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Abstract

This paper considers the problem of combining multiple models to achieve a
prediction accuracy not much worse than that of the best single model for least
squares regression. It is known that if the models are mis-specified, model aver-
aging is superior to model selection. Specifically, let n be the sample size, then
the worst case regret of the former decays at the rate of O(1/n) while the worst
case regret of the latter decays at the rate of O(1/

√
n). In the literature, the most

important and widely studied model averaging method that achieves the optimal
O(1/n) average regret is the exponential weighted model averaging (EWMA) al-
gorithm. However this method suffers from several limitations. The purpose of
this paper is to present a new greedy model averaging procedure that improves
EWMA. We prove strong theoretical guarantees for the new procedure and illus-
trate our theoretical results with empirical examples.

1 Introduction

This paper considers the model combination problem, where the goal is to combine multiple models
in order to achieve improved accuracy. This problem is important for practical applications because
it is often the case that single learning models do not perform as well as their combinations. In
practice, model combination is often achieved through the so-called “stacking” procedure, where
multiple models {f1(x), . . . , fM (x)} are first learned based on a shared “training dataset”. Then
these models are combined on a separate “validation dataset”. This paper is motivated by this sce-
nario. In particular, we assume that M models {f1(x), . . . , fM (x)} are given a priori (e.g., we may
regard them as being obtained with a separate training set), and we are provided with n labeled data
points (validation data) {(X1, Y1), . . . , (Xn, Yn)} to combine these models.

For simplicity and clarity, our analysis focuses on least squares regression in fixed design although
similar analysis can be extended to random design and to other loss functions. In this setting, for
notation convenience, we can represent the k-th model on the validation data as a vector fk =
[fk(X1), . . . , fk(Xn)] ∈ Rn, and we let the observation vector y = [Y1, . . . , Yn] ∈ Rn. Let
g = Ey be the mean. Our goal (in the fixed design or denoising setting) is to estimate the mean
vector g from y using the M existing models F = {f1, . . .fM}. Here, we can write

y = g + ξ,

where we assume that ξ are iid Gaussian noise: ξ ∼ N(0, σ2In×n) for simplicity. This iid Gaussian
assumption isn’t critical, and the results remain the same for independent sub-Gaussian noise.

We assume that the models may be mis-specified. That is, let k∗ be the best single model defined as:

k∗ = argmin
k
‖fk − g‖

2
2 , (1)
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then fk∗ 6= g.

We are interested in an estimator f̂ of g that achieves a small regret

R(f̂) =
1

n

∥∥∥f̂ − g∥∥∥2
2
− 1

n

∥∥fk∗ − g∥∥22 .
This paper considers a special class of model combination methods which we refer to as model
averaging, with combined estimators of the form

f̂ =

M∑
k=1

ŵkfk,

where ŵk ≥ 0 and
∑
k ŵk = 1. A standard method for “model averaging” is model selection, where

we choose the model k̂ with the smallest least squares error:

f̂MS = f k̂; k̂ = arg min
k
‖fk − y‖

2
2 .

This corresponds to the choice of ŵk̂ = 1 and ŵk = 0 when k 6= k̂. However, it is well known that
the worst case regret this procedure can achieve is R(f̂MS) = O(

√
lnM/n) [1]. Another standard

model averaging method is the Exponential Weighted Model Averaging (EWMA) estimator defined
as

f̂EWMA =

M∑
k=1

ŵkfk, ŵk =
qke
−λ‖fk−y‖

2
2∑M

j=1 qje
−λ‖fj−y‖22

, (2)

with a tuned parameter λ ≥ 0. The extra parameters {qj}j=1,...,M are priors that impose bias
favoring some models over some other models. Here we assume that qj ≥ 0 and

∑
j qj = 1.

In this setting, the most common prior choice is the flat prior qj = 1/M . It should be pointed
out that a progressive variant of (2), which returns the average of n + 1 EWMA estimators with
Si = {(X1, Y1), . . . , (Xi, Yi)} for i = 0, 1, . . . , n, was often analyzed in the earlier literature
[2, 9, 5, 1]. Nevertheless, the non progressive version presented in (2) is clearly a more natural
estimator, and this is the form that has been studied in more recent work [3, 6, 8]. Our current paper
does not differentiate these two versions of EWMA because they have similar theoretical properties.
In particular, our experiments only compare to the non-progressive version (2) that performs better
in practice.

It is known that exponential model averaging leads to an average regret of O(lnM/n) which
achieves the optimal rate; however it was pointed out in [1] that the rate does not hold with large
probability. Specifically, EWMA only leads to a sub-optimal deviation bound ofO(

√
lnM/n) with

large probability. To remedy this sub-optimality, an empirical star algorithm (which we will refer to
as STAR from now on) was then proposed in [1]; it was shown that the algorithm gives O(lnM/n)
deviation bound with large probability under the flat prior qi = 1/M . One major issue of the STAR
algorithm is that its average performance is often inferior to EWMA, as we can see from our em-
pirical examples. Therefore although theoretically interesting, it is not an algorithm that can be
regarded as a replacement of EWMA for practical purposes. Partly for this reason, a more recent
study [7] re-examined the problem of improving EWMA, where different estimators were proposed
in order to achieve optimal deviation for model averaging. However, the proposed algorithms are
rather complex and difficult to implement. The purpose of this paper is to present a simple greedy
model averaging (GMA) algorithm that gives the optimal O(lnM/n) deviation bound with large
probability, and it can be applied with arbitrary prior qi. Moreover, unlike STAR which has average
performance inferior to EWMA, the average performance of GMA algorithm is generally superior
to EWMA as we shall illustrate with examples. It also has some other advantages which we will
discuss in more details later in the paper.

2 Greedy Model Averaging

This paper studies a new model averaging procedure presented in Algorithm 1. The procedure has L
stages, and each time adds an additional model f k̂(`) into the ensemble. It is based on a simple, but
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important modification of a classical sequential greedy approximation procedure in the literature [4],
which corresponds to setting µ(`) = 0, λ = 0 in Algorithm 1 with α(`) optimized over [0, 1]. The

STAR algorithm corresponds to the stage-2 estimator f̂
(2)

with the above mentioned classical greedy
procedure of [4]. However, in order to prove the desired deviation bound, our analysis critically

depends on the extra term µ(`)
∥∥∥f̂ (`−1)

− f j
∥∥∥2
2

which isn’t present in the classical procedure (that
is, our proof does not apply to the procedure of [4]). As we will see in Section 4, this extra term
does have a positive impact under suitable conditions that correspond to Theorem 1 and Theorem 2
below, and thus this term is not only for theoretical interest, but also it leads to practical benefits
under the right conditions.

Another difference between GMA and the greedy algorithm in [4] is that our procedure allows the
use of non-flat priors through the extra penalty term λc(`) ln(1/qj). This generality can be useful
for some applications. Moreover, it is useful to notice that if we choose the flat prior qj = 1/M ,
then the term λc(`) ln(1/qj) is identical for all models, and thus this term can be removed from the
optimization. In this case, the proposed method has the advantage of being parameter free (with the
default choice of ν = 0.5). This advantage is also shared by the STAR algorithm.

input : noisy observation y and static models f1, . . . ,fM

output : averaged model f̂
(`)

parameters: prior {qj}j=1,...,M and regularization parameters ν and λ

let f̂
(0)

= 0
for ` = 1, 2, . . . , L do

let α(`) = (`− 1)/`
let µ(1) = 0; µ(2) = 0.05; µ(`) = ν(`− 1)/`2 if ` > 2
let c(1) = 1; c(2) = 0.25; and c(`) = [20ν(1− ν)(`− 1)]−1 if ` > 2

let k̂(`) = argminj Q
(`)(j), where

Q(`)(j) :=

[∥∥∥α(`)f̂
(`−1)

+ (1− α(`))f j − y
∥∥∥2
2

+ µ(`)
∥∥∥f̂ (`−1)

− f j
∥∥∥2
2

+ λc(`) ln 1
qj

]
let f̂

(`)
= α(`)f̂

(`−1)
+ (1− α(`))f k̂(`)

end
Algorithm 1: Greedy Model Averaging (GMA)

Observe that the first stage of GMA corresponds to the standard model selection procedure:

k̂(1) = argmin
j

[∥∥f j − y∥∥22 + λ ln(1/qj)
]
,

f̂
(1)

= f k̂(1) .

As we have pointed out earlier, it is well known that only O(1/
√
n) regret can be achieved by

any model selection procedure (that is, any procedure that returns a single model f̂ k̂ for some k̂).
However, a combination of only two models will allow us to achieve the optimal O(1/n) rate. In

fact, f̂
(2)

achieves this rate. For clarity, we rewrite this stage 2 estimator as

k̂(2) = argmin
j

[∥∥∥∥1

2
(f k̂(1) + f j)− y

∥∥∥∥2
2

+
1

20

∥∥∥f̂ k̂(1) − f j∥∥∥2
2

+
λ

4
ln(1/qj)

]
,

f̂
(2)

=
1

2
(f k̂(1) + f k̂(2)).

Theorem 1 shows that this simple stage 2 estimator achieves O(1/n) regret. A similar result was
shown in [1] for the STAR algorithm under the flat prior qj = 1/M , which corresponds to the stage
2 estimator of the classical greedy algorithm in [4]. Theoretically our result has several advantages
over that of the classical EWMA method. First it produces a sparse estimator while exponential
averaging estimator is dense; second the performance bound is scale free in the sense that the bound

3



depends only on the noise variance but not the magnitude of maxj
∥∥f j∥∥; third the optimal bound

holds with high probability while EWMA only achieves optimal bound on average but not with large
probability; and finally if we choose a flat prior qj = 1/M , the estimator is parameter free because
we can exclude the term λ ln(1/qj) from the estimators. This result also improves the recent work
of [7] in that the resulting bound is scale free while the algorithm itself is significantly simpler. One
disadvantage of this stage-2 estimator (and similarly the STAR estimator of [1]) is that its average
performance is generally inferior to that of EWMA, mainly due to the relatively large constant in
Theorem 1 (the same issue holds for the STAR algorithm). For this reason, the stage-2 estimator is
not a practical replacement of EWMA. This is the main reason why it is necessary to run GMA for
L > 2 stages, which leads to reduced constants (see Theorem 2) below. Our empirical experiments
show that in order to compete with EWMA for average performance, it is important to take L > 2.
However a relatively small L (as small as L = 5) is often sufficient, and in such case the resulting
estimator is still quite sparse.

Theorem 1 Given qj ≥ 0 such that
M∑
j=1

qj = 1. If λ ≥ 40σ2, then with probability 1− 2δ we have

R(f̂
(2)

) ≤ λ

n

[
3

4
ln(1/qk∗) +

1

2
ln(1/δ)

]
.

While the stage-2 estimator f̂
(2)

achieves the optimal rate, running GMA for more more stages
can further improve the performance. The following theorem shows that similar bounds can be
obtained for GMA at stages larger than 2. However, the constant before σ2

n ln 1
qk∗δ

approaches 8

when ` → ∞ (with default ν = 0.5), which is smaller than the constant of Theorem 1 which is
about 30. This implies potential improvement when we run more stages, and this improvement is
confirmed in our empirical study. In fact, with relatively large `, the GMA method not only has the
theoretical advantage of achieving smaller regret in deviation (that is, the regret bound holds with
large probability) but also achieves better average performance in practice.

Theorem 2 Given qj ≥ 0 such that
M∑
j=1

qj = 1. If λ ≥ 40σ2 and let 0 < ν < 1 in Algorithm 1,

then with probability 1− 2δ we have

R(f̂
(`)

) ≤ λ

n

[
(`− 2) + ln(`− 1) + 30ν(1− ν)

20ν(1− ν)`

]
ln

1

qk∗δ
.

Another important advantage of running GMA for ` > 2 stages is that the resulting estimator not
only competes with the best single estimator fk∗ , but also competes with the best estimator in
the convex hull of cov(F) (with the parameter ν appropriately tuned). Note that the latter can be
significantly better than the former. Define the convex hull of F as

cov(F) =


M∑
j=1

wjf j : wj ≥ 0;
∑
j

wj = 1

 .

The following theorem shows that as `→∞, the prediction error of f̂
(`)

is no more than O(1/
√
n)

worse than that of the optimal f̄ ∈ cov(F) when we choose a sufficiently small ν = O(1/
√
n)

in Algorithm 1. Note that in this case, it is beneficial to use a parameter ν smaller than the default
choice of ν = 0.5. This phenomenon is also confirmed by our experiments.

Theorem 3 Given qj ≥ 0 such that
M∑
j=1

qj = 1. Consider any {wj : j = 1, . . . ,M} such that∑
j wj = 1 and wj ≥ 0, and let f̄ =

∑
j wjf j . If λ ≥ 40σ2 and let 0 < ν < 1 in Algorithm 1,

then with probability 1− 2δ, when `→∞:

1

n

∥∥∥f̂ (`)
− g
∥∥∥2
2
≤ 1

n

∥∥f̄ − g∥∥2
2
+
ν

n

∑
k

wk
∥∥fk − f̄∥∥22+

λ

20ν(1− ν)n

∑
k

wk ln

(
1

δqk

)
+O

(
1

`

)
.
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3 Experiments

The point of these experiments is to show that the consequences of our theoretical analysis can be
observed in practice, which support the main conclusions we reach. For this purpose, we consider
the model g = Xw + 0.5∆g, where X = (f1, . . . ,fM ) is an n ×M matrix with independent
standard Gaussian entries, and ∆g ∼ N(0, In×n) implies that the model is mis-specified.

The noise vector is ξ ∼ N(0, σ2In×n), independently generated of X . The coefficient vector
w = (w1, . . . , wM )> is given by wi = |ui|/

∑s
j=1 |uj | for i = 1, . . . , s, where u1, . . . , us are

independent standard uniform random variables for some fixed s.

The performance of an estimator f̂ measured here is the mean squared error (MSE) defined as

MSE(f̂) =
1

n

∥∥∥f̂ − g∥∥∥2
2
.

We run the Greedy Model Averaging (GMA) algorithm for L stages up to L = 40. The EWMA
parameter is tuned via 10-fold cross-validation. Moreover, we also listed the performance of EWMA
with projection, which is the method that runs EWMA, but with each model fk replaced by model
f̃k = αkfk where αk = arg minα∈R ‖αfk − y‖22. That is, f̃k is the best linear scaling of fk to
predict y. Note that this is a special case of the class of methods studied in [6] (which considers
more general projections) that leads to non progressive regret bounds, and this is the method of
significant current interests [3, 8]. However, at least for the scenario considered in our paper, the
projected EWMA method never improves performance in our experiments. Finally, for reference
purpose, we also report the MSE of the best single model (BSM) fk∗ , where k∗ is given by (1).
The model fk∗ is clearly not a valid estimator because it depends on the unobserved g; however its
performance is informative, and thus included in the tables. For simplicity, all algorithms use flat
prior qk = 1/M .

4 Illustration of Theorem 1 and Theorem 2

The first set of experiments are performed with the parameters n = 50, M = 200,s = 1 and σ = 2.
Five hundred replications are run, and the MSE performance of different algorithms are reported in
Table 1 using the “mean± standard deviation” format.

Note that with s = 1, the target is g = f1 + 0.5∆g. Since f1 and ∆g are random Gaussian vectors,
the best single model is likely f1. The noise σ = 2 is relatively large. This is thus the situation
that model averaging does not achieve as good a performance as that of the best single model. This
corresponds to the scenario considered in Theorem 1 and Theorem 2.

The results indicate that for GMA, from L = 1 (corresponding to model selection) to L = 2 (stage-2
model averaging of Theorem 1), there is significant reduction of error. The performance of GMA
with L = 2 is comparable to that of the STAR algorithm. This isn’t surprising, because STAR can
be regarded as the stage-2 estimator based on the more classical greedy algorithm of [4]. We also
observe that the error keeps decreasing (but at a slower pace) when L > 2, which is consistent with
Theorem 2. It means that in order to achieve good performance, it is necessary to use more stages
than L = 2 (although this doesn’t change the O(1/n) rate for regret, it can significantly reduce
constant). It becomes better than EWMA when L is as small as 5, which still gives a relatively
sparse averaged model. EWMA with projection does not perform as well as the standard EWMA
method in this setting. Moreover, we note that in this scenario, the standard choice of ν = 0.5 in
Theorem 2 is superior to choosing smaller ν = 0.1 or ν = 0.001. This again is consistent with
Theorem 2, which shows that the new term we added into the greedy algorithm is indeed useful in
this scenario.

5 Illustration of Theorem 3

The second set of experiments are performed with the parameters n = 50, M = 200,s = 10 and
σ = 0.5. Five hundred replications are run, and the MSE performance of different algorithms are
reported in Table 2 using the “mean± standard deviation” format.
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Table 1: MSE of different algorithms: best single model is superior to averaged models
STAR EWMA EWMA (with projection) BSM

0.663± 0.4 0.645± 0.5 0.744± 0.5 0.252± 0.05

GMA L = 1 L = 2 L = 5 L = 20 L = 40
ν = 0.5 0.735± 0.74 0.689± 0.4 0.58± 0.39 0.566± 0.37 0.567± 0.38
ν = 0.1 0.735± 0.74 0.689± 0.4 0.645± 0.31 0.623± 0.29 0.622± 0.29
ν = 0.01 0.735± 0.74 0.689± 0.4 0.663± 0.3 0.638± 0.28 0.639± 0.28

Note that with s = 10, the target is g = f̄ + 0.5∆g for some f̄ ∈ cov(F). The noise σ = 0.5 is
relatively small, which makes it beneficial to compete with the best model f̄ in the convex hull even
though GMA has a larger regret of O(1/

√
n) when competing with f̄ . This is thus the situation

considered in Theorem 3, which means that model averaging can achieve better performance than
that of the best single model.

The results again show that for GMA, from L = 1 (corresponding to model selection) to L = 2
(stage-2 model averaging of Theorem 1), there is significant reduction of error. The performance
of GMA with L = 2 is again comparable to that of the STAR algorithm. Again we observe that
even with the standard choice of ν = 0.5, the error keeps decreasing (but at a slower pace) when
L > 2, which is consistent with Theorem 2. It becomes better than EWMA when L is as small as 5,
which still gives a relatively sparse averaged model. EWMA with projection again does not perform
as well as the standard EWMA method in this setting. Moreover, we note that in this scenario, the
standard choice of ν = 0.5 in Theorem 2 is inferior to choosing smaller parameter values of ν = 0.1
or ν = 0.001. This is consistent with Theorem 3, where it is beneficial to use a smaller value for ν
in order to compete with the best model in the convex hull.

Table 2: MSE of different algorithms: best single model is inferior to averaged model
STAR EWMA EWMA (with projection) BSM

0.443± 0.08 0.316± 0.087 0.364± 0.078 0.736± 0.083

GMA L = 1 L = 2 L = 5 L = 20 L = 40
ν = 0.5 0.809± 0.12 0.456± 0.081 0.305± 0.062 0.266± 0.057 0.265± 0.057
ν = 0.1 0.809± 0.12 0.456± 0.081 0.269± 0.056 0.214± 0.046 0.211± 0.045
ν = 0.01 0.809± 0.12 0.456± 0.081 0.268± 0.053 0.211± 0.045 0.207± 0.045

6 Conclusion

This paper presents a new model averaging scheme which we call greedy model averaging (GMA).
It is shown that the new method can achieve regret bound of O(lnM/n) with large probability
when competing with the single best model. Moreover, it can also compete with the best combined
model in convex hull. Both our theory and experimental results suggest that the proposed GMA
algorithm is superior to the standard EWMA procedure. Due to the simplicity of our proposal,
GMA may be regarded as a valid alternative to the more widely studied EWMA procedure both for
practical applications and for theoretical purposes. Finally we shall point out that while this work
only considers static model averaging where the models F are finite, similar results can be obtained
for affine estimators or infinite models considered in recent work [3, 6, 8]. Such extension will be
left to the extended report.

A Proof Sketches

We only include proof sketches, and leave the details to the supplemental material that accompanies
the submission. First we need the following standard Gaussian tail bounds. The proofs can be found
in the supplemental material.
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Proposition 1 Let f j ∈ Rn be a set of fixed vectors (j = 1, . . . ,M ), and assume that qj ≥ 0 with∑
j qj = 1. Let k∗ be a fixed integer between 1 and M . Define event E1 as

E1 =

{
∀j : (f j − fk∗)>ξ ≤ σ‖f j − fk∗‖2

√
2 ln(1/(δqj))

}
and define event E2 as

E2 =

{
∀j, k : (f j − fk)>ξ ≤ σ‖f j − fk‖2

√
2 ln(1/(δqjqk))

}
,

then P (E1) ≥ 1− δ and P (E2) ≥ 1− δ.

A.1 Proof Sketch of Theorem 1

More detailed proof can be found in the supplemental material. Note that with probability 1 − 2δ,
both event E1 and event E2 of Proposition 1 hold. Moreover we have∥∥∥f̂ (2)

− g
∥∥∥2
2

=
∥∥∥α(2)f̂

(1)
+ (1− α(2))f k̂(2) − g

∥∥∥2
2

≤
∥∥∥α(2)f̂

(1)
+ (1− α(2))fk∗ − g

∥∥∥2
2

+ 2(1− α(2))ξ>(f k̂(2) − fk∗)

+µ(2)

(∥∥∥f̂ (1)
− fk∗

∥∥∥2
2
−
∥∥∥f̂ (1)

− f k̂(2)
∥∥∥2
2

)
+ λc(2)(ln(1/qk∗)− ln(1/qk̂(2))).

In the above derivation, the inequality is equivalent toQ(2)(k̂(2)) ≤ Q(2)(k∗), which is a simple fact
of the definition of k̂(`) in the algorithm. Also we can rewrite the fact that Q(1)(k̂(1)) ≤ Q(1)(k∗) as∥∥∥f̂ (1)

− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22 ≤ 2ξ>(f k̂(1) − fk∗) + λc(1) ln(qk̂(1)/qk∗).

By combining the above two inequalities, we obtain∥∥∥f̂ (2)
− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22 ≤ α(2)

[
2ξ>(f k̂(1) − fk∗) + λc(1) ln(qk̂(1)/qk∗)

]
+2(1− α(2))ξ>(f k̂(2) − fk∗) +

[
µ(2) − α(2)(1− α(2))

] ∥∥f k̂(1) − fk∗∥∥22
−µ(2)

∥∥f k̂(1) − f k̂(2)∥∥22 + λc(2)(ln(1/qk∗)− ln(1/qk̂(2))).

Since α(2) = 1/2, we obtain∥∥∥f̂ (2)
− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22

≤ (
1

2
λc(1) + λc(2)) ln(1/qk∗)− 1

2
λc(1) ln(1/qk̂(1))− λc

(2) ln(1/qk̂(2))

+2
∥∥f k̂(1) − fk∗∥∥2 σ

√
2 ln

1

qk̂(1)δ
+ 2 · 1

2

∥∥f k̂(2) − f k̂(1)∥∥2 σ
√

2 ln
1

qk̂(1)qk̂(2)δ

+(µ(2) − 1/4)
∥∥f k̂(1) − fk∗∥∥22 − µ(2)

∥∥f k̂(1) − f k̂(2)∥∥22
≤ (

1

2
λc(1) + λc(2)) ln(1/qk∗) + (2r1 + 2r2) ln(1/δ).

The first inequality above uses the tail probability bounds in the event E1 and E2. We then use the
algebraic inequality 2a1b1 ≤ a21/r1 + r1b

2
1 and 2a2b2 ≤ a22/r2 + r2b

2
2 to obtain the last inequality,

which implies the desired bound.

A.2 Proof Sketch of Theorem 2

Again, more detailed proof can be found in the supplemental material. With probability 1−2δ, both
event E1 and event E2 of Proposition 1 hold. This implies that the claim of Theorem 1 also holds.
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Now consider any ` ≥ 3. We have∥∥∥f̂ (`)
− g
∥∥∥2
2
≤

∥∥∥α(`)f̂
(`−1)

+ (1− α(`))fk∗ − g
∥∥∥2
2

+ 2ξ>
[
(1− α(`))f k̂(`) − (1− α(`))fk∗

]
+λc(`)(ln(1/qk∗)− ln(1/qk̂(`))) + µ(`)

(∥∥∥f̂ (`−1)
− fk∗

∥∥∥2
2
−
∥∥∥f̂ (`−1)

− f k̂(`)
∥∥∥2
2

)
.

The inequality is equivalent toQ(`)(k̂(`)) ≤ Q(`)(k∗), which is a simple fact of the definition of k̂(`)
in the algorithm. We can rewrite the above inequality as(∥∥∥f̂ (`)

− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22)

≤ α(`)

(∥∥∥f̂ (`−1)
− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22)− λc(`)(ln(qk∗)− ln(qk̂(`))) + 2(1− α(`))ξ>(f k̂(`) − fk∗)

−µ(`)
∥∥∥f k̂(`) − f̂ (`−1)∥∥∥2

2
+
[
µ(`) − α(`)(1− α(`))

] ∥∥∥f̂ (`−1)
− fk∗

∥∥∥2
2

≤ α(`)

(∥∥∥f̂ (`−1)
− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22)+ λc(`)(ln(1/qk∗)− ln(1/qk̂(`)))

+
2

`

∥∥f k̂(`) − fk∗∥∥2 σ
√

2 ln
1

qk̂(`)δ
−
µ(`)

[
α(`)(1− α(`))− µ(`)

]
α(`)(1− α(`))

∥∥f k̂(`) − fk∗∥∥22
≤ `− 1

`

(∥∥∥f̂ (`−1)
− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22)+ λc(`)(ln(1/qk∗)− ln(1/qk̂(`)))

+

[
−`− 1

`2
ν(1− ν) +

σ2

`2r`

] ∥∥f k̂(`) − fk∗∥∥22 + 2r` ln
1

qk̂(`)δ
.

The second inequality uses the fact that −p ‖a‖2 − q ‖b‖2 ≤ −pq/(p + q) ‖a+ b‖2,

which implies that
[
µ(`) − α(`)(1− α(`))

] ∥∥∥f̂ (`−1)
− fk∗

∥∥∥2
2
− µ(`)

∥∥∥f k̂(`) − f̂ (`−1)∥∥∥2
2
≤

−µ
(`)[α(`)(1−α(`))−µ(`)]

α(`)(1−α(`))

∥∥f k̂(`) − fk∗∥∥22 and uses the Gaussian tail bound in the event E1. The

last inequality uses 2ab ≤ a2/r` + r`b
2, where r` > 0 is r` = λc(`)/2. Denote by R(`) =∥∥∥f̂ (`)

− g
∥∥∥2
2
−
∥∥fk∗ − g∥∥22 ,then since the choice of parameters c(`) = [20ν(1− ν)(`− 1)]

−1 we

obtain R(`) ≤ `−1
` R(`−1) + λc(`) ln(1/qk∗δ) . Solving this recursion for R(`) leads to the desired

bound.

A.3 Proof Sketch of Theorem 3

Again, more detailed proof can be found in the supplemental material. Consider any ` ≥ 3. We have∥∥∥f̂ (`)
− g
∥∥∥2
2
≤

∑
k

wk

∥∥∥α(`)f̂
(`−1)

+ (1− α(`))fk − g
∥∥∥2
2

+ µ(`)

(∑
k

wk

∥∥∥f̂ (`−1)
− fk

∥∥∥2
2
−
∥∥∥f̂ (`−1)

− f k̂(`)
∥∥∥2
2

)

+λc(`)(
∑
k

wk ln(1/qk)− ln(1/qk̂(`))) + 2ξ>

[
(1− α(`))f k̂(`) − (1− α(`))

∑
k

wkfk

]
.

The inequality is equivalent to Q(`)(k̂(`)) ≤
∑
k wkQ

(`)(k), which is a simple fact of the definition

of k̂(`) in the algorithm. Denote by R(`) =
∥∥∥f̂ (`)

− g
∥∥∥2
2
−
∥∥f̄ − g∥∥2

2
, then the same derivation as

that of Theorem 2 implies that

R(`) ≤ `− 1

`
R(`−1) + λc(`)

∑
k

wk ln(1/(δqk)) + [µ(`) + (1− α(`))2]
∑
k

wk
∥∥fk − f̄∥∥22 .

Now by solving the recursion, we obtain the theorem.
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