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Abstract

Being able to predict the course of arbitrary chemical lieastis essential to the
theory and applications of organic chemistry. Previouseg@ghes are not high-
throughput, are not generalizable or scalable, or lackcseiffi data to be effective.
We describe single mechanistic reactions as concertett@emovements from
an electron orbital source to an electron orbital sink. \earsexisting rule-based
expert system to derive a dataset consisting, @9 productive mechanistic steps
and6.14 million non-productive mechanistic steps. We then posatifieng pro-
ductive mechanistic steps as a ranking problem: rank patembital interactions
such that the top ranked interactions yield the major prteddthe machine learn-
ing implementation follows a two-stage approach, in whiah fivst train atom
level reactivity filters to prun84.0% of non-productive reactions with less than a
0.1% false negative rate. Then, we train an ensemble of rankirdpfe®@n pairs of
interacting orbitals to learn a relative productivity ftion over single mechanis-
tic reactions in a given system. Without the use of expliaitsformation patterns,
the ensemble perfectly ranks the productive mechanisnieabp89.1% of the
time, rising t099.9% of the time when top ranked lists with at most four non-
productive reactions are considered. The final system allowlti-step reaction
prediction. Furthermore, it is generalizable, making oeable predictions over
reactants and conditions which the rule-based expertsydtes not handle.

1 Introduction

Determining the major products of chemical reactions gitreninput reactants and conditions is
a fundamental problem in organic chemistry. Reaction ptemi is a necessary component of
retro-synthetic analysis or virtual library generation éivug design[1, 2] and has the potential to
increase our understanding of biochemical catalysis andlmésm([3]. There are a broad range
of approaches to reaction prediction falling around attldage main poles: physical simulations
of transition states using various quantum mechanical #met @approximations[4, 5, 6], rule-based
expert systems[2, 7, 8, 9, 10, 11], and inductive machineieg methods[12]. However, none of
these approaches can successfully emulate the remarkalitiesiof a human chemist.

1.1 Previousapproachesand representations

The very concept of a “reaction” can be ambiguous, as it spords to a macroscopic abstraction,
hence simplification, of a very complex underlying micrgsicoreality, ultimately driven by the

*To whom correspondence should be addressed



laws of quantum and statistical mechanics. However, everefatively small systems, it is impos-
sible to find exact solutions to the Schrodinger equatiomusTin practice, energies are calculated
with varyingly accurate approximations, ranging from aliid Hartree-Fock approaches or density
functional theory to semi-empirical methods or mecharficale fields[6]. This leads to modeling
reactions as minimum energy paths between stable atom oeatiigns on a high-dimensional po-
tential energy surface, where the path through the lowesggriransition state, i.e., saddle point, is
the most favorable[4, 5]. By explicitly modeling energitsgese approaches can be highly accurate
and generalize to a diverse range of chemistries but reqaneful initialization and are computa-
tionally expensive (see [13] for a representative examflh)s branch of computational chemistry
provides invaluable tools for in-depth analysis but is ently not suitable for high-throughput re-
activity tasks and is far from being able to recapitulatekhewledge and ability of human experts.

In contrast, most rule-based expert systems for high-tiiiput reactivity tasks use a much more
abstract representation, in the form of general transfoomsover molecular graphs[2, 7, 8, 9, 10].
Reactions are predicted when a match is found in a librarjj@fable graph transformations. These
general transformations model only net molecular changeprocesses that in reality involve a
sequence of transition states, as shown in Figure 1. Théséaged approaches suffer from at least
four drawbacks: (1) they use a representation that is tdo-leigel, in that an overall transformation
obfuscates the underlying physical reality; (2) they regttie manual curation of large amounts of
expert knowledge; (3) they become unmanageable at largkessin that adding a new graph pattern
often involves having to update a large proportion of ergstransformations with exceptions; and
(4) they lack generality, in that particular chemistriesstrexplicitly be encoded to be predicted.
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Figure 1: Overall transformation of an alkene (hydrocarlwath double bond) with hydro-
bromic acid (HBr) and corresponding mechanistic reactiof@ shows the overall transform as
a SMIRKSJ[14] string pattern and as a graph representatioa.nholecular graph, vertices represent
atoms, with carbons at unlabeled vertices. The number oédstgtween two vertices represents
bond order. +/— symbols represent formal charge. Standard valences aé (iBing implicit
hydrogens. (b) shows the two mechanistic reactions comgaise overall transformation as arrow-
pushing diagrams[15, 16]. Dots represent non-bonded @lain@ electrons, while arrows represent
concerted electron movement. In the first step, electrotisdarelectron-rich carbon-carbon double
bond attack the hydrogen and break the electron-poor hggrbgomine single bond, producing an
anionic bromide (B+) and a carbocation (€). In the second step, electrons from the charged,
electron-rich bromide attack the electron-poor carbocatyielding the final alkyl halide.

Somewhere between low-level QM treatment and abstrachegpaped overall transformations, one
can consider reactions at the mechanistic level. A mectianig elementary, reaction is a con-
certed electron movement through a single transition[dtatd 6]. These mechanistic reactions can
be composed to yield overall transformations. For exanfpilgyre 1 shows the overall transfor-
mation of an alkene interacting with hydrobromic acid tolgian alkyl halide, along with the two
elementary reactions which compose the transformation ehanistic reaction is described as an
idealized molecular orbital (MO) interaction between ataion source (donor) MO and an electron
sink (acceptor) MO. MOs represent regions of the molecutle igh (source) or low (sink) electron



density. In general, potential electron sources are coetpollone pairs of electrons and bonds, and
potential electron sinks are composed of empty atomic algbé#nd bonds. Bonds can act as either
a source or a sink depending on the context. Because of spastaints, we cannot fully describe
subtle chemical details that must be handled, such as clgafor resonance rearrangement. For
details, see texts[15, 16] on mechanisms. Note that by derieg all possible pairings of source
and sink MOs, this representation allows the exhaustivenenation of all potential mechanistic
reactions over an arbitrary set of molecules.

Recent work by Chen and Baldi[11] introduces a rule-bas@esystem (Reaction Explorer) in
which each rearrangement pattern encompasses an eleyneatetion. Here, the elementary reac-
tions represent “productive” mechanistic steps, i.e.¢h@sctions which lead to the overall major
products. Thus, elementary reactions which are not the kiostically favorable, but which even-
tually lead to the overall thermodynamic transformatioaduct may be considered “productive”.
This approach is a marked change from previous approachsaerall transformations, but as a
rule-based system still suffers from the problems of cargtscale, and generality.

While mechanistic reaction representations are appraiomsquite far from the Schrodinger equa-
tion, we expect them to be closer to the underlying reality soerefore more useful than overall
transformations. Furthermore, we expect them also to bieremspredict than overall transfor-

mations due to their more elementary nature and mechaimigtigretation. In combination, these
arguments suggest that working with mechanistic steps maiitate the application of statistical

machine learning approaches, and take advantage of thgabitidy to generalize. Thus, in this

work, reactions are modeled as mechanisms, and for the mesradf the paper, we consider the
term “reaction” to denote a single elementary reaction.ti@rmore, we consider the problem of
reaction prediction to be precisely that of identifying tipeoductive” reactions over a given set of
reactants under particular conditions.

There has been very little work on machine learning appreswtb reaction prediction. The sole
example is a paper from 1990 on inductively extracting oVénansformation patterns from reac-
tion databases[12], a method which was never actually parated into a full reaction prediction
system. This situation is surprising. Given improvementbath computing power and machine
learning methods over the paXi years, one could imagine a machine learning system thatsmine
reaction information to learn the grammar of chemistry,, eérgterms of graph grammars[17]. One
potential reason behind the lack of progress in this arelaeipaucity of available data. Chemical
publishing is dominated by closed models, making litetaformation difficult to access. Further-
more, parsing scientific text and extracting relevant cleamnformation from text and image data
is an open problem of research[18, 19]. While commercialtiea databases exist, e.g., Reaxys[20]
or SPRESI[21], the reactions in these databases are madtglanced, not atom-mapped, and lack
mechanistic detail[22]. This is in addition to sufferingiin a severe lack of openness; the databases
are exorbitantly priced or provided with a restrictive quieterface which precludes serious statisti-
cal data mining. As a result, and to the best of our knowleeffective machine learning approaches
to reaction prediction still need to be developed.

1.2 A new approach

The limitations of previous work motivate a new, fresh agmtoto reaction prediction combining
machine learning with mechanistic representations. Tlyades is to first enumerate all potential
source and sink MOs, and thus all possible reactions by faing, and then use classification
and ranking techniques to identify productive reactioniser& are multiple benefits resulting from
such an approach. By using very general rules to enumerasiiy@ reactions, the approach is not
restricted to manually curated reaction patterns. By teggindividual reactions at the mechanistic
level, the system may be able to statistically learn efficggedictive models based on physico-
chemical attributes rather than abstract overall transétions. And by ranking possible reactions
instead of making binary decisions, the system may proedalts amenable to flexible interpreta-
tion. However, the new approach also faces three key clyggken(1) the development of appropri-
ate training datasets of productive reactions; (2) theldeweent of a machine learning approach to
control the combinatorial complexity resulting from cafesiing all possible pairs of electron donors
and acceptors among the reacting molecules; and (3) théogevent of machine learning solutions
to the problem of predictively ranking the possible mechars. These challenges are addressed
one-by-one in the following sections.



2 Thedata challenge

A mechanistically defined dataset of reactions to use wittptioposed approach does not currently
exist. To derive a dataset, we use a mechanistically definkedbased expert system (Reaction
Explorer) together with its validation suite[11]. The \tion suite is a manually composed set of
reactants, reagents, and products covering a completegradeate organic chemistry curriculum.

Entering a set of reactants and a reagent model into Redetiplorer yields the complete sequence
of mechanistic steps leading to the final products, whereealttions in this sequence share the
conditions encoded by the corresponding reagent modelh Bae of these mechanistic steps is
considered to be a distinct productive elementary reactian a given set of reactants and condi-
tions, which we call dr, c) query tuple, the Reaction Explorer system labels a smatifseactions
productive, while all other reactions enumerated by pgisiource and sink MOs over the reactants
are considered non-productive.

We then define twd0, 1} labels for each atom (up to symmetries) and conditians) tuple over
all (r, ¢) queries. An(a, ¢) tuple has labesr cr eact = 1 ifitis the main atom of a source MO in
a productive reaction over any corresponding:) query, and has labelr cr eact = 0 otherwise.
The labelsi nkr eact is defined similarly using sink MOs.

Reaction conditions are described with three parameterapérature, anion solvation potential,
and cation solvation potential. Temperature is listed ifvike The solvation potentials are unitless
numbers betweefiand1 representing ease of cation or anion solvation, thus piogyid quantita-
tive scale to describe polar protic, polar aprotic, and rdenpsolvents. Note that any mechanistic
interaction with the solvent or reagent is explicitly mogtgle.g. as in Figure 1.

As an initial validation of the method, we consider geneoailidé reactions from the Reaction Ex-
plorer validation suite involving C, H, N, O, Li, Mg, and thalides. Extensions to include stere-
oselective, pericyclic, and radical reactions are disedigs Section 5. The dataset consist$ dfl
million reactions composed &4,825 source and’4,725 sink MOs from2,752 distinct reactants
and reaction conditions, i.g(r, ¢) queries. Of thesé.14 million reactions, the Reaction Explorer
system labelg,989 of them as productive. There a28,894 atom symmetry classes, which when
paired with reaction condition yield®,104 (a, ¢) tuples. Of thes&9,104 (a, ¢) tuples,1,262 have
labelsr creact =1, andl1,786 have labeki nkr eact = 1.

Atom and MO interaction data is available at our chemoinfatios portal fit t p: // cdb. i cs.
uci . edu) under Supplements.

3 Thecombinatorial complexity challenge

In the dataset, the average moleculehbsource MOs and0 sink MOs. For this average molecule,
considering only intermolecular reactions with a secongycof the same molecule givekl x

50 = 2200 potential elementary reactions. Thus, the number of pless#actions is very large,
motivating identifying productive reactions giver{rac) query in two stages. In the first stage, we
train filters using classification techniques on the sourzksnk reactivity labels. The idea is to
train highly sensitive classifiers which reduce the breadihossible reactions without erroneously
filtering productive reactions. Then only those source ankl BIOs where the main atom passes
the respective atom level filter are considered when enuingn@actions to consider in the second
ranking stage for predicting reaction productivity.

Here, we train two separate classifiers to predict the soamdesink atom level reactivity labels,
each using the same feature descriptions and machinergaimplementations. To assess the
performance of the reactive site filter training, we perfduth 10-fold cross-validation (CV) over
all distinct tuples of molecules and conditiops, ¢).

3.1 Featurerepresentation

Each(a, ¢) tuple is represented as a vector of physicochemical anddgjpal features. There are
14 real-valued physicochemical features such as the reactinditions, the molecular weight of
the molecule, and the charge at and around the atom. Togaldgatures are meant to capture the
neighboring context of in the molecular graph, for example counts over vertex-athgle labeled



paths and trees rooted at We compute paths to lengthand trees to deptR, producing743
molecular graph features. In addition to standard molegrkph features, we also include similar
topological features over a restricted alphabet pharmam@ppoint graph, where pharmacophore
point graph definitions are adapted from Hahnke, et al[2Ring paths of length and trees of
depth2 in the pharmacophore point graph yields anoth& features. This results in a total of
1,516 features.

3.2 Training

Before training, all features are normalized[fo1] using the minimum and maximum values of
the training set. We oversample, c) tuples with labell to ensure approximately balanced classes.
We experimented with a variety of architectures. Here werntghe results obtained using artificial
neural networks using sigmoidal activation functionshvétsingle hidden layer and a single output
node with a cross-entropy error function. Grid search usiternal three-fold CV on a single train-
ing set is used to fit the architecture size (converging toid@dn nodes) and the L2-regularization
(weight decay) parameter shared by all folds of the ovel@fald CV. Weights are optimized by
stochastic gradient descent with per-weight adaptivenlegrrates[24]. Optimization is stopped
after100 epochs as this is observed to be sufficient for convergence.

As highly sensitive classifiers are desired, the choice ad@sibn threshold is important. We per-
form internal three-fold CV on the training set to find deeisthresholds yielding a false negative
rate of 0 on each respective internal test set. The decisiestiold for the overall CV fold is taken

as the average of these internal CV fold thresholds.

3.3 Reaults

We report the true negative rate (TNR) and the false negeditee(FNR) for both the source and
sink classification problems as well as for the the actuattiea filtering problem, as shown in
Table 1. In a CV regime, we are able to filt®t.0% of the 6.14 million non-productive reactions
with less thar0.1% false negatives, effectively reducing the ranking probiealance by an order
of magnitude with minimal error. Having established exasdlfiltering results with rigorous CV,
we then train classifiers with all available data in ordemniependently assess the ranking method.
The results of these classifiers are shown in the last coldmalde 1.

Table 1: Reactive site classification results. Source reaeind sink reactive rows show results
on the respective classification problems. The reactiongiomws results of using the two atom
classifiers for an initial reaction filtering. CV columns ioate results of full 0-fold cross-validation
over (m, c) tuples. CV results show the mean and standard deviationfolgs. The best TNR
column shows results when trained with all available data.

[ Problem | CVTNR % (SD) [ CVFNR% (SD) | Best TNRY |

Source Reactive 87.7(2.0) 0.1(0.2) 92.1
Sink Reactive 75.6(5.8) 0.2(0.4) 85.6
Reaction 94.0(1.5) <0.1(<0.1) 97.2

4 Theranking challenge

We pose the task of identifying the productive reactions asn&ing problem. To assess perfor-
mance, we perform fullO-fold CV over the2,752 distinct (r, ¢) queries. With the overall filtered
set of reactions, there are, on averagé,productive andi2.5 non-productive reactions pér, c)

query.
4.1 Featurerepresentation

Each reaction is composed of a source and sink MO. The redetidure vector is the concatenation
of the corresponding source and sink atom level featureoveetith some modifications. To keep
the size reasonable, only real valued and pharmacophdtelguayth3 and tree deptR) atom level



features are includedl24 features are calculated to describe the net differencedestweactants
and products, such as counts over bond types, rings, andfaimarges. And finallyt50 features
describing the forward and inverse reactions are caladilateluding atoms and bonds involved and
implied transition state geometry. This leads to a totdl,677 reaction features.

4.2 Training

We use a pairwise approach to ranking similar to [25], uswg identical shared-weight artificial
neural networks linked to a single comparator output nodé Viked +1 weights. The general
architecture is shown in Figure 2. Each shared networkveseis an input a potential reaction, i.e.
a source-sink pair. Training is performed via back-propiagavith weight-sharing.

(Source, Sink) A (Source, Sink) B

Figure 2: Shared weight artificial neural network architeetfor pairwise ranking. The goal is
to determine a productivity order between the (source,)sfnland (source, sink) B pairs. This
is done with a pair of shared-weight artificial neural netkgowith sigmoidal hidden nodes and a
linear output node. The output of these internal networkgiad to a single sigmoidal output node
with fixed weights. The final output will approadhif the (source, sink) A pair is predicted to be
relatively more productive than the (source, sink) B paid @otherwise.

Training details are similar to the reactive site classifica All features are normalized 10, 1]
and grid search with internal three-fold CV on a single tiragnset is used to fit the architecture
size (converging to 20 hidden nodes) and L2-regularizgti@ight decay) parameter shared by all
folds of the overalll0-fold CV. Weights are optimized using stochastic gradiesgagnt with the
same per-weight adaptive learning rate scheme[24]. Opditioin is stopped afte&5 epochs as this
is observed to be sufficient for convergence.

An ensemble consisting of five separate pairwise rankindinas (as described in Figure 2) is used
for each training set. Each machine in the ensemble is tlaiith all the productive reactions (from
the training set) and a random partition of the non-prodecteactions (from the training set). Final
ranking on the test set is determined by either simple ntgjeate or by ranking the average scores
from the linear output node of the inner shared-weight neétvfor each machine in the ensemble.
The latter yields a minute performance increase and is tegor

4.3 Reaults

We consider two measures for evaluating rankings, Norredliziscounted Cumulative Gain at list
size: (NDCG@1) and Percent Withine. NDCGQj is a common information retrieval metric[26]
that sums the overall usefulness (or gain) of productivetieas in a given list of the top+esults,
where individual gain decays exponentially with lower piosi. The measure is normalized such
that the best possible ranking of a sizéist has NDCGi = 1. For example, NDC@1 is the
fraction of (r, ¢) queries in which the top ranked reaction is a productiveti@acPercent Withina

is simply how many(r, ¢) queries have at mostnon-productive reactions in the smallest ranked list
containing all productive reactions. For example, Perd¥ithin-0 measures the percent @f, ¢)



queries with perfect rank, and Percent WitHinmeasures how often all productive reactions are
recovered with at most mis-ranked non-productive reactions. Note that the N®QI@nd Percent
Within-0 will differ because roughly 0% of (r, ¢) queries have more than one productive reaction.

The non-productive MO interactions vastly outnumber thedpctive interactions. In spite of this
imbalance, our approach gives excellent ranking resuttswa in Table 2. The NDCG results
show, for example, that i89.5% of the queries, the top ranked reaction is productive. ThedPe
Within-n results show tha$9.1% of queries have perfect ranking, whi’®.9% of queries recover
all productive reactions by considering lists with at maatrfnon-productive reactions.

Table 2: Reaction ranking results. We show Normalized DQisted Cumulative Gain at different
list sizesi (NDCGQ3) and Percent Withinz. See text for description of the measures. We report
mean (standard deviation) results over CV folds.

i | Mean NDCQ; (SD) || n | Percent Withins (SD) |

il 0.895(0.016) 0 89.1(1.7)
2 0.939(0.011) il 96.8(1.0)
3 0.952(0.008) 2 98.9(0.6)
a 0.954(0.007) 3 99.5(0.4)
5 0.956(0.007) a 99.9(0.3)

4.4 Chemical applications

The strong performance of the ranking system is exhibiteitbtgbility to make accurate multi-step
reaction predictions. An example, shown in the first row dbl&€a3, is an intramolecular Claisen
condensation reaction with conditions (room temperafuoggr aprotic solvent) requiring three el-
ementary steps. The ranking method correctly predicts iWengeaction as the highest ranked
reaction at each step.

Table 3: Chemical reactions of interest. The first row showsxample of full multi-step reaction
prediction by the ranking system, a three step intramoércQlaisen condensation (room temp.,
polar aprotic). At each stage, the reaction shown is thedoged when all possible reactions are
considered by the two stage machine learning system. Tloadeow shows two macrocyclizations
which the rule-based system (Reaction Explorer) is unablerédict, but the machine learning
approach effectively generalizes and ranks correctly. s€hreactions lead to the formation of a
seven homo-cycle (7 carbons) on the left and seven hetale-(§ carbons, 1 oxygen) on the right.
The third row shows an intelligible error of the machine teag approach (see text).

.“—cH3 H3C\/,.,. oo
Multi- : H,C I V4 .0 0.
Step . " C—) _> \/ ‘B —_— —_— v :
Reaction 0 . _
Prediction o
“Br’ Br’
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e,

Generality
(‘Z Br:

Reasonable )\/\ :/)
Errors

A generalizable system should be able to make reasonall&poas about reactants and reaction
types with which it has only had implicit, rather than exjtliexperience. Reaction Explorer, as a



rule-based expert system without explicit rules aboutdargg forming reactions, does not make
any predictions about seven and eight atom cyclizationsre#tity though, larger ring forming
reactions are possible. The second row of Table 3 shows thaemo ranked reactions over a set
of bromo-hept-1-en-2-olate reactants, leading to severmber ring formation. The ranking model,
without ever being trained with seven or eight-member rimgniing reactions, returns the enolate
attack as the most favorable, but also returns the lone paileaphilic substitution as the second
most favorable. Similar results are made for similar eigiembered ring systems (not shown).
Thus the ranking model is able to generalize and make rebfosaggestions, while the rule-based
system is limited by hard-coded transformation patterns.

Finally, the vast majority of errors ai@ose errors, as exhibited by th&9.9% Within-4 measure.
Furthermore, upon examination of these errors, they agelaintelligible and not unreasonable
predictions. For example, the third row of Table 3 shows teactions involving an oxonium com-
pound and a bromide anion. Our ranking models return thesedactions as the highest, ranking
the deprotonation slightly ahead of the substitution. Thisonsidered a Within-ranking because
the Reaction Explorer system labels only the substituteaction as productive. However, the
immediate precursor reaction in the sequence of Reacti@oEer mechanisms leading to these
reactants is the inverse of the deprotonation reactionthe protonation of the alcohol. Hydrogen
transfer reactions like this are reversible, and thus tipeatenation is likely the kinetically favored
mechanism, i.e., it is reasonable to rank the deprotonétigimly. It is just not productive, in that it
does not lead to the final overall product. In a predictionieyswvorking with multi-step syntheses,
such reversals of previous steps are easily discarded.

5 Conclusion

Being able to predict the outcome of chemical reactions isn@dmental scientific problem. The
ultimate goal of a reaction prediction system is to recdgituand eventually surpass the ability of
human chemists. In this work, we take a significant step mdivection, showing how to formulate

reaction prediction as a machine learning problem and imgildn accurate implementation for a
large and key subset of organic chemistry. There are a nuofiiexmediate applications of our

system, including validating retro-synthetic suggestiagenerating virtual libraries of molecules,
and mechanistically annotating existing reaction datdas

Reaction prediction is a largely untapped area for macleiaming approaches. As such, there is of
course room forimprovements. The firstis increasing thaditeof chemistry captured, e.g. radical,
pericyclic, and stereoselective chemistry. AugmentimgMtO description with number of electrons,
allowing cyclic chained MO interactions, and includingdaarientations are plausible extensions to
attack each of these additional areas of chemical reactifitsecond area of improvement is the
curation of larger mechanistically defined datasets. Weapgmoach this manually, by further use
of expert systems to construct data with the required lelvdktail, or by carefully crafted crowd-
sourcing approaches. Other ongoing areas of researcldaghproving the features, performing
systematic feature selection, and experimenting witredsffit statistical ranking techniques.

As an untapped research problem for the machine learningneonity, we hope that the current
work and our publicly available data will spark continued @apen research in this important area.
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