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Abstract

We derive an upper bound on the local Rademacher complexity of `p-norm mul-
tiple kernel learning, which yields a tighter excess risk bound than global ap-
proaches. Previous local approaches analyzed the case p = 1 only while our
analysis covers all cases 1 ≤ p ≤ ∞, assuming the different feature mappings
corresponding to the different kernels to be uncorrelated. We also show a lower
bound that shows that the bound is tight, and derive consequences regarding ex-
cess loss, namely fast convergence rates of the order O(n−

α
1+α ), where α is the

minimum eigenvalue decay rate of the individual kernels.

1 Introduction

Kernel methods [24, 21] allow to obtain nonlinear learning machines from simpler, linear ones;
nowadays they can almost completely be applied out-of-the-box [3]. Nevertheless, after more than
a decade of research it still remains an unsolved problem to find the best abstraction or kernel for
a problem at hand. Most frequently, the kernel is selected from a candidate set according to its
generalization performance on a validation set. Clearly, the performance of such an algorithm is
limited by the best kernel in the set. Unfortunately, in the current state of research, there is little
hope that in the near future a machine will be able to automatically find—or even engineer—the
best kernel for a particular problem at hand [25]. However, by restricting to a less general problem,
can we hope to achieve the automatic kernel selection?

In the seminal work of Lanckriet et al. [18] it was shown that learning a support vector machine
(SVM) [9] and a convex kernel combination at the same time is computationally feasible. This ap-
proach was entitled multiple kernel learning (MKL). Research in the subsequent years focused on
speeding up the initially demanding optimization algorithms [22, 26]—ignoring the fact that empir-
ical evidence for the superiority of MKL over trivial baseline approaches (not optimizing the kernel)
was missing. In 2008, negative results concerning the accuracy of MKL in practical applications ac-
cumulated: at the NIPS 2008 MKL workshop [6] several researchers presented empirical evidence
showing that traditional MKL rarely helps in practice and frequently is outperformed by a reg-
ular SVM using a uniform kernel combination, see http://videolectures.net/lkasok08_
whistler/. Subsequent research (e.g., [10]) revealed further negative evidence and peaked in the
provocative question “Can learning kernels help performance?” posed by Corinna Cortes in an
invited talk at ICML 2009 [5].

Consequently, despite all the substantial progress in the field of MKL, there remained an unsatisfied
need for an approach that is really useful for practical applications: a model that has a good chance
of improving the accuracy (over a plain sum kernel). A first step towards a model of kernel learning

∗Marius Kloft is also with Friedrich Miescher Laboratory, Max Planck Society, Tübingen. A part of this
work was done while Marius Kloft was with UC Berkeley, USA, and Gilles Blanchard was with Weierstraß In-
stitute for Applied Analysis and Stochastics, Berlin.
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Figure 1: Result of a typical `p-norm MKL experiment in terms of accuracy (LEFT) and kernel weights output
by MKL (RIGHT).

that is useful for practical applications was made in [7, 13, 14]: by imposing an `q-norm penalty
(q > 1) rather than an `1-norm one on the kernel combination coefficients. This `q-norm MKL is
an empirical minimization algorithm that operates on the multi-kernel class consisting of functions
f : x 7→ 〈w, φk(x)〉 with ‖w‖k ≤ D, where φk is the kernel mapping into the reproducing kernel
Hilbert space (RKHS) Hk with kernel k and norm ‖.‖k, while the kernel k itself ranges over the

set of possible kernels
{
k =

∑M
m=1 θmkm

∣∣∣ ‖θ‖q ≤ 1, θ ≥ 0
}

. A conceptual milestone going
back to the work of [1] and [20] is that this multi-kernel class can equivalently be represented as a
block-norm regularized linear class in the product RKHS:

Hp,D,M =
{
fw : x 7→ 〈w, φ(x)〉

∣∣ w = (w(1), . . . ,w(M)), ‖w‖2,p ≤ D
}
, (1)

where there is a one-to-one mapping of q ∈ [1,∞] to p ∈ [1, 2] given by p = 2q
q+1 .

In Figure 1, we show exemplary results of an `p-norm MKL experiment, achieved on the protein
fold prediction dataset used in [4] (see supplementary material A for experimental details). We first
observe that, as expected, `p-norm MKL enforces strong sparsity in the coefficients θm when p = 1
and no sparsity at all otherwise (but various degrees of soft sparsity for intermediate p). Crucially,
the performance (as measured by the test error) is not monotonic as a function of p; p = 1 (sparse
MKL) yields the same performance as the regular SVM using a uniform kernel combination, but
optimal performance is attained for some intermediate value of p—namely, p = 1.14. This is a
strong empirical motivation to study theoretically the performance of `p-MKL beyond the limiting
cases p = 1 and p =∞.

Clearly, the complexity of (1) will be greater than one that is based on a single kernel only. However,
it is unclear whether the increase is decent or considerably high and—since there is a free parameter
p—how this relates to the choice of p. To this end, the main aim of this paper is to analyze the sample
complexity of the hypothesis class (1). An analysis of this model, based on global Rademacher
complexities, was developed by [8] for special cases of p. In the present work, we base our main
analysis on the theory of local Rademacher complexities, which allows to derive improved and
more precise rates of convergence that cover the whole range of p ∈ [1,∞].

Outline of the contributions. This paper makes the following contributions:

• An upper bound on the local Rademacher complexity of `p-norm MKL is shown, from
which we derive an excess risk bound that achieves a fast convergence rate of the order

O(M1+ 2
1+α

(
1
p∗−1

)
n−

α
1+α ), where α is the minimum eigenvalue decay rate of the individ-

ual kernels (previous bounds for `p-norm MKL only achieved O(M
1
p∗ n−

1
2 ).

• A lower bound is shown that beside absolute constants matches the upper bounds, showing
that our results are tight.

• The generalization performance of `p-norm MKL as guaranteed by the excess risk bound
is studied for varying values of p, shedding light on the appropriateness of a small/large p
in various learning scenarios.

Furthermore, we also present a simpler, more general proof of the global Rademacher bound shown
in [8] (at the expense of a slightly worse constant). A comparison of the rates obtained with local
and global Rademacher analysis is carried out in Section 3.
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Notation. We abbreviate Hp = Hp,D = Hp,D,M if clear from the context. We denote the (normal-
ized) kernel matrices corresponding to k and km by K and Km, respectively, i.e., the ijth entry of
K is 1

nk(xi,xj). Also, we denote u = (u(m))Mm=1 = (u(1), . . . ,u(M)) ∈ H = H1 × . . . ×HM .
Furthermore, let P be a probability measure on X i.i.d. generating the data x1, . . . , xn and denote
by E the corresponding expectation operator. We work with operators in Hilbert spaces and will use
instead of the usual vector/matrix notation φ(x)φ(x)> the tensor notation φ(x) ⊗ φ(x) ∈ HS(H),
which is a Hilbert-Schmidt operator H 7→ H defined as (φ(x) ⊗ φ(x))u = 〈φ(x),u〉φ(x). The
space HS(H) of Hilbert-Schmidt operators on H is itself a Hilbert space, and the expectation
Eφ(x) ⊗ φ(x) is well-defined and belongs to HS(H) as soon as E ‖φ(x)‖2 is finite, which will
always be assumed. We denote by J = Eφ(x) ⊗ φ(x) and Jm = Eφm(x) ⊗ φm(x) the uncen-
tered covariance operators corresponding to variables φ(x) and φm(x), respectively; it holds that
tr(J) = E ‖φ(x)‖22 and tr(Jm) = E ‖φm(x)‖22.

Global Rademacher Complexities We first review global Rademacher complexities (GRC) in
multiple kernel learning. Let x1, . . . , xn be an i.i.d. sample drawn from P . The global Rademacher
complexity is defined as R(Hp) = E supfw∈Hp〈w,

1
n

∑n
i=1 σiφ(xi)〉, where (σi)1≤i≤n is an i.i.d.

family (independent of φ(xi)) of Rademacher variables (random signs). Its empirical counterpart is
denoted by R̂(Hp) = E

[
R(Hp)

∣∣x1, . . . , xn] = Eσ supfw∈Hp〈w,
1
n

∑n
i=1 σiφ(xi)〉.

In the recent paper of [8] it was shown R̂(Hp) ≤ D
n

(
cp∗
∥∥( tr(Km)

)M
m=1

∥∥
p∗
2

)1/2
for p ∈ [1, 2]

and p∗ being an integer (where c = 23/44 and p∗ := p
p−1 is the conjugated exponent). This bound

is tight and improves a series of loose results that were given for p = 1 in the past (see [8] and
references therein). In fact, the above result can be extended to the whole range of p ∈ [1,∞] (in
the supplementary material we present a quite simple proof using c = 1):
Proposition 1 (GLOBAL RADEMACHER COMPLEXITY BOUND). For any p ≥ 1 the empirical
version of global Rademacher complexity of the multi-kernel class Hp can be bounded as

R̂(Hp) ≤ min
t∈[p,∞]

D

√
t∗

n

∥∥∥( 1
n
tr(Km)

)M
m=1

∥∥∥
t∗
2

.

Interestingly, the above GRC bound is not monotonic in p and thus the minimum is not always
attained for t := p.

2 The Local Rademacher Complexity of Multiple Kernel Learning

Let x1, . . . , xn be an i.i.d. sample drawn from P . We define the local Rademacher com-
plexity (LRC) of Hp as Rr(Hp) = E supfw∈Hp:Pf2

w≤r〈w,
1
n

∑n
i=1 σiφ(xi)〉, where Pf2w :=

E(fw(φ(x)))2. Note that it subsumes the global RC as a special case for r = ∞. We will also
use the following assumption in the bounds for the case p ∈ [1, 2]:
Assumption (U) (no-correlation). Let x ∼ P . The Hilbert space valued random variables
φ1(x), . . . , φM (x) are said to be (pairwise) uncorrelated if for any m 6= m′ and w ∈ Hm ,w′ ∈
Hm′ , the real variables 〈w, φm(x)〉 and 〈w′, φm′(x)〉 are uncorrelated.

For example, if X = RM , the above means that the input variable x ∈ X has independent co-
ordinates, and the kernels k1, . . . , kM each act on a different coordinate. Such a setting was also
considered by [23] (for sparse MKL). To state the bounds, note that covariance operators enjoy
discrete eigenvalue-eigenvector decompositions J = Eφ(x) ⊗ φ(x) =

∑∞
j=1 λjuj ⊗ uj and

Jm = Ex(m)⊗x(m) =
∑∞
j=1 λ

(m)
j u

(m)
j ⊗u(m)

j , where (uj)j≥1 and (u
(m)
j )j≥1 form orthonormal

bases ofH andHm, respectively. We are now equipped to state our main results:
Theorem 2 (LOCAL RADEMACHER COMPLEXITY BOUND, p ∈ [1, 2] ). Assume that the kernels
are uniformly bounded (‖k‖∞ ≤ B < ∞) and that Assumption (U) holds. The local Rademacher
complexity of the multi-kernel class Hp can be bounded for any p ∈ [1, 2] as

Rr(Hp) ≤ min
t∈[p,2]

√√√√16

n

∥∥∥∥( ∞∑
j=1

min
(
rM1− 2

t∗ , ceD2t∗2λ
(m)
j

))M
m=1

∥∥∥∥
t∗
2

+

√
BeDM

1
t∗ t∗

n
.
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Theorem 3 (LOCAL RADEMACHER COMPLEXITY BOUND, p ∈ [2,∞] ). For any p ∈ [2,∞],

Rr(Hp) ≤ min
t∈[p,∞]

√√√√ 2

n

∞∑
j=1

min(r,D2M
2
t∗−1λj).

It is interesting to compare the above bounds for the special case p = 2 with the ones of Bartlett et al.
[2]. The main term of the bound of Theorem 3 (taking t = p = 2) is then essentially determined by
O
((

1
n

∑M
m=1

∑∞
j=1 min(r, λ

(m)
j )

)1/2)
. If the variables (φm(x)) are centered and uncorrelated, this

is equivalently of order O
((

1
n

∑∞
j=1 min(r, λj)

)1/2)
because spec(J) =

⋃M
m=1 spec(Jm); that is,

{λi, i ≥ 1} =
⋃M
m=1

{
λ
(m)
i , i ≥ 1}; this rate is also what we would obtain through Theorem 3, so

both bounds on the LRC recover the rate shown in [2] for the special case p = 2.

It is also interesting to study the case p = 1: by using t = (log(M))∗ in Theorem 2, we obtain the

bound Rr(H1) ≤
(
16
n

∥∥(∑∞
j=1 min

(
rM, e3D2(logM)2λ

(m)
j

))M
m=1

∥∥
∞

)1/2
+
√
Be

3
2D log(M)
n , for

all M ≥ e2. We now turn to proving Theorem 2. the proof of Theorem 3 is straightforward and
shown in the supplementary material C.

Proof of Theorem 2. . Note that it suffices to prove the result for t = p as trivially ‖w‖2,t ≤ ‖w‖2,p
holds for all t ≥ p so that Hp ⊆ Ht and therefore Rr(Hp) ≤ Rr(Ht).

STEP 1: RELATING THE ORIGINAL CLASS WITH THE CENTERED CLASS. In order to exploit
the no-correlation assumption, we will work in large parts of the proof with the centered class H̃p ={
f̃w
∣∣ ‖w‖2,p ≤ D}, wherein f̃w : x 7→ 〈w, φ̃(x)〉, and φ̃(x) := φ(x)− Eφ(x). We start the proof

by noting that f̃w(x) = fw(x)− 〈w,Eφ(x)〉 = fw(x)− E 〈w, φ(x)〉 = fw(φ(x))− Efw(φ(x)),
so that, by the bias-variance decomposition, it holds that

Pf2w = Efw(x)2 = E (fw(x)− Efw(x))2 + (Efw(φ(x)))2 = P f̃2w +
(
Pfw

)2
. (2)

Furthermore we note that by Jensen’s inequality∥∥Eφ(x)∥∥
2,p∗

=

( M∑
m=1

∥∥Eφm(x)
∥∥p∗
2

) 1
p∗

=

( M∑
m=1

〈
Eφm(x),Eφm(x)

〉 p∗
2

) 1
p∗

Jensen
≤

( M∑
m=1

E
〈
φm(x), φm(x)

〉 p∗
2

) 1
p∗

=

√∥∥∥( tr(Jm)
)M
m=1

∥∥∥
p∗
2

(3)

so that we can express the complexity of the centered class in terms of the uncentered one as follows:

Rr(Hp) ≤ E sup
fw∈Hp,
Pf2

w≤r

〈
w,

1

n

n∑
i=1

σiφ̃(xi)
〉
+ E sup

fw∈Hp,
Pf2

w≤r

〈
w,

1

n

n∑
i=1

σiEφ(x)
〉
.

Concerning the first term of the above upper bound, using (2) we have P f̃2w ≤ Pf2w, and thus

E sup
fw∈Hp,
Pf2

w≤r

〈
w,

1

n

n∑
i=1

σiφ̃(xi)
〉
≤ E sup

fw∈Hp,
P f̃2

w≤r

〈
w,

1

n

n∑
i=1

σiφ̃(xi)
〉
= Rr(H̃p).

Now to bound the second term, we write

E sup
fw∈Hp,
Pf2

w≤r

〈
w,

1

n

n∑
i=1

σiEφ(x)
〉
≤
√
n sup
fw∈Hp,
Pf2

w≤r

〈w,Eφ(x)〉 .

Now observe that we have

〈w,Eφ(x)〉
Hölder
≤ ‖w‖2,p ‖Eφ(x)‖2,p∗

(3)
≤ ‖w‖2,p

√∥∥( tr(Jm)
)M
m=1

∥∥
p∗
2

as well as 〈w,Eφ(x)〉 = Efw(x) ≤
√
Pf2w . We finally obtain, putting together the steps above,

Rr(Hp) ≤ Rr(H̃p) + n−
1
2 min

(√
r,D

√∥∥( tr(Jm)
)M
m=1

∥∥
p∗
2

)
. (4)

This shows that there is no loss in working with the centered class instead of the uncentered one.
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STEP 2: BOUNDING THE COMPLEXITY OF THE CENTERED CLASS. In this step of the proof
we generalize the technique of [19] to multi-kernel classes. First we note that, since the (centered)
covariance operator Eφ̃m(x)⊗ φ̃m(x) is also a self-adjoint Hilbert-Schmidt operator on Hm, there
exists an eigendecomposition Eφ̃m(x) ⊗ φ̃m(x) =

∑∞
j=1 λ̃

(m)
j ũ

(m)
j ⊗ ũ(m)

j , wherein (ũ
(m)
j )j≥1

is an orthogonal basis of Hm. Furthermore, the no-correlation assumption (U) entails Eφ̃l(x) ⊗
φ̃m(x) = 0 for all l 6= m. As a consequence, for all j and m,

P f̃2w = E(f̃w(x))2 = E
( M∑
m=1

〈
wm, φ̃m(x)

〉)2
=

M∑
m=1

∞∑
j=1

λ̃
(m)
j

〈
wm, ũ

(m)
j

〉2
(5)

E
〈 1
n

n∑
i=1

σiφ̃m(xi), ũ
(m)
j

〉2
=

1

n

〈
ũ
(m)
j ,

( 1
n

n∑
i=1

E φ̃m(xi)⊗ φ̃m(xi)
)
ũ
(m)
j

〉
=

λ̃
(m)
j

n
. (6)

Let now h1, . . . , hM be arbitrary nonnegative integers. We can express the LRC in terms of the
eigendecompositon as follows

Rr(H̃p)

= E sup
fw∈H̃p:P f̃2

w≤r

〈
w,

1

n

n∑
i=1

σiφ̃(xi)
〉

= E sup
fw∈H̃p:P f̃2

w≤r

〈(
w(m)

)M
m=1

,
( 1
n

n∑
i=1

σiφ̃m(xi)
)M
m=1

〉
C.-S., Jensen
≤ sup

P f̃2
w≤r

[√√√√ M∑
m=1

hm∑
j=1

λ̃
(m)
j 〈w(m), ũ

(m)
j 〉2

√√√√ M∑
m=1

hm∑
j=1

(
λ̃
(m)
j

)−1
E
〈 1
n

n∑
i=1

σiφ̃m(xi), ũ
(m)
j

〉2]

+ E sup
fw∈H̃p

〈
w,
( ∞∑
j=hm+1

〈 1
n

n∑
i=1

σiφ̃m(xi), ũ
(m)
j 〉ũ(m)

j

)M
m=1

〉

so that (5) and (6) yield

Rr(H̃p)
(5), (6),Hölder
≤

√
r
∑M
m=1 hm
n

+D E
∥∥∥∥( ∞∑

j=hm+1

〈 1
n

n∑
i=1

σiφ̃m(xi), ũ
(m)
j 〉ũ(m)

j

)M
m=1

∥∥∥∥
2,p∗

.

STEP 3: KHINTCHINE-KAHANE’S AND ROSENTHAL’S INEQUALITIES. We use the Khintchine-
Kahane (K.-K.) inequality (see Lemma B.2 in the supplementary material) to further bound the right

term in the above expression as E
∥∥∥(∑j>hm

〈 1n
∑n
i=1 σiφ̃m(xi), ũ

(m)
j 〉ũ(m)

j

)M
m=1

∥∥∥
2,p∗

≤
√

p∗

n

(∑M
m=1 E

(∑
j>hm

1
n

∑n
i=1〈φ̃m(xi), ũ

(m)
j 〉2

) p∗
2
) 1
p∗
. Note that for p ≥ 2 it holds that

p∗/2 ≤ 1, and thus it suffices to employ Jensen’s inequality once again to move the expectation
operator inside the inner term. In the general case we need a handle on the p∗

2 -th moments and to
this end employ Lemma C.1 (Rosenthal + Young; see supplementary material), which yields( M∑

m=1

E
( ∞∑
j=hm+1

1

n

n∑
i=1

〈φ̃m(xi), ũ
(m)
j 〉2

) p∗
2

) 1
p∗

R+Y
≤

(
M∑
m=1

(ep∗)
p∗
2

((B
n

) p∗
2

+
( ∞∑
j=hm+1

1

n

n∑
i=1

E〈φ̃m(xi), ũ
(m)
j 〉2

) p∗
2

) ) 1
p∗

(∗)
≤

√√√√ep∗

(
BM

2
p∗

n
+

( M∑
m=1

( ∞∑
j=hm+1

λ̃
(m)
j

) p∗
2

) 2
p∗
)

where for (∗) we used the subadditivity of p∗
√
·. Note that ∀j,m : λ̃

(m)
j ≤ λ

(m)
j by the Lidskii-

Mirsky-Wielandt theorem since Eφm(x)⊗φm(x) = Eφ̃m(x)⊗ φ̃m(x)+Eφm(x)⊗Eφm(x). Thus
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by the subadditivity of the root function

Rr(H̃p) ≤

√
r
∑M
m=1 hm
n

+D

√√√√ep∗2

n

(
BM

2
p∗

n
+

∥∥∥∥∥
( ∞∑
j=hm+1

λ
(m)
j

)M
m=1

∥∥∥∥∥
p∗
2

)

≤

√
r
∑M
m=1 hm
n

+

√√√√ep∗2D2

n

∥∥∥∥∥
( ∞∑
j=hm+1

λ
(m)
j

)M
m=1

∥∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
. (7)

STEP 4: BOUNDING THE COMPLEXITY OF THE ORIGINAL CLASS. Now note that for
all nonnegative integers hm we either have n−

1
2 min

(√
r,D

(∥∥( tr(Jm)
)M
m=1

∥∥
p∗
2

)1/2) ≤(
ep∗2D2

n

∥∥(∑∞
j=hm+1 λ

(m)
j

)M
m=1

∥∥
p∗
2

)1/2
(in case all hm are zero) or it holds

n−
1
2 min

(√
r,D

(∥∥( tr(Jm)
)M
m=1

∥∥
p∗
2

)1/2) ≤ (
r
∑M
m=1 hm/n

)1/2
(in case that at least one

hm is nonzero) so that in any case we get n−
1
2 min

(√
r,D

(∥∥( tr(Jm)
)M
m=1

∥∥
p∗
2

)1/2) ≤( r∑M
m=1 hm
n

)1/2
+
(
ep∗2D2

n

∥∥(∑∞
j=hm+1 λ

(m)
j

)M
m=1

∥∥
p∗
2

)1/2
. Thus the following preliminary bound

follows from (4) by (7):

Rr(Hp) ≤

√
4r
∑M
m=1 hm
n

+

√√√√4ep∗2D2

n

∥∥∥∥∥
( ∞∑
j=hm+1

λ
(m)
j

)M
m=1

∥∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
, (8)

for all nonnegative integers hm ≥ 0. Later, we will use the above bound (8) for the computation of
the excess loss; however, to gain more insight in the bounds’ properties, we express it in terms of
the truncated spectra of the kernels at the scale r as follows:

STEP 5: RELATING THE BOUND TO THE TRUNCATION OF THE SPECTRA OF THE KERNELS.
Next, we notice that for all nonnegative real numbers A1, A2 and any a1,a2 ∈ Rm+ it holds for all
q ≥ 1 √

A1 +
√
A2 ≤

√
2(A1 +A2) (9)

‖a1‖q + ‖a2‖q ≤ 21−
1
q ‖a1 + a2‖q ≤ 2 ‖a1 + a2‖q (10)

(the first statement follows from the concavity of the square root function and the second one is
readily proved; see Lemma C.3 in the supplementary material) and thus

Rr(Hp)≤

√√√√16

n

∥∥∥∥(rM1− 2
p∗ hm + ep∗2D2

∞∑
j=hm+1

λ
(m)
j

)M
m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

where we used that for all non-negative a ∈ RM and 0 < q < p ≤ ∞ it holds

(`q-to-`p conversion) ‖a‖q = 〈1,a
q〉

1
q

Hölder
≤

(
‖1‖(p/q)∗ ‖a

q‖p/q
)1/q

=M
1
q−

1
p ‖a‖p . (11)

Since the above holds for all nonnegative integers hm, the result follows, completing the proof.

2.1 Lower and Excess Risk Bounds

To investigate the tightness of the presented upper bounds on the LRC of Hp, we consider the case
where φ1(x), . . . , φM (x) are i.i.d; for example, this happens if the original input space X is RM ,
the original input variable x ∈ X has i.i.d. coordinates, and the kernels k1, . . . , kM are identical and
each act on a different coordinate of x.

Theorem 4 (LOWER BOUND). Assume that the kernels are centered and i.i.d.. Then, there is an
absolute constant c such that if λ(1) ≥ 1

nD2 then for all r ≥ 1
n and p ≥ 1,

Rr(Hp,D,M ) ≥

√√√√ c

n

∞∑
j=1

min(rM,D2M2/p∗λ
(1)
j ). (12)

Comparing the above lower bound with the upper bounds, we observe that the up-
per bound of Theorem 2 for centered identical independent kernels is of the order

6



O
(√∑∞

j=1 min
(
rM,D2M

2
p∗ λ

(1)
j

))
, thus matching the rate of the lower bound (the same holds

for the bound of Theorem 3). This shows that the upper bounds of the previous section are tight.

As an application of our results to prediction problems such as classification or regression, we also
bound the excess loss of empirical minimization, f̂ := argminf

1
n

∑n
i=1 l(f(xi), yi), w.r.t. to a loss

function l: P (lf̂ − lf∗) := E l(f̂(x), y)− E l(f∗(x), y), where f∗ := argminf E l(f(x), y) .
We use the analysis of Bartlett et al. [2] to show the following excess risk bound under the assump-
tion of algebraically decreasing eigenvalues of the kernel matrices, i.e. ∃d > 0, α > 1,∀m : λ

(m)
j ≤

d j−α (proof shown in the supplementary material E):

Theorem 5. Assume that ‖k‖∞ ≤ B and ∃d > 0, α > 1,∀m : λ
(m)
j ≤ d j−α. Let l be a

Lipschitz continuous loss with constant L and assume there is a positive constant F such that ∀f ∈
F : P (f − f∗)2 ≤ F P (lf − lf∗). Then for all z > 0 with probability at least 1− e−z the excess
loss of the multi-kernel class Hp can be bounded for p ∈ [1, 2] as

P (lf̂ − lf∗) ≤ min
t∈[p,2]

186

√
3− α
1− α

(
dD2L2t∗2

) 1
1+αF

α−1
α+1M1+ 2

1+α

(
1
t∗−1

)
n−

α
1+α

+
47
√
BDLM

1
t∗ t∗

n
+

(22BDLM
1
t∗ + 27F )z

n
.

We see from the above bound that convergence can be almost as slow as O
(
p∗M

1
p∗ n−

1
2

)
(if α ≈ 1

is small ) and almost as fast as O
(
n−1

)
(if α is large).

3 Interpretation of Bounds

In this section, we discuss the rates of Theorem 5 obtained by local analysis bounds, that is

∀t ∈ [p, 2] : P (lf̂ − lf∗) = O
((
t∗D

) 2
1+αM1+ 2

1+α

(
1
t∗−1

)
n−

α
1+α

)
. (13)

On the other hand, the global Rademacher complexity directly leads to a bound of the form [8]
∀t ∈ [p, 2] : P (lf̂ − lf∗) = O

(
t∗DM

1
t∗ n−

1
2

)
. (14)

To compare the above rates, we first assume p ≥ (logM)∗ so that the best choice is t = p. Clearly,
the rate obtained through local analysis is better in n since α > 1. Regarding the rate in the number
of kernels M and the radius D, a straightforward calculation shows that the local analysis improves
over the global one whenever M

1
p /D = O(

√
n) . Interestingly, this “phase transition” does not

depend on α (i.e. the “complexity” of the kernels), but only on p.

Second, if p ≤ (logM)∗, the best choice in (13) and (14) is t = (logM)∗ so that

P (lf̂ − lf∗) ≤ O
(
min

(
Mn−1, min

t∈[p,2]
t∗DM

1
t∗ n−

1
2

))
(15)

and the phase transition occurs for M
D logM = O(

√
n). Note, that when letting α → ∞ the

classical case of aggregation of M basis functions is recovered. This situation is to be com-
pared to the sharp analysis of the optimal convergence rate of convex aggregation of M func-
tions obtained by [27] in the framework of squared error loss regression, which is shown to be

O
(
min

(
M
n ,
(

1
n log

(
M√
n

)1/2)))
. This corresponds to the setting studied here with D = 1, p = 1

and α→∞, and we see that our bound recovers (up to log factors) in this case this sharp bound and
the related phase transition phenomenon.

Please note that, by introducing an inequality in Eq. (5), Assumption (U)—a similar assumption was
also used in [23]—can be relaxed to a more general, RIP-like assumption as used in [16]; this comes
at the expense of an additional factor in the bounds (details omitted here).

When Can Learning Kernels Help Performance? As a practical application of the presented
bounds, we analyze the impact of the norm-parameter p on the accuracy of `p-norm MKL in var-
ious learning scenarios, showing why an intermediate p often turns out to be optimal in practical
applications. As indicated in the introduction, there is empirical evidence that the performance of
`p-norm MKL crucially depends on the choice of the norm parameter p (for example, cf. Figure 1

7
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Figure 2: Illustration of the three analyzed learning scenarios (TOP) differing in their soft sparsity of the
Bayes hypothesis w∗ (parametrized by β) and corresponding values of the bound factor νt as a function of p
(BOTTOM). A soft sparse (LEFT), a intermediate non-sparse (CENTER), and an almost uniform w∗ (RIGHT).

in the introduction). The aim of this section is to relate the theoretical analysis presented here to this
empirically observed phenomenon.

To start with, first note that the choice of p only affects the excess risk bound in the factor (cf.
Theorem 5 and Equation (13))

νt := min
t∈[p,2]

(
Dpt

∗) 2
1+αM1+ 2

1+α

(
1
t∗−1

)
.

Let us assume that the Bayes hypothesis can be represented by w∗ ∈ H such that the block com-
ponents satisfy ‖w∗m‖2 = m−β , m = 1, . . . ,M , where β ≥ 0 is a parameter parameterizing the
“soft sparsity” of the components. For example, the cases β ∈ {0.5, 1, 2} are shown in Figure 2
for M = 2 and rank-1 kernels. If n is large, the best bias-complexity trade-off for a fixed p will
correspond to a vanishing bias, so that the best choice of D will be close to the minimal value such
that w∗ ∈ Hp,D, that is, Dp = ||w∗||p. Plugging in this value for Dp, the bound factor νp becomes

νp := ‖w∗‖
2

1+α
p min

t∈[p,2]
t∗

2
1+αM1+ 2

1+α

(
1
t∗−1

)
.

We can now plot the value νp as a function of p fixing α, M , and β. We realized this simulation for
α = 2, M = 1000, and β ∈ {0.5, 1, 2}.The results are shown in Figure 2. Note that the soft sparsity
of w∗ is increased from the left hand to the right hand side. We observe that in the “soft sparsest”
scenario (LEFT) the minimum is attained for a quite small p = 1.2, while for the intermediate case
(CENTER) p = 1.4 is optimal, and finally in the uniformly non-sparse scenario (RIGHT) the choice
of p = 2 is optimal, i.e. SVM. This means that if the true Bayes hypothesis has an intermediately
dense representation (which is frequently encountered in practical applications), our bound gives the
strongest generalization guarantees to `p-norm MKL using an intermediate choice of p.

4 Conclusion
We derived a sharp upper bound on the local Rademacher complexity of `p-norm multiple kernel
learning. We also proved a lower bound that matches the upper one and shows that our result is
tight. Using the local Rademacher complexity bound, we derived an excess risk bound that attains
the fast rate of O(n−

α
1+α ), where α is the minimum eigenvalue decay rate of the individual kernels.

In a practical case study, we found that the optimal value of that bound depends on the true Bayes-
optimal kernel weights. If the true weights exhibit soft sparsity but are not strongly sparse, then
the generalization bound is minimized for an intermediate p. This is not only intuitive but also
supports empirical studies showing that sparse MKL (p = 1) rarely works in practice, while some
intermediate choice of p can improve performance.
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[21] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning

algorithms. IEEE Neural Networks, 12(2):181–201, May 2001.
[22] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning

Research, 9:2491–2521, 2008.
[23] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models over kernel

classes via convex programming. CoRR, abs/1008.3654, 2010.
[24] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem.

Neural Computation, 10:1299–1319, 1998.
[25] J. R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(03):417–424, 1980.
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