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Abstract
We present a novel regularization-based Multitask Learning (MTL) formulation
for Structured Output (SO) prediction for the case of hierarchical task relations.
Structured output prediction often leads to difficult inference problems and hence
requires large amounts of training data to obtain accurate models. We propose to
use MTL to exploit additional information from related learning tasks by means of
hierarchical regularization. Training SO models on the combined set of examples
from multiple tasks can easily become infeasible for real world applications. To
be able to solve the optimization problems underlying multitask structured out-
put learning, we propose an efficient algorithm based on bundle-methods. We
demonstrate the performance of our approach in applications from the domain of
computational biology addressing the key problem of gene finding. We show that
1) our proposed solver achieves much faster convergence than previous methods
and 2) that the Hierarchical SO-MTL approach outperforms considered non-MTL
methods.

1 Introduction
In Machine Learning, model quality is most often limited by the lack of sufficient training data.
When data from different, but related tasks, is available, it is possible to exploit it to boost the per-
formance of each task by transferring relevant information. Multitask learning (MTL) considers
the problem of inferring models for several tasks simultaneously, while imposing regularity criteria
or shared representations in order to allow learning across tasks. This has been an active research
focus and various methods (e.g., [5, 8]) have been explored, providing empirical findings [16] and
theoretical foundations [3, 4]. Recently, also the relationships between tasks have been studied (e.g.,
[1]) assuming a cluster relationship [11] or a hierarchy [6, 23, 13] between tasks. Our proposed
method follows this line of research in that it exploits externally provided hierarchical task rela-
tions. The generality of regularization-based MTL approaches makes it possible to extend them
beyond the simple cases of classification or regression to Structured Output (SO) learning problems

1These authors contributed equally.
2This work was done while SS was at Technical University Berlin
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[14, 2, 21, 10]. Here, the output is not in the form of a discrete class label or a real valued number,
but a structured entity such as a label sequence, a tree, or a graph. One of the main contributions
of this paper is to explicitly extend a regularization-based MTL formulation to the SVM-struct for-
mulation for SO prediction [2, 21]. SO learning methods can be computationally demanding, and
combining information from several tasks leads to even larger problems, which renders many inter-
esting applications infeasible. Hence, our second main contribution is to provide an efficient solver
for SO problems which is based on bundle methods [18, 19, 7]. It achieves much faster convergence
and is therefore an essential tool to cope with the demands of the MTL setting.

SO learning has been successfully applied in the analysis of images, natural language, and se-
quences. The latter is of particular interest in computational biology for the analysis of DNA, RNA
or protein sequences. This field moreover constitutes an excellent application area for MTL [12, 22].
In computational biology, one often uses supervised learning methods to model biological processes
in order to predict their outcomes and ultimately understand them better. Due to the complexity
of many biological mechanisms, rich computational models have to be developed, which in turn
require a reasonable amount of training data. However, especially in the biomedical domain, ob-
taining labeled training examples through experiments can be costly. Thus, combining information
from several related tasks can be a cost-effective approach to best exploit the available label data.
When transferring label information across tasks, it often makes sense to assume hierarchical task
relations. In particular, in computational biology, where evolutionary processes often impose a task
hierarchy [22]. For instance, we might be interested in modeling a common biological mechanism
in several organisms such that each task corresponds to one organism. In this setting, we expect
that the longer the common evolutionary history between two organisms, the more beneficial it is
to share information between the corresponding tasks. In this work, we chose a challenging prob-
lem from genome biology to demonstrate that our approach is practically feasible in terms of speed
and accuracy. In ab initio gene finding [17], the task is to build an accurate model of a gene and
subsequently use it to predict the gene content of newly sequenced genomes or to refine existing
annotations. Despite many commonalities between sequence features of genes across organisms,
sequence differences have made it very difficult to build universal gene finders that achieve high
accuracy in cross-organism prediction. This problem is hence ideally suited for the application of
the proposed SO-MTL approach.

2 Methods
Regularization based supervised learning methods, such as the SVM or Logistic Regression play
a central role in many applications. In its most general form, such a method consists of a loss
function L that captures the error with respect to the training data S = {(x1, y1), . . . , (xn, yn)} and
a regularizer R that penalizes model complexity

J(w) =

n∑
i=1

L(w,xi, yi) +R(w).

In the case of Multitask Learning (MTL), one is interested in obtaining several models w1, ...,wT

based on T associated sets of examples St = {(x1, y1), . . . , (xnt
, ynt

)}, t = 1, . . . , T . To couple
individual tasks, an additional regularization term RMTL is introduced that penalizes the disagree-
ment between the individual models (e.g., [1, 8]):

J(w1, ...,wT ) =

T∑
t=1

(
nt∑
i=1

L(w,xi, yi) +R(wt)

)
+RMTL(w1, ...,wT ).

Special cases include T = 2 and RMTL(w1,w2) = γ ||w1−w2|| (e.g., [8, 16]), where γ is a
hyper-parameter controlling the strength of coupling of the solutions for both tasks. For more than
two tasks, the number of coupling terms and hyper-parameters can rise quadratically leading to a
difficult model-selection problem.

2.1 Hierarchical Multitask Learning (HMTL)
We consider the case where tasks correspond to leaves of a tree and are related by its inner nodes. In
[22], the case of taxonomically organized two-class classification tasks was investigated, where each
task corresponds to a species (taxon). The idea was to mimic biological evolution that is assumed to
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generate more specialized molecular processes with each speciation event from root to leaf. This is
implemented by training on examples available for nodes in the current subtree (i.e., the tasks below
the current node), while similarity to the parent classifier is induced through regularization. Thus,
for each node n, one solves the following optimization problem,

(w∗n, b
∗
n) = argmin

w,b

 1

2

(
(1− γ) ||w||2 + γ

∣∣∣∣w−w∗p
∣∣∣∣2)+ C

∑
(x,y)∈S

` (〈x,w〉+ b, y)

 , (1)

where p is the parent node of n (with the special case of w∗p = 0 for the root node), ` is an appropriate
loss function (e.g., the hinge-loss). The hyper-parameter γ ∈ [0, 1] determines the contribution of
regularization from the origin vs. the parent node’s parameters (i.e., the strength of coupling between
the node and its parent). The above problem can be equivalently rewritten as:

(w∗n, b
∗
n) = argmin

w,b

1

2
||w||2 − γ

〈
w,w∗p

〉
+ C

∑
(x,y)∈S

` (〈x,w〉+ b, y)

 . (2)

For γ = 0, the tasks completely decouple and can be learnt independently. The parameters for
the root node correspond to the globally best model. We will refer to these two cases as base-line
methods for comparisons in the experimental section.

2.2 Structured Output Learning and Extensions for HMTL
In contrast to binary classification, elements from the output space Υ (e.g., sequences, trees, or
graphs) of structured output problems have an inherent structure which makes more sophisticated,
problem-specific loss functions desirable. The loss between the true label y ∈ Υ and the predicted
label ŷ ∈ Υ is measured by a loss function ∆ : Υ × Υ → <+. A widely used approach to predict
ŷ ∈ Υ is the use of a linearly parametrized model given an input vector x ∈ X and a joint feature
map Ψ : X ×Υ→ H that captures the dependencies between input and output (e.g., [21]):

ŷw(x) = argmax
ȳ∈Υ

〈w,Ψ(x, ȳ)〉.

The most common approaches to estimate the model parameters w are based on structured output
SVMs (e.g., [2, 21]) and conditional random fields (e.g., [14]; see also [10]). Here we follow
the approach taken in [21, 15], where estimating the parameter vector w amounts to solving the
following optimization problem

min
w∈H

{
R(w) + C

n∑
i=1

`(max
ȳ∈Υ
〈w,Ψ(xi, ȳ)〉+ ∆(yi, ȳ)− 〈w,Ψ(xi,yi)〉)

}
, (3)

where R(w) is a regularizer and ` is a loss function. For `(a) = max(0, a) and R(w) = ‖w ‖22 we
obtain the structured output support vector machine [21, 2] with margin rescaling and hinge-loss.

It turns out that we can combine the structured output formulation with hierarchical multitask learn-
ing in a straight-forward way. We extend the regularizer R(w) in (3) with a γ-parametrized convex
combination of a multitask regularizer 1

2 ||w−wp||22 with the original term. WhenR(w) = 1
2‖w ‖22

and omitting constant terms, we arrive at Rp,γ(w) = 1
2‖w ‖22 − γ〈w,wp〉. Thus we can apply the

described hierarchical multitask learning approach and solve for every node the following optimiza-
tion problem:

min
w∈H

{
Rp,γ(w) + C

n∑
i=1

`(max
ȳ∈Υ
〈w,Ψ(xi, ȳ)〉+ ∆(yi, ȳ)− 〈w,Ψ(xi,yi)〉)

}
(4)

A major difficulty remains: solving the resulting optimization problems which now can become
considerably larger than for the single-task case.

2.3 A Bundle Method for Efficient Optimization
A common approach to obtain a solution to (3) is to use so-called cutting-plane or column-generation
methods. Here one considers growing subsets of all possible structures and solves restricted opti-
mization problems. An algorithm implementing a variant of this strategy based on primal optimiza-
tion is given in the appendix (similar in [21]). Cutting-plane and column generation techniques
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often converge slowly. Moreover, the size of the restricted optimization problems grows steadily
and solving them becomes more expensive in each iteration. Simple gradient descent or second
order methods can not be directly applied as alternatives, because (4) is continuous but non-smooth.
Our approach is instead based on bundle methods for regularized risk minimization as proposed in
[18, 19] and [7]. In case of SVMs, this further relates to the OCAS method introduced in [9]. In
order to achieve fast convergence, we use a variant of these methods adapted to structured output
learning that is suitable for hierarchical multitask learning.

We consider the objective function J(w) = Rp,γ(w) + L(w), where

L(w) := C

n∑
i=1

`(max
ȳ∈Υ

{〈w,Ψ(xi, ȳ)〉+ ∆(yi, ȳ)} − 〈w,Ψ(xi,yi)〉)

andRp,γ(w) is as defined in Section 2.2. Direct optimization of J is very expensive as computing L
involves computing the maximum over the output space. Hence, we propose to optimize an estimate
of the empirical loss L̂ (w), which can be computed efficiently. We define the estimated empirical
loss L̂ (w) as

L̂(w) := C
N∑
i=1

`

(
max

(Ψ,∆)∈Γi

{〈w,Ψ〉+ ∆} − 〈w,Ψ(xi,yi)〉
)
.

Accordingly, we define the estimated objective function as Ĵ(w) = Rp,γ(w) + L̂(w). It is easy to
verify that J(w) ≥ Ĵ(w). Γi is a set of pairs (Ψ(xi,y),∆(yi,y)) defined by a suitably chosen,
growing subset of Υ, such that L̂(w)→ L(w) (cf. Algorithm 1).

In general, bundle methods are extensions of cutting plane methods that use a prox-function to sta-
bilize the solution of the approximated function. In the framework of regularized risk minimization,
a natural prox-function is given by the regularizer. We apply this approach to the objective Ĵ(w)
and solve

min
w

Rp,γ(w) + max
i∈I
{〈ai,w〉+ bi} (5)

where the set of cutting planes ai, bi lower bound L̂. As proposed in [7, 19], we use a set I
of limited size. Moreover, we calculate an aggregation cutting plane ā, b̄ that lower bounds the
estimated empirical loss L̂. To be able to solve the primal optimization problem in (5) in the dual
space as proposed by [7, 19], we adopt an elegant strategy described in [7] to obtain the aggregated
cutting plane (ā′, b̄′) using the dual solution α of (5):

ā′ =
∑
i∈I

αjai and b̄′ =
∑
i∈I

αibi. (6)

The following two formulations reach the same minimum when optimized with respect to w:

min
w∈H

{
Rp(w) + max

i∈I
〈ai,w〉+ bi

}
= min

w∈H
{Rp(w) + 〈ā′,w〉+ b̄′}.

This new aggregated plane can be used as an additional cutting plane in the next iteration step.
We therefore have a monotonically increasing lower bound on the estimated empirical loss and can
remove previously generated cutting planes without compromising convergence (see [7] for details).

The algorithm is able to handle any (non-)smooth convex loss function `, since only the subgradient
needs to be computed. This can be done efficiently for the hinge-loss, squared hinge-loss, Huber-
loss, and logistic-loss.

The resulting optimization algorithm is outlined in Algorithm 1. There are several improvements
possible: For instance, one can bypass updating the empirical risk estimates in line 6, when
L(w(k)) − L̂(w(k)) ≤ ε. Finally, while Algorithm 1 was formulated in primal space, it is easy
to reformulate in dual variables making it independent of the dimensionality of w ∈ H.

2.4 Taxonomically Constrained Model Selection
Model selection for multitask learning is particularly difficult, as it requires hyper-parameter selec-
tion for several different, but related tasks in a dependent manner. For the described approach, each
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Algorithm 1 Bundle Methods for Structured Output Algorithm

1: S ≥ 1: maximal size of the bundle set
2: θ > 0: linesearch trade-off (cf. [9] for details)
3: w(1) = wp

4: k = 1 and ā = 0, b̄ = 0,Γi = ∅ ∀i
5: repeat
6: for i = 1, .., n do
7: y∗ = argmaxy∈Υ{〈w(k),Ψ(xi,y)〉+ ∆(yi,y)}

8: if `
(

max
y∈Υ

{〈w,Ψ(xi,y)〉+ ∆(yi,y)}
)
> `

(
max

(Ψ,∆)∈Γi

〈w,Ψ〉+ ∆

)
then

9: Γi = Γi ∪ (Ψ(xi,y
∗),∆(yi,y

∗))
10: end if
11: Compute ak ∈ ∂wL̂(w(k))

12: Compute bk = L̂(w(k))− 〈w(k),ak〉

13: w∗ = argmin
w∈H

{
Rp,γ(w) + max

(
max

(k−S)+<i≤k
{〈ai,w〉+ bi}, 〈ā,w〉+ b̄

)}
14: Update ā, b̄ according to (6)
15: η∗ = argminη∈< Ĵ(w∗+η(w∗−w(k)))

16: w(k+1) = (1− θ) w∗+θη∗(w∗−w(k))
17: k = k + 1
18: end for
19: until L(w(k))− L̂(w(k)) ≤ ε and J(w(k))− Jk(w(k)) ≤ ε

node n in the given taxonomy corresponds to solving an optimization problem that is subject to
hyper-parameters γn and Cn (except for the root node, where only Cn is relevant). Hence, the direct
optimization of all combinations of dependent hyper-parameters in model selection is not feasible
in many cases. Therefore, we propose to perform a local model selection and optimize the current
Cn and γn at each node n from top to bottom independently. This corresponds to using the tax-
onomy for reducing the parameter search space. To clarify this point, assume a perfect binary tree
for n tasks. The length of the path from root to leaf is log2(n). The parameters along one path are
dependent, e.g. the values chosen at the root will influence the optimal choice further down the tree.
Given k candidate values for parameter γn, jointly optimizing all interdependent parameters along
one path corresponds to optimizing over a grid of klog2(n) in contrast to k · log2(n) when using our
proposed local strategy.

3 Results
3.1 Background
To demonstrate the validity of our approach, we applied it to the computational biology problem of
gene finding. Here, the task is to identify genomic regions encoding genes (from which RNAs and/or
proteins are produced). Genomic sequence can be represented by long strings of the four letters A, C,
G, and T (genome sizes range from a few megabases to several gigabases). In prokaryotes (mostly
bacteria and archaea) gene structures are comparably simple (cf. Figure 1A): the protein coding
region starts by a start codon (one out of three specific 3-mers in many prokaryotes) followed by a
number of codon triplets (of three nucleotides each) and is terminated by a stop codon (one out of
five specific 3-mers in many prokaryotes). Genic regions are first transcribed to RNA, subsequently
the contained coding region is translated into a protein. Parts of the RNA that are not translated are
called untranslated region (UTR). Genes are separated from one another by intergenic regions. The
protein coding segment is depleted of stop codons making the computational problem of identifying
coding regions relatively straight forward.

In higher eukaryotes (animals, plants, etc.) however, the coding region can be interrupted by in-
trons, which are removed from the RNA before it is translated into protein. Introns are flanked by
specific sequence signals, so-called splice sites (cf. Figure 1B). The presence of introns substantially
complicates the identification of the transcribed and coding regions. In particular, it is usually in-
sufficient to identify regions depleted of stop codons to determine the encoded protein sequence. To
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accurately detect the transcribed regions in eukaryotic genomes, it is therefore often necessary to
use additional experimental data (e.g., sequencing of RNA fragments). Here, we consider two key
problems in computational gene finding of (i) predicting (only) the coding regions for prokaryotes
and (ii) predicting the exon-intron structure (but not the coding region) for eukaryotes.

ATG TAA

Intergenic
Start

Codon Coding region
Stop

Codon IntergenicUTR UTR

N x 3 x {A,C,G,T}

Intergenic Intron Intron IntergenicExon ExonExon

A) Prokaryotic Gene

B) Eukaryotic Gene

Coding region

N x 3 x {A,C,G,T}

UTR UTR

Figure 1: Panel A shows the structure of
a prokaryotic gene. The protein coding re-
gion is flanked by a start and a stop codon
and contains a multiple of three nucleotides.
UTR denotes the untranslated region. Panel
B shows the structure of an eukaryotic gene.
The transcribed region contains introns and
exons. Introns are flanked by splice sites and
are removed from the RNA. The remaining
sequence contains the UTRs and coding re-
gion.

The problem of identifying genes can be posed as a label sequence learning task, were one assigns
a label (out of intergenic, transcript start, untranslated region, coding start, coding exon, intron,
coding stop, transcript stop) to each position in the genome. The labels have to follow a grammar
dictated by the biological processes of transcription and translation (see Figure 1) making it suitable
to apply structured output learning techniques to identify genes. Because the biological processes
and cellular machineries which recognize genes have slowly evolved over time, genes of closely
related species tend to exhibit similar sequence characteristics. Therefore these problems are very
well suited for the application of multitask learning: sharing information among species is expected
to lead to more accurate gene predictions compared to approaching the problem for each species in
isolation. Currently, the genomes of many prokaryotic and eukaryotic species are being sequenced,
but often very little is known about the genes encoded, and standard methods are typically used to
infer them without systematically exploiting reliable information on related species.

In the following we will consider two different aspects of the described problem. First, focusing on
eukaryotic gene finding for a single species, we show that the proposed optimization algorithm very
quickly converges to the optimal solution. Second, for the problem of prokaryotic gene finding in
several species, we demonstrate that hierarchical multitask structured output learning significantly
improves gene prediction accuracy. The supplement, data and code can be found on the project
website3.

3.2 Eukaryotic Gene Finding Based on RNA-Seq
We first consider the problem of detecting exonic, intronic and intergenic regions in a single eukary-
otic genome. We use experimental data from RNA sequencing (RNA-seq) which provides evidence
for exonic and intronic regions . For simplicity, we assume that for each position in the genome
we are given numbers on how often this position was experimentally determined to be exonic and
intronic, respectively. Ideally, exons and introns belonging to the same gene should have a constant
number of confirmations, whereas these values may vary greatly between different genes. But in
reality, these measurements are typically incomplete and noisy, so that inference techniques greatly
help to reconstruct complete gene structures.

As any HMM or HMSVM, our method employs a state model defining allowed transitions between
states. It consists of five basic states: intergenic, exonic, intron start (donor splice site), intronic,
and intron end (acceptor splice site). These states are duplicated Q = 5 times to model different
levels of confirmation and the whole model is mirrored for simultaneous predictions of genes from
both strands of the genome (see supplement for details). In total, we have 41 states, each of which is
associated with several parameters scoring features derived from the exon and intron confirmation
and computational splice site predictions (see supplement for details). Overall the model has almost
1000 parameters.

We trained the model using 700 training regions with known exon/intron structures and a total length
of ca. 5.2 million nucleotides (data from the nematode C. elegans). We used the column generation-
based algorithm (see Appendix) and the Bundle method-based algorithm (Algorithm 1) and recorded
upper and lower bounds of the objective during run time (cf. Figure 2). Whereas both algorithms

3http://bioweb.me/so-mtl
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need a similar amount of computation per iteration (mostly decoding steps), the Bundle-method
showed much faster convergence.

We assessed prediction accuracy in a three-fold cross-validation procedure where individual test
sequences consisted of large genomic regions (of several Mbp) each containing many genes. This
evaluation procedure is expected to yield unbiased estimates that are very similar to whole-genome
predictions. Prediction accuracy was compared to another recently proposed, widely used method
called Cufflinks [20]. We observed that our method detects introns and transcripts more accurately
than Cufflinks in the data set analyzed here (cf. Figure 2).
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Figure 2: Left panel: Convergence for bundle method-based solver versus column generation (log-scale).
Right panel: Prediction accuracy of our eukaryotic gene finding method in comparison to a state-of-the-art
method, Cufflinks [20]. The F-score (harmonic mean of precision and recall) was assessed based on two
metrics: correctly predicted introns as well as transcripts for which all introns were correct (see label).

3.3 Gene Finding in Multiple Prokaryotic Genomes
In a second series of experiments we evaluated the benefit of applying SO-MTL to prokaryotic gene
prediction.

SO prediction method We modeled prokaryotic genes as a Markov chain on the nucleotide level.
To nonetheless account for the biological fact that genetic information is encoded in triplets, the
model contains a 3-cycle of exon states; details are given in Figure 3.

Start 
Codon

Stop 
CodonExonic2

Exonic1

Exonic3

Intergenic

Start

Stop

Figure 3: Simple state model for prokaryotic gene finding.
A suitable model for prokaryotic gene prediction needs to
consider 1) that a gene starts with a start codon (i.e. a certain
triplet of nucleotides) 2) ends with a stop codon and 3) has
a length divisible by 3. Properties 1) and 2) are enforced by
allowing only transitions into and out of the exonic states on
start and stop codons, respectively. Property 3) is enforced
by only allowing transitions from exon state Exonic3 to the
stop codon state.

Data generation We selected a subset of organisms with publicly available genomes to broadly
cover the spectrum of prokaryotic organisms. In order to show that MTL is beneficial even for
relatively distant species, we selected representatives from two different domains: bacteria and ar-
chaea. The relationship between these organisms is captured by the taxonomy shown in Figure 4,
which was created based on the information available on the NCBI website4. For each organism,
we generated one training example per annotated gene. The genomic sequences were cut between
neighboring genes (splitting intergenic regions equally), such that a minimum distance of 6 nu-
cleotides between genes was maintained. Features for SO learning were derived from the nucleotide
sequence by transcoding it to a numerical representation of triplets. This resulted in binary vectors
of size 43 = 64 with exactly one non-zero entry. We sub-sampled from the complete dataset of Ni
examples for each organism i and created new datasets with 20 training examples, 40 evaluation
examples and 200 test examples.

4ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
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Figure 4: Species and their taxonomic hierarchy used for prokaryotic gene finding.

Experimental setup For model selection we used a grid over the following two parameter ranges
C = [100, 250], γ = [0, 0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0] for each node in the taxonomy (cf. Fig-
ure 4). Sub-sampling of the dataset was performed 3 times and results were subsequently averaged.
We compared our MTL algorithm to two baseline methods, one where predictors for all tasks where
trained without information transfer (independent) and the other extreme case, where one global
model was fitted for all tasks based on the union of all data sets (union). Performance was mea-
sured by the F-score, the harmonic mean of precision and recall, where precision and recall were
determined on nucleotide level (e.g. whether or not an exonic nucleotide was correctly predicted) in
single-gene regions. (Note that due to its per-nucleotide Markov restriction, however, our method is
not able to exploit that there is only one gene per examples sequence.)

Results Figure 5 shows the results for our proposed MTL method and the two baseline methods
described above (see Appendix for table). We observe that it generally pays off to combine infor-
mation from different organisms, as union always performs better than independent. Indeed MTL
improves over the naive combination method union with F-score increases of up to 4.05 percentage
points in A. tumefaciens. On average, we observe an improvement of 13.99 percentage points for
MTL over independent and 1.13 percentage points for MTL over union, confirming the value of
MTL in transferring information across tasks. In addition, the new bundle method converges at least
twice as fast as the originally proposed cutting plane method.
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Independent
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MTL

Figure 5: Evaluation of MTL and baseline methods independent and union.

4 Discussion
We have introduced a regularization-based approach to SO learning in the setting of hierarchical
task relations and have empirically shown its validity on an application from computational biol-
ogy. To cope with the increased problem size usually encountered in the MTL setting, we have
developed an efficient solver based on bundle-methods and demonstrated its improved convergence
behavior compared to column generation techniques. Applying our SO-MTL algorithm to the prob-
lem of prokaryotic gene finding, we could show that sharing information across tasks indeed results
in improved accuracy over learning tasks in isolation. Additionally, the taxonomy, which relates
individual tasks to each other, proved useful in that it led to more accurate predictions than were
obtained when simply training on all examples together. We have previously shown that MTL al-
gorithms excel in a scenarios where there is limited training data relative to the complexity of the
problem and model [23]. As this experiment was carried out on a relatively small data set, more
work is required to turn our approach into a state-of-the-art prokaryotic gene finder.
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