weights are optimized using stochastic gradient descent with the
same per-weight adaptive learning rate scheme[24]. Optimization is stopped after25 epochs as this
is observed to be sufficient for convergence.

An ensemble consisting of five separate pairwise ranking machines (as described in Figure 2) is used
for each training set. Each machine in the ensemble is trained with all the productive reactions (from
the training set) and a random partition of the non-productive reactions (from the training set). Final
ranking on the test set is determined by either simple majority vote or by ranking the average scores
from the linear output node of the inner shared-weight network for each machine in the ensemble.
The latter yields a minute performance increase and is reported.

4.3 Results

We consider two measures for evaluating rankings, Normalized Discounted Cumulative Gain at list
size i (NDCG@i) and Percent Within-n. NDCG@i is a common information retrieval metric[26]
that sums the overall usefulness (or gain) of productive reactions in a given list of the top-i results,
where individual gain decays exponentially with lower position. The measure is normalized such
that the best possible ranking of a sizei list has NDCG@i = 1. For example, NDCG@1 is the
fraction of(r, c) queries in which the top ranked reaction is a productive reaction. Percent Within-n
is simply how many(r, c) queries have at mostn non-productive reactions in the smallest ranked list
containing all productive reactions. For example, PercentWithin-0 measures the percent of(r, c)
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queries with perfect rank, and Percent Within-4 measures how often all productive reactions are
recovered with at most4 mis-ranked non-productive reactions. Note that the NDCG@1 and Percent
Within-0 will differ because roughly10% of (r, c) queries have more than one productive reaction.

The non-productive MO interactions vastly outnumber the productive interactions. In spite of this
imbalance, our approach gives excellent ranking results, shown in Table 2. The NDCG results
show, for example, that in89.5% of the queries, the top ranked reaction is productive. The Percent
Within-n results show that89.1% of queries have perfect ranking, while99.9% of queries recover
all productive reactions by considering lists with at most four non-productive reactions.

Table 2: Reaction ranking results. We show Normalized Discounted Cumulative Gain at different
list sizesi (NDCG@i) and Percent Within-n. See text for description of the measures. We report
mean (standard deviation) results over CV folds.

i Mean NDCG@i (SD) n Percent Within-n (SD)
1 0.895(0.016) 0 89.1(1.7)
2 0.939(0.011) 1 96.8(1.0)
3 0.952(0.008) 2 98.9(0.6)
4 0.954(0.007) 3 99.5(0.4)
5 0.956(0.007) 4 99.9(0.3)

4.4 Chemical applications

The strong performance of the ranking system is exhibited byits ability to make accurate multi-step
reaction predictions. An example, shown in the first row of Table 3, is an intramolecular Claisen
condensation reaction with conditions (room temperature,polar aprotic solvent) requiring three el-
ementary steps. The ranking method correctly predicts the given reaction as the highest ranked
reaction at each step.

Table 3: Chemical reactions of interest. The first row shows an example of full multi-step reaction
prediction by the ranking system, a three step intramolecular Claisen condensation (room temp.,
polar aprotic). At each stage, the reaction shown is the top ranked when all possible reactions are
considered by the two stage machine learning system. The second row shows two macrocyclizations
which the rule-based system (Reaction Explorer) is unable to predict, but the machine learning
approach effectively generalizes and ranks correctly. These reactions lead to the formation of a
seven homo-cycle (7 carbons) on the left and seven hetero-cycle (6 carbons, 1 oxygen) on the right.
The third row shows an intelligible error of the machine learning approach (see text).

Multi-
Step
Reaction
Prediction

Generality

Reasonable
Errors

A generalizable system should be able to make reasonable predictions about reactants and reaction
types with which it has only had implicit, rather than explicit, experience. Reaction Explorer, as a
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rule-based expert system without explicit rules about larger ring forming reactions, does not make
any predictions about seven and eight atom cyclizations. Inreality though, larger ring forming
reactions are possible. The second row of Table 3 shows the top two ranked reactions over a set
of bromo-hept-1-en-2-olate reactants, leading to seven-member ring formation. The ranking model,
without ever being trained with seven or eight-member ring forming reactions, returns the enolate
attack as the most favorable, but also returns the lone pair nucleophilic substitution as the second
most favorable. Similar results are made for similar eight-membered ring systems (not shown).
Thus the ranking model is able to generalize and make reasonable suggestions, while the rule-based
system is limited by hard-coded transformation patterns.

Finally, the vast majority of errors areclose errors, as exhibited by the99.9% Within-4 measure.
Furthermore, upon examination of these errors, they are largely intelligible and not unreasonable
predictions. For example, the third row of Table 3 shows two reactions involving an oxonium com-
pound and a bromide anion. Our ranking models return these two reactions as the highest, ranking
the deprotonation slightly ahead of the substitution. Thisis considered a Within-1 ranking because
the Reaction Explorer system labels only the substitution reaction as productive. However, the
immediate precursor reaction in the sequence of Reaction Explorer mechanisms leading to these
reactants is the inverse of the deprotonation reaction, i.e., the protonation of the alcohol. Hydrogen
transfer reactions like this are reversible, and thus the deprotonation is likely the kinetically favored
mechanism, i.e., it is reasonable to rank the deprotonationhighly. It is just not productive, in that it
does not lead to the final overall product. In a prediction system working with multi-step syntheses,
such reversals of previous steps are easily discarded.

5 Conclusion

Being able to predict the outcome of chemical reactions is a fundamental scientific problem. The
ultimate goal of a reaction prediction system is to recapitulate and eventually surpass the ability of
human chemists. In this work, we take a significant step in this direction, showing how to formulate
reaction prediction as a machine learning problem and building an accurate implementation for a
large and key subset of organic chemistry. There are a numberof immediate applications of our
system, including validating retro-synthetic suggestions, generating virtual libraries of molecules,
and mechanistically annotating existing reaction databases.

Reaction prediction is a largely untapped area for machine learning approaches. As such, there is of
course room for improvements. The first is increasing the breadth of chemistry captured, e.g. radical,
pericyclic, and stereoselective chemistry. Augmenting the MO description with number of electrons,
allowing cyclic chained MO interactions, and including face orientations are plausible extensions to
attack each of these additional areas of chemical reactivity. A second area of improvement is the
curation of larger mechanistically defined datasets. We canapproach this manually, by further use
of expert systems to construct data with the required level of detail, or by carefully crafted crowd-
sourcing approaches. Other ongoing areas of research include improving the features, performing
systematic feature selection, and experimenting with different statistical ranking techniques.

As an untapped research problem for the machine learning community, we hope that the current
work and our publicly available data will spark continued and open research in this important area.
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