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Abstract
Unlike existing nonparametric Bayesian models, which rely solely on specially
conceived priors to incorporate domain knowledge for discovering improved la-
tent representations, we study nonparametric Bayesian inference with regulariza-
tion on the desired posterior distributions. While priors can indirectly affect pos-
terior distributions through Bayes’ theorem, imposing posterior regularization is
arguably more direct and in some cases can be much easier. We particularly fo-
cus on developing infinite latent support vector machines (iLSVM) and multi-task
infinite latent support vector machines (MT-iLSVM), which explore the large-
margin idea in combination with a nonparametric Bayesian model for discovering
predictive latent features for classification and multi-task learning, respectively.
We present efficient inference methods and report empirical studies on several
benchmark datasets. Our results appear to demonstrate the merits inherited from
both large-margin learning and Bayesian nonparametrics.

1 Introduction
Nonparametric Bayesian latent variable models have recently gained remarkable popularity in statis-
tics and machine learning, partly owning to their desirable “nonparametric” nature which allows
practitioners to “sidestep” the difficult model selection problem, e.g., figuring out the unknown num-
ber of components (or classes) in a mixture model [2] or determining the unknown dimensionality
of latent features [12], by using an appropriate prior distribution with a large support. Among the
most commonly used priors are Gaussian process (GP) [24], Dirichlet process (DP) [2] and Indian
buffet process (IBP) [12].

However, standard nonparametric Bayesian models are limited in that they usually make very strict
and unrealistic assumptions on data, such as that observations being homogeneous or exchangeable.
A number of recent developments in Bayesian nonparametrics have attempted to alleviate such limi-
tations. For example, to handle heterogenous observations, predictor-dependent processes [20] have
been proposed; and to relax the exchangeability assumption, various correlation structures, such
as hierarchical structures [26], temporal or spatial dependencies [5], and stochastic ordering de-
pendencies [13, 10], have been introduced. However, all these methods rely solely on crafting a
nonparametric Bayesian prior encoding some special structure, which can indirectly influence the
posterior distribution of interest via trading-off with likelihood models. Since it is the posterior
distributions, which capture the latent structures to be learned, that are of our ultimate interest, an
arguably more direct way to learn a desirable latent-variable model is to impose posterior regular-
ization (i.e., regularization on posterior distributions), as we will explore in this paper. Another
reason for using posterior regularization is that in some cases it is more natural and easier to incor-
porate domain knowledge, such as the large-margin [15, 31] or manifold constraints [14], directly
on posterior distributions rather than through priors, as shown in this paper.

Posterior regularization, usually through imposing constraints on the posterior distributions of latent
variables or via some information projection, has been widely studied in learning a finite log-linear
model from partially observed data, including generalized expectation [21], posterior regulariza-

1



tion [11], and alternating projection [6], all of which are doing maximum likelihood estimation
(MLE) to learn a single set of model parameters by optimizing an objective. Recent attempts to-
ward learning a posterior distribution of model parameters include the “learning from measure-
ments” [19], maximum entropy discrimination [15] and MedLDA [31]. But again, all these meth-
ods are limited to finite parametric models. To our knowledge, very few attempts have been made to
impose posterior regularization on nonparametric Bayesian latent variable models. One exception
is our recent work of infinite SVM (iSVM) [32], a DP mixture of large-margin classifiers. iSVM is
a latent class model that assigns each data example to a single mixture component for classification
and the unknown number of mixture components is automatically resolved from data.

In this paper, we present a general formulation of performing nonparametric Bayesian inference
subject to appropriate posterior constraints. In particular, we concentrate on developing the infi-
nite latent support vector machines (iLSVM) and multi-task infinite latent support vector machines
(MT-iLSVM), which explore the discriminative large-margin idea to learn infinite latent feature
models for classification and multi-task learning [3, 4], respectively. As such, our methods as well
as [32] represent an attempt to push forward the interface between Bayesian nonparametrics and
large margin learning, which have complementary advantages but have been largely treated as two
separate subfields in the machine learning community. Technically, although it is intuitively natu-
ral for MLE-based methods to include a regularization term on the posterior distributions of latent
variables, this is not straightforward for Bayesian inference because we do not have an optimization
objective to be regularized. We base our work on the interpretation of the Bayes’ theorem by Zell-
ner [29], namely, the Bayes’ theorem can be reformulated as a minimization problem. Under this
optimization framework, we incorporate posterior constraints to do regularized Bayesian inference,
with a penalty term that measures the violation of the constraints. Both iLSVM and MT-iLSVM are
special cases that explore the large-margin principle to consider supervising information for learn-
ing predictive latent features, which are good for classification or multi-task learning. We use the
nonparametric IBP prior to allow the models to have an unbounded number of latent features. The
regularized inference problem can be efficiently solved with an iterative procedure, which leverages
existing high-performance convex optimization techniques.

Related Work: As stated above, both iLSVM and MT-iLSVM generalize the ideas of iSVM to
infinite latent feature models. For multi-task learning, nonparametric Bayesian models have been
developed in [28, 23] for learning features shared by multiple tasks. But these methods are based
on standard Bayesian inference, without the ability to consider posterior regularization, such as the
large-margin constraints or the manifold constraints [14]. Finally, MT-iLSVM is a nonparametric
Bayesian generalization of the popular multi-task learning methods [1, 16], as explained shortly.

2 Regularized Bayesian Inference with Posterior Constraints
In this section, we present the general framework of regularized Bayesian inference with posterior
constraints. We begin with a brief review of the basic results due to Zellner [29].

2.1 Bayesian Inference as a Learning Model
Let M be a model space, containing any variables whose posterior distributions we are trying to
infer. Bayesian inference starts with a prior distribution π(M) and a likelihood function p(x|M)
indexed by the model M ∈ M. Then, by the Bayes’ theorem, the posterior distribution is

p(M|x1, · · · ,xN ) =
π(M)

∏N
n=1 p(xn|M)

p(x1, · · · ,xN )
, (1)

where p(x1, · · · ,xN ) is the marginal likelihood or evidence of observed data. Zellner [29] first
showed that the posterior distribution due to the Bayes’ theorem is the solution of the problem

min
p(M)

KL(p(M)∥π(M)) −
N∑

n=1

∫
log p(xn|M)p(M)dM (2)

s.t. : p(M) ∈ Pprob,

where KL(p(M)∥π(M)) is the Kullback-Leibler (KL) divergence, and Pprob is the space of valid
probability distributions with an appropriate dimension.

2.2 Regularized Bayesian Inference with Posterior Constraints
As commented by E.T. Jaynes [29], “this fresh interpretation of Bayes’ theorem could make the
use of Bayesian methods more attractive and widespread, and stimulate new developments in
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the general theory of inference”. Below, we study how to extend the basic results to incorporate
posterior constraints in Bayesian inference. In the standard Bayesian inference, the constraints (i.e.,
p(M) ∈ Pprob) do not have auxiliary free parameters. In general, regularized Bayesian inference
solves the constrained optimization problem

min
p(M),ξ

KL(p(M)∥π(M)) −
N∑

n=1

∫
log p(xn|M)p(M)dM + U(ξ) (3)

s.t. : p(M) ∈ Ppost(ξ),

where Ppost(ξ) is a subspace of distributions that satisfy a set of constraints. The auxiliary parameters
ξ are usually nonnegative and interpreted as slack variables. U(ξ) is a convex function, which
usually corresponds to a surrogate loss (e.g., hinge loss) of a prediction rule, as we shall see.

We can use an iterative procedure to do the regularized Bayesian inference based on convex op-
timization techniques. The general recipe is that we use the Lagrangian method by introducing
Lagrangian multipliers ω. Then, we iteratively solve for p(M) with ω and ξ fixed; and solve
for ω and ξ with p(M) given. For the first step, we can use sampling or variational methods [9]
to do approximate inference; and under certain conditions, such as using the constraints based on
posterior expectation [21], the second step can be efficiently done using high-performance convex
optimization techniques, as we shall see.

3 Infinite Latent Support Vector Machines
In this section, we concretize the ideas of regularized Bayesian inference by particularly focusing on
developing large-margin classifiers with an unbounded dimension of latent features, which can be
used as a representation of examples for the single-task classification or as a common representation
that captures relationships among multiple tasks for multi-task learning.

We first present the single-task classification model. The basic setup is that we project each data
example x ∈ X ⊂ RD to a latent feature vector z. Here, we consider binary features1. Given a
set of N data examples, let Z be the matrix, of which each row is a binary vector zn associated
with data sample n. Instead of pre-specifying a fixed dimension of z, we resort to the nonparametric
Bayesian methods and let z have an infinite number of dimensions. To make the expected number
of active latent features finite, we put the well-studied IBP prior on the binary feature matrix Z.

3.1 Indian Buffet Process

Indian buffet process (IBP) was proposed in [12] and has been successfully applied in various
fields, such as link prediction [22] and multi-task learning [23]. We focus on its stick-breaking
construction [25], which is good for developing efficient inference methods. Let πk ∈ (0, 1) be a
parameter associated with column k of the binary matrix Z. Given πk, each znk in column k is
sampled independently from Bernoulli(πk). The parameters π are generated by a stick-breaking
process

π1 = ν1, and πk = νkπk−1 =
k∏

i=1

νi, (4)

where νi ∼ Beta(α, 1). This process results in a decreasing sequence of probabilities πk. Specifi-
cally, given a finite dataset, the probability of seeing feature k decreases exponentially with k.

3.2 Infinite Latent Support Vector Machines

We consider the multi-way classification, where each training data is provided with a categorical
label y, where y ∈ Y def

= {1, · · · , L}. For binary classification and regression, similar procedure
can be applied to impose large-margin constraints on posterior distributions. Suppose that the latent
features z are given, then we can define the latent discriminant function as

f(y,x, z;η)
def
= η⊤g(y,x, z), (5)

where g(y,x, z) is a vector stacking of L subvectors2 of which the yth is z⊤ and all the others are
zero. Since we are doing Bayesian inference, we need to maintain the entire distribution profile of

1Real-valued features can be easily considered as in [12].
2We can consider the input features x or its certain statistics in combination with the latent features z to

define a classifier boundary, by simply concatenating them in the subvectors.
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the latent features Z. However, in order to make a prediction on the observed data x, we need to get
rid of the uncertainty of Z. Here, we define the effective discriminant function as an expectation3

(i.e., a weighted average considering all possible values of Z) of the latent discriminant function.
To make the model fully Bayesian, we also treat η as random and aim to infer the posterior distri-
bution p(Z,η) from given data. More formally, the effective discriminant function f : X ×Y 7→ R is

f(y,x; p(Z,η))
def
= Ep(Z,η)[f(y,x, z;η)] = Ep(Z,η)[η

⊤g(y,x, z)]. (6)

Note that although the number of latent features is allowed to be infinite, with probability one, the
number of non-zero features is finite when only a finite number of data are observed, under the IBP
prior. Moreover, to make it computationally feasible, we usually set a finite upper bound K to the
number of possible features, where K is sufficiently large and known as the truncation level (See
Sec 3.4 and Appendix A.2 for details). As shown in [9], the ℓ1-distance truncation error of marginal
distributions decreases exponentially as K increases.

With the above definitions, we define the Ppost(ξ) in problem (3) using large-margin constraints as

Pc
post(ξ)

def
=

{
p(Z,η)

∀n ∈ Itr : f(yn,xn; p(Z,η))−f(y,xn; p(Z,η))≥ℓ(y, yn)−ξn, ∀y
ξn ≥ 0

}
(7)

and define the penalty function as U c(ξ)
def
= C

∑
n∈Itr

ξp
n, where p ≥ 1. If p is 1, minimizing

U c(ξ) is equivalent to minimizing the hinge-loss (or ℓ1-loss) Rc
h of the prediction rule (9), where

Rc
h = C

∑
n∈Itr

maxy(f(y,xn; p(Z,η)) + ℓ(y, yn) − f(yn,xn; p(Z,η))); if p is 2, the surrogate
loss is the ℓ2-loss. For clarity, we consider the hinge loss. The non-negative cost function ℓ(y, yn)
(e.g., 0/1-cost) measures the cost of predicting xn to be y when its true label is yn. Itr is the index
set of training data.

In order to robustly estimate the latent matrix Z, we need a reasonable amount of data. Therefore,
we also relate Z to the observed data x by defining a likelihood model to provide as much data as
possible. Here, we define the linear-Gaussian likelihood model for real-valued data

p(xn|zn,W, σ2
n0) = N (xn|Wz⊤

n , σ
2
n0I), (8)

where W is a random loading matrix and I is an identity matrix with appropriate dimensions. We
assume W follows an independent Gaussian prior, i.e., π(W) =

∏
d N (wd|0, σ2

0I). Fig. 1 (a)
shows the graphical structure of iLSVM. The hyperparameters σ2

0 and σ2
n0 can be set a priori or

estimated from observed data (See Appendix A.2 for details).

Testing: to make prediction on test examples, we put both training and test data together to do the
regularized Bayesian inference. For training data, we impose the above large-margin constraints
because of the awareness of their true labels, while for test data, we do the inference without the
large-margin constraints since we do not know their true labels. After inference, we make the
prediction via the rule

y∗ def
= arg max

y
f(y,x; p(Z,η)). (9)

The ability to generalize to test data relies on the fact that all the data examples share η and the
IBP prior. We can also cast the problem as a transductive inference problem by imposing additional
constraints on test data [17]. However, the resulting problem will be generally harder to solve.

3.3 Multi-Task Infinite Latent Support Vector Machines

Different from classification, which is typically formulated as a single learning task, multi-task
learning aims to improve a set of related tasks through sharing statistical strength between these
tasks, which are performed jointly. Many different approaches have been developed for multi-task
learning (See [16] for a review). In particular, learning a common latent representation shared by all
the related tasks has proven to be an effective way to capture task relationships [1, 3, 23]. Below, we
present the multi-task infinite latent SVM (MT-iLSVM) for learning a common binary projection
matrix Z to capture the relationships among multiple tasks. Similar as in iLSVM, we also put the
IBP prior on Z to allow it to have an unbounded number of columns.

3Although other choices such as taking the mode are possible, our choice could lead to a computationally
easy problem because expectation is a linear functional of the distribution under which the expectation is taken.
Moreover, expectation can be more robust than taking the mode [18], and it has been used in [31, 32].
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Figure 1: Graphical structures of (a) infinite la-
tent SVM (iLSVM); and (b) multi-task infinite
latent SVM (MT-iLSVM). For MT-iLSVM, the
dashed nodes (i.e., ςm) are included to illustrate
the task relatedness. We have omitted the priors
on W and η for notation brevity.

Suppose we have M related tasks. Let Dm = {(xmn, ymn)}n∈Im
tr

be the training data for task
m. We consider binary classification tasks, where Ym = {+1,−1}. Extension to multi-way
classification or regression tasks can be easily done. If the latent matrix Z is given, we define the
latent discriminant function for task m as

fm(x,Z;ηm)
def
= (Zηm)⊤x = η⊤

m(Z⊤x). (10)

This definition provides two views of how the M tasks get related. If we let ςm = Zηm, then ςm are
the actual parameters of task m and all ςm in different tasks are coupled by sharing the same latent
matrix Z. Another view is that each task m has its own parameters ηm, but all the tasks share the
same latent features Z⊤x, which is a projection of the input features x and Z is the latent projection
matrix. As such, our method can be viewed as a nonparametric Bayesian treatment of alternating
structure optimization (ASO) [1], which learns a single projection matrix with a pre-specified latent
dimension. Moreover, different from [16], which learns a binary vector with known dimensionality
to select features or kernels on x, we learn an unbounded projection matrix Z using nonparametric
Bayesian techniques.

As in iLSVM, we take the fully Bayeisan treatment (i.e., ηm are also random variables) and define
the effective discriminant function for task m as the expectation

fm(x; p(Z,η))
def
= Ep(Z,η)[fm(x,Z;ηm)] = Ep(Z,η)[Zηm]⊤x. (11)

Then, the prediction rule for task m is naturally y∗
m

def
= signfm(x). Similarly, we do regularized

Bayesian inference by imposing the following constraints and definingUMT (ξ)
def
= C

∑
m,n∈Im

tr
ξmn

PMT
post(ξ)

def
=

{
p(Z,η)

∀m, ∀n ∈ Im
tr : ymnEp(Z,η)[Zηm]⊤xmn ≥ 1 − ξmn

ξmn ≥ 0

}
. (12)

Similar as in iLSVM, minimizing UMT (ξ) is equivalent to minimizing the hinge-loss RMT
h of the

multiple binary prediction rules, where RMT
h = C

∑
m,n∈Im

tr
max(0, 1−ymnEp(Z,η)[Zηm]⊤xmn).

Finally, to obtain more data to estimate the latent Z, we also relate it to observed data by defining
the likelihood model

p(xmn|wmn,Z, λ
2
mn) = N (xmn|Zwmn, λ

2
mnI), (13)

where wmn is a vector. We assume W has an independent prior π(W) =
∏

mn N (wmn|0, σ2
m0I).

Fig. 1 (b) illustrates the graphical structure of MT-iLSVM. For testing, we use the same strategy as
in iLSVM to do Bayesian inference on both training and test data. The difference is that training
data are subject to large-margin constraints, while test data are not. Similarly, the hyper-parameters
σ2

m0 and λ2
mn can be set a priori or estimated from data (See Appendix A.1 for details).

3.4 Inference with Truncated Mean-Field Constraints

We briefly discuss how to do regularized Bayesian inference (3) with the large-margin constraints
for MT-iLSVM. For iLSVM, similar procedure applies. To make the problem easier to solve, we
use the stick-breaking representation of IBP, which includes the auxiliary variables ν, and infer the
posterior p(ν,W,Z,η). Furthermore, we impose the truncated mean-field constraint that

p(ν,W,Z,η) = p(η)
K∏

k=1

(
p(νk|γk)

D∏

d=1

p(zdk|ψdk)
) ∏

mn

p(wmn|Φmn, σ
2
mnI), (14)

where K is the truncation level; p(wmn|Φmn, σ
2
mnI) = N (wmn|Φmn, σ

2
mnI); p(zdk|ψdk) =

Bernoulli(ψdk); and p(νk|γk) = Beta(γk1, γk2). We first turn the constrained problem to a prob-
lem of finding a stationary point using Lagrangian methods by introducing Lagrange multipliers ω,
one for each large-margin constraint as defined in Eq. (12), and u for the nonnegativity constraints
of ξ. Let L(p, ξ,ω,u) be the Lagrangian functional. The inference procedure iteratively solves the
following two steps (We defer the details to Appendix A.1):

5



Infer p(ν), p(W), and p(Z): for p(W), since the prior is also normal, we can easily derive the
update rules for Φmn and σ2

mn. For p(ν), we have the same update rules as in [9]. We defer the
details to Appendix A.1. Now, we focus on p(Z) and provide insights on how the large-margin
constraints regularize the procedure of inferring the latent matrix Z. Since the large-margin
constraints are linear of p(Z), we can get the mean-field update equation as ψdk = 1

1+e−ϑdk
, where

ϑdk =

k∑

j=1

Ep[log vj ] − Lν
k −

∑

mn

1

2λ2
mn

(
(Kσ2

mn + (ϕk
mn)2) (15)

−2xd
mnϕ

k
mn + 2

∑

j ̸=k

ϕj
mnϕ

k
mnψdj

)
+

∑

m,n∈Im
tr

ymnEp[ηmk]xd
mn,

where Lν
k is an lower bound of Ep[log(1 − ∏k

j=1 vj)] (See Appendix A.1 for details). The last term
of ϑdk is due to the large-margin posterior constraints as defined in Eq. (12).

Infer p(η) and solve for ω and ξ: We optimize L over p(η) and can get p(η) =
∏

m p(ηm), where

p(ηm) ∝ π(ηm) exp{η⊤
mµm},

and µm =
∑

n∈Im
tr
ymnωmn(ψ⊤xmn). Here, we assume π(ηm) is standard normal. Then, we

have p(ηm) = N (ηm|µm, I). Substituting the solution of p(η) into L, we get M independent dual
problems

max
ωm

− 1

2
µ⊤

mµm +
∑

n∈Im
tr

ωmn s.t.. : 0 ≤ ωmn ≤ 1, ∀n ∈ Im
tr , (16)

which (or its primal form) can be efficiently solved with a binary SVM solver, such as SVM-light.

4 Experiments
We present empirical results for both classification and multi-task learning. Our results demonstrate
the merits inherited from both Bayesian nonparametrics and large-margin learning.

4.1 Multi-way Classification

We evaluate the infinite latent SVM (iLSVM) for classification on the real TRECVID2003 and Flickr
image datasets, which have been extensively evaluated in the context of learning finite latent feature
models [8]. TRECVID2003 consists of 1078 video key-frames, and each example has two types of
features – 1894-dimension binary vector of text features and 165-dimension HSV color histogram.
The Flickr image dataset consists of 3411 natural scene images about 13 types of animals (e.g.,
tiger, cat and etc.) downloaded from the Flickr website. Also, each example has two types of
features, including 500-dimension SIFT bag-of-words and 634-dimension real-valued features (e.g.,
color histogram, edge direction histogram, and block-wise color moments). Here, we consider the
real-valued features only by using normal distributions for x.

We compare iLSVM with the large-margin Harmonium (MMH) [8], which was shown to outperform
many other latent feature models [8], and two decoupled approaches – EFH+SVM and IBP+SVM.
EFH+SVM uses the exponential family Harmonium (EFH) [27] to discover latent features and then
learns a multi-way SVM classifier. IBP+SVM is similar, but uses an IBP factor analysis model [12]
to discover latent features. As finite models, both MMH and EFH+SVM need to pre-specify the
dimensionality of latent features. We report their results on classification accuracy and F1 score
(i.e., the average F1 score over all possible classes) [32] achieved with the best dimensionality in Ta-
ble 1. For iLSVM and IBP+SVM, we use the mean-field inference method and present the average
performance with 5 randomly initialized runs (See Appendix A.2 for the algorithm and initializa-
tion details). We perform 5-fold cross-validation on training data to select hyperparameters, e.g., α
and C (we use the same procedure for MT-iLSVM). We can see that iLSVM can achieve compa-
rable performance with the nearly optimal MMH, without needing to pre-specify the latent feature
dimension4, and is much better than the decoupled approaches (i.e., IBP+SVM and EFH+SVM).

4.2 Multi-task Learning
4.2.1 Description of the Data
Scene and Yeast Data: These datasets are from the UCI repository, and each data example has
multiple labels. As in [23], we treat the multi-label classification as a multi-task learning problem,

4We set the truncation level to 300, which is large enough.
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Table 1: Classification accuracy and F1 scores on the TRECVID2003 and Flickr image datasets.

TRECVID2003 Flickr
Model Accuracy F1 score Accuracy F1 score

EFH+SVM 0.565 ± 0.0 0.427 ± 0.0 0.476 ± 0.0 0.461 ± 0.0
MMH 0.566 ± 0.0 0.430 ± 0.0 0.538 ± 0.0 0.512 ± 0.0

IBP+SVM 0.553 ± 0.013 0.397 ± 0.030 0.500 ± 0.004 0.477 ± 0.009
iLSVM 0.563 ± 0.010 0.448 ± 0.011 0.533 ± 0.005 0.510 ± 0.010

Table 2: Multi-label classification performance on Scene and Yeast datasets.

Yeast Scene
Model Acc F1-Micro F1-Macro Acc F1-Micro F1-Macro

yaxue [23] 0.5106 0.3897 0.4022 0.7765 0.2669 0.2816
piyushrai-1 [23] 0.5212 0.3631 0.3901 0.7756 0.3153 0.3242
piyushrai-2 [23] 0.5424 0.3946 0.4112 0.7911 0.3214 0.3226
MT-IBP+SVM 0.5475 ± 0.005 0.3910 ± 0.006 0.4345 ± 0.007 0.8590 ± 0.002 0.4880 ± 0.012 0.5147 ± 0.018

MT-iLSVM 0.5792 ± 0.003 0.4258 ± 0.005 0.4742 ± 0.008 0.8752 ± 0.004 0.5834 ± 0.026 0.6148 ± 0.020

where each label assignment is treated as a binary classification task. The Yeast dataset consists of
1500 training and 917 test examples, each having 103 features, and the number of labels (or tasks)
per example is 14. The Scene dataset consists 1211 training and 1196 test examples, each having
294 features, and the number of labels (or tasks) per example for this dataset is 6.

School Data: This dataset comes from the Inner London Education Authority and has been used to
study the effectiveness of schools. It consists of examination records from 139 secondary schools
in years 1985, 1986 and 1987. It is a random 50% sample with 15362 students. The dataset is
publicly available and has been extensively evaluated in various multi-task learning methods [4, 7,
30], where each task is defined as predicting the exam scores of students belonging to a specific
school based on four student-dependent features (year of the exam, gender, VR band and ethnic
group) and four school-dependent features (percentage of students eligible for free school meals,
percentage of students in VR band 1, school gender and school denomination). In order to compare
with the above methods, we follow the same setup described in [3, 4] and similarly we create dummy
variables for those features that are categorical forming a total of 19 student-dependent features and
8 school-dependent features. We use the same 10 random splits5 of the data, so that 75% of the
examples from each school (task) belong to the training set and 25% to the test set. On average, the
training set includes about 80 students per school and the test set about 30 students per school.

4.2.2 Results
Scene and Yeast Data: We compare with the closely related nonparametric Bayesian methods [23,
28], which were shown to outperform the independent Bayesian logistic regression and a single-
task pooling approach [23], and a decoupled method MT-IBP+SVM6 that uses IBP factor analysis
model to find shared latent features among multiple tasks and then builds separate SVM classifiers
for different tasks. For MT-iLSVM and MT-IBP+SVM, we use the mean-field inference method
in Sec 3.4 and report the average performance with 5 randomly initialized runs (See Appendix A.1
for initialization details). For comparison with [23, 28], we use the overall classification accuracy,
F1-Macro and F1-Micro as performance measures. Table 2 shows the results. We can see that the
large-margin MT-iLSVM performs much better than other nonparametric Bayesian methods and
MT-IBP+SVM, which separates the inference of latent features from learning the classifiers.

School Data: We use the percentage of explained variance [4] as the measure of the regression
performance, which is defined as the total variance of the data minus the sum-squared error on the
test set as a percentage of the total variance. Since we use the same settings, we can compare with the
state-of-the-art results of Bayesian multi-task learning (BMTL) [4], multi-task Gaussian processes
(MTGP) [7], convex multi-task relationship learning (MTRL) [30], and single-task learning (STL) as
reported in [7, 30]. For MT-iLSVM and MT-IBP+SVM, we also report the results achieved by using
both the latent features (i.e., Z⊤x) and the original input features x through vector concatenation,
and we denote the corresponding methods by MT-iLSVMf and MT-IBP+SVMf , respectively. From

5Available at: http://ttic.uchicago.edu/∼argyriou/code/index.html
6This decoupled approach is in fact an one-iteration MT-iLSVM, where we first infer the shared latent

matrix Z and then learn an SVM classifier for each task.
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Table 3: Percentage of explained variance by various models on the School dataset.

STL BMTL MTGP MTRL MT-IBP+SVM MT-iLSVM MT-IBP+SVMf MT-iLSVMf

23.5 ± 1.9 29.5 ± 0.4 29.2 ± 1.6 29.9 ± 1.8 20.0 ± 2.9 30.9 ± 1.2 28.5 ± 1.6 31.7 ± 1.1

Table 4: Percentage of explained variance and running time by MT-iLSVM with various training sizes.

50% 60% 70% 80% 90% 100%
explained variance (%) 25.8 ± 0.4 27.3 ± 0.7 29.6 ± 0.4 30.0 ± 0.5 30.8 ± 0.4 30.9 ± 1.2

running time (s) 370.3 ± 32.5 455.9 ± 18.6 492.6 ± 33.2 600.1 ± 50.2 777.6 ± 73.4 918.9 ± 96.5

the results in Table 3, we can see that the multi-task latent SVM (i.e., MT-iLSVM) achieves better
results than the existing methods that have been tested in previous studies. Again, the joint MT-
iLSVM performs much better than the decoupled method MT-IBP+SVM, which separates the latent
feature inference from the training of large-margin classifiers. Finally, using both latent features
and the original input features can boost the performance slightly for MT-iLSVM, while much more
significantly for the decoupled MT-IBP+SVM.
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Figure 2: Sensitivity study of MT-iLSVM: (a) classification accuracy with different α; (b) classification accu-
racy with different C; and (c) percentage of explained variance with different C.

4.3 Sensitivity Analysis

Figure 2 shows how the performance of MT-iLSVM changes against the hyper-parameter α and
regularization constant C on Yeast and School datasets. We can see that on the Yeast dataset, MT-
iLSVM is insensitive to α andC. For the School dataset, MT-iLSVM is stable whenC is set between
0.3 and 1. MT-iLSVM is insensitive to α on the School data too, which is omitted to save space.

Table 4 shows how the training size affects the performance and running time of MT-iLSVM on
the School dataset. We use the first b% (b = 50, 60, 70, 80, 90, 100) of the training data in each of
the 10 random splits as training set and use the corresponding test data as test set. We can see that
as training size increases, the performance and running time generally increase; and MT-iLSVM
achieves the state-of-art performance when using about 70% training data. From the running time,
we can also see that MT-iLSVM is generally quite efficient by using mean-field inference.

Finally, we investigate how the performance of MT-iLSVM changes against the hyperparameters
σ2

m0 and λ2
mn. We initially set σ2

m0 = 1 and compute λ2
mn from observed data. If we further

estimate them by maximizing the objective function, the performance does not change much (±0.3%
for average explained variance on the School dataset). We have similar observations for iLSVM.

5 Conclusions and Future Work

We first present a general framework for doing regularized Bayesian inference subject to appro-
priate constraints, which are imposed directly on the posterior distributions. Then, we particularly
concentrate on developing two nonparametric Bayesian models to learn predictive latent features for
classification and multi-task learning, respectively, by exploring the large-margin principle to define
posterior constraints. Both models allow the latent dimension to be automatically resolved from the
data. The empirical results on several real datasets appear to demonstrate that our methods inherit
the merits from both Bayesian nonparametrics and large-margin learning.

Regularized Bayesian inference offers a general framework for considering posterior regularization
in performing nonparametric Bayesian inference. For future work, we plan to study other posterior
regularization beyond the large-margin constraints, such as posterior constraints defined on man-
ifold structures [14], and investigate how posterior regularization can be used in other interesting
nonparametric Bayesian models [5, 26].
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