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Abstract

Approximate inference is an important technique for dealing with large, in-
tractable graphical models based on the exponential family of distributions. We
extend the idea of approximate inference to the t-exponential family by defining
a new t-divergence. This divergence measure is obtained via convex duality be-
tween the log-partition function of the t-exponential family and a new t-entropy.
We illustrate our approach on the Bayes Point Machine with a Student’s t-prior.

1 Introduction

The exponential family of distributions is ubiquitous in statistical machine learning. One promi-
nent application is their use in modeling conditional independence between random variables via a
graphical model. However, when the number or random variables is large, and the underlying graph
structure is complex, a number of computational issues need to be tackled in order to make inference
feasible. Therefore, a number of approximate techniques have been brought to bear on the problem.
Two prominent approximate inference techniques include the Monte Carlo Markov Chain (MCMC)
method [1], and the deterministic method [2, 3].

Deterministic methods are gaining significant research traction, mostly because of their high effi-
ciency and practical success in many applications. Essentially, these methods are premised on the
search for a proxy in an analytically solvable distribution family that approximates the true under-
lying distribution. To measure the closeness between the true and the approximate distributions,
the relative entropy between these two distributions is used. When working with the exponential
family, one uses the Shannon-Boltzmann-Gibbs (SBG) entropy in which case the relative entropy is
the well known Kullback-Leibler (KL) divergence [2]. Numerous well-known algorithms in expo-
nential family, such as the mean field method [2, 4] and the expectation propagation [3, 5], are based
on this criterion.

The thin-tailed nature of the exponential family makes it unsuitable for designing algorithms which
are potentially robust against certain kinds of noisy data. Notable work including [6, 7] utilizes
mixture/split exponential family based approximate model to improve the robustness. Meanwhile,
effort has also been devoted to develop alternate, generalized distribution families in statistics [e.g.
8, 9], statistical physics [e.g. 10, 11], and most recently in machine learning [e.g. 12]. Of particular
interest to us is the t-exponential family1, which was first proposed by Tsallis and co-workers [10,
13, 14]. It is a special case of the more general φ-exponential family of Naudts [11, 15–17]. Related
work in [18] has applied the t-exponential family to generalize logistic regression and obtain an
algorithm that is robust against certain types of label noise.

In this paper, we attempt to generalize deterministic approximate inference by using the t-
exponential family. In other words, the approximate distribution used is from the t-exponential
family. To obtain the corresponding divergence measure as in the exponential family, we exploit the

1Sometimes, also called the q-exponential family or the Tsallis distribution.
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convex duality between the log-partition function of the t-exponential family and a new t-entropy2
to define the t-divergence. To illustrate the usage of the above procedure, we use it for approximate
inference in the Bayes Point Machine (BPM) [3] but with a Student’s t-prior.

The rest of the paper is organized as follows. Section 2 consists of a brief review of the t-exponential
family. In Section 3 a new t-entropy is defined as the convex dual of the log-partition function of the
t-exponential family. In Section 4, the t-divergence is derived and is used for approximate inference
in Section 5. Section 6 illustrates the inference approach by applying it to the Bayes Point Machine
with a Student’s t-prior, and we conclude the paper with a discussion in Section 7.

2 The t-exponential Family and Related Entropies

The t-exponential family was first proposed by Tsallis and co-workers [10, 13, 14]. It is defined as

p(x; θ) := expt (�Φ(x), θ� − gt(θ)) , where (1)

expt(x) :=

�
exp(x) if t = 1

[1 + (1− t)x]
1

1−t

+ otherwise.
(2)

The inverse of the expt function is called logt. Note that the log-partition function, gt(θ), in (1)
preserves convexity and satisfies

∇θgt(θ) = Eq [Φ(x)] . (3)

Here q(x) is called the escort distribution of p(x), and is defined as

q(x) :=
p(x)t�
p(x)tdx

. (4)

See the supplementary material for a proof of convexity of gt(θ) based on material from [17], and a
detailed review of the t-exponential family of distributions.

There are various generalizations of the Shannon-Boltzmann-Gibbs (SBG) entropy which are pro-
posed in statistical physics, and paired with the t-exponential family of distributions. Perhaps the
most well-known among them is the Tsallis entropy [10]:

Htsallis(p) := −
�

p(x)t logt p(x)dx. (5)

Naudts [11, 15, 16, 17] proposed a more general framework, wherein the familiar exp and log
functions are generalized to expφ and logφ functions which are defined via a function φ. These
generalized functions are used to define a family of distributions, and corresponding to this family
an entropy like measure called the information content Iφ(p) as well as its divergence measure are
defined. The information content is the dual of a function F (θ), where

∇θF (θ) = Ep [Φ(x)] . (6)

Setting φ(p) = pt in the Naudts framework recovers the t-exponential family defined in (1). Inter-
estingly when φ(p) = 1

t p
2−t, the information content Iφ is exactly the Tsallis entropy (5).

One another well-known non-SBG entropy is the Rényi entropy [19]. The Rényi α-entropy (when
α �= 1) of the probability distribution p(x) is defined as:

Hα(p) =
1

1− α
log

��
p(x)αdx

�
. (7)

Besides these entropies proposed in statistical physics, it is also worth noting efforts that work with
generalized linear models or utilize different divergence measures, such as [5, 8, 20, 21].

It is well known that the negative SBG entropy is the Fenchel dual of the log-partition function of an
exponential family distribution. This fact is crucially used in variational inference [2]. Although all

2Although closely related, our t-entropy definition is different from either the Tsallis entropy [10] or the
information content in [17]. Nevertheless, it can be regarded as an example of the generalized framework of
the entropy proposed in [8].
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of the above generalized entropies are useful in their own way, none of them satisfy this important
property for the t-exponential family. In the following sections we attempt to find an entropy which
satisfies this property, and outline the principles of approximate inference using the t-exponential
family. Note that although our main focus is the t-exponential family, we believe that our results can
also be extended to the more general φ-exponential family of Naudts [15, 17].

3 Convex Duality and the t-Entropy

Definition 1 (Inspired by Wainwright and Jordan [2]) The t-entropy of a distribution p(x; θ) is
defined as

Ht(p(x; θ)) : = −
�

q(x; θ) logt p(x; θ) dx = −Eq [logt p(x; θ)] . (8)

where q(x; θ) is the escort distribution of p(x; θ). It is straightforward to verify that the t-entropy is
non-negative. Furthermore, the following theorem establishes the duality between −Ht and gt. The
proof is provided in the supplementary material. This extends Theorem 3.4 of [2] to the t-entropy.

Theorem 2 For any µ, define θ(µ) (if exists) to be the parameter of the t-exponential family s.t.

µ = Eq(x;θ(µ)) [Φ(x)] =

�
Φ(x)q(x; θ(µ)) dx. (9)

Then g∗t (µ) =

�−Ht(p(x; θ(µ))) if θ(µ) exists
+∞ otherwise .

(10)

where g∗t (µ) denotes the Fenchel dual of gt(θ). By duality it also follows that

gt(θ) = sup
µ

{�µ, θ� − g∗t (µ)} . (11)

From Theorem 2, it is obvious that Ht(µ) is a concave function. Below, we derive the t-entropy
function corresponding to two commonly used distributions. See Figure 1 for a graphical illustration.

Example 1 (t-entropy of Bernoulli distribution) Assume the Bernoulli distribution is Bern(p)
with parameter p. The t-entropy is

Ht(p) =
−pt logt p− (1− p)t logt(1− p)

pt + (1− p)t
=

1− (pt + (1− p)t)−1

t− 1
(12)

Example 2 (t-entropy of Student’s t-distribution) Assume that a k-dim Student’s t-distribution
p(x;µ,Σ, v) is given by (54), then the t-entropy of p(x;µ,Σ, v) is given by

Ht(p(x))) = − Ψ

1− t

�
1 + v−1

�
+

1

1− t
(13)

where K = (vΣ)−1, v = 2
t−1 − k, and Ψ =

�
Γ((v+k)/2)

(πv)k/2Γ(v/2)|Σ |1/2

�−2/(v+k)

.

3.1 Relation with the Tsallis Entropy

Using (4), (5), and (8), the relation between the t-entropy and Tsallis entropy is obvious. Basically,
the t-entropy is a normalized version of the Tsallis entropy,

Ht(p) = − 1�
p(x)tdx

�
p(x)t logt p(x)dx =

1�
p(x)tdx

Htsallis(p). (14)
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Figure 1: t-entropy corresponding to two well known probability distributions. Left: the Bernoulli
distributionBern(x; p); Right: the Student’s t-distribution St(x; 0, σ2, v), where v = 2/(t−1)−1.
One can recover the SBG entropy by setting t = 1.0.

3.2 Relation with the Rényi Entropy

We can equivalently rewrite the Rényi Entropy as:

Hα(p) =
1

1− α
log

��
p(x)αdx

�
= − log

��
p(x)αdx

�−1/(1−α)

. (15)

The t-entropy of p(x) (when t �= 1) is equal to

Ht(p) = −
�
p(x)t logt p(x)dx�

p(x)tdx
= − logt

��
p(x)tdx

�−1/(1−t)

. (16)

Therefore, when α = t,

Ht(p) = − logt(exp(−Hα(p))) (17)

When t and α → 1, both entropies go to the SBG entropy.

4 The t-divergence

Recall that the Bregman divergence defined by a convex function −H between p and p̃ is [22]:

D(p� p̃) = −H(p) +H(p̃) +

�
dH(p̃)

d p̃
(p̃(x)− p(x))dx. (18)

For the SBG entropy, it is easy to verify that the Bregman divergence leads to the relative SBG-
entropy (also widely known as the Kullback-Leibler (KL) divergence). Analogously, one can define
the t-divergence3 as the Bregman divergence or relative entropy based on the t-entropy.

Definition 3 The t-divergence, which is the relative t-entropy between two distribution p(x) and
p̃(x), is defined as,

Dt(p� p̃) =
�

q(x) logt p(x)− q(x) logt p̃(x)dx. (19)

The following theorem states the relationship between the relative t-entropy and the Bregman diver-
gence. The proof is provided in the supplementary material.

Theorem 4 The t-divergence is the Bregman divergence defined on the negative t-entropy −Ht(p).

3Note that the t-divergence is not a special case of the divergence measure of Naudts [17] because the
entropies are defined differently the derivations are fairly similar in spirit.

4



The t-divergence plays a central role in the variational inference that will be derived shortly. It also
preserves the following properties:

• Dt(p� p̃) ≥ 0, ∀p, p̃. The equality holds only for p = p̃.

• Dt(p� p̃) �= Dt(p̃ �p).

Example 3 (Relative t-entropy between Bernoulli distributions) Assume that two Bernoulli dis-
tributions Bern(p1) and Bern(p2), then the relative t-entropy Dt(p1�p2) between these two dis-
tributions is:

Dt(p1�p2) =
pt1 logt p1 + (1− p1)

t logt(1− p1)− pt1 logt p2 − (1− p1)
t logt(1− p2)

pt1 + (1− p1)t
(20)

=
1− pt1p

1−t
2 − (1− p1)

t(1− p2)
1−t

(1− t)(pt1 + (1− p1)t)
(21)

Example 4 (Relative t-entropy between Student’s t-distributions) Assume that two Student’s t-
distributions p1(x;µ1,Σ1, v) and p2(x;µ2,Σ2, v) are given, then the relative t-entropy Dt(p1�p2)
between these two distributions is:

Dt(p1�p2) =
�

q1(x) logt p1(x)− q1(x) logt p2(x)dx

=
Ψ1

1− t

�
1 + v−1

�
+

2Ψ2

1− t
µ�

1 K2 µ2 (22)

− Ψ2

1− t
T r

�
K�

2 Σ1

�
− Ψ2

1− t
µ�

1 K2 µ1 −
Ψ2

1− t

�
µ�

2 K2 µ2 + 1
�

(23)
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Figure 2: The t-divergence between: Left: Bern(p1) and Bern(p2 = 0.5); Middle: St(x;µ, 1, v)
and St(x; 0, 1, v); Right: St(x; 0, σ2, v) and St(x; 0, 1, v), where v = 2/(t− 1)− 1.

5 Approximate Inference in the t-Exponential Family

In essence, the deterministic approximate inference finds an approximate distribution from an an-
alytically tractable distribution family which minimizes the relative entropy (e.g. KL-divergence
in exponential family) with the true distribution. Since the relative entropy is not symmetric, the
results of minimizingD(p� p̃) andD(p̃ �p) are different. In the main body of the paper we describe
methods which minimizeD(p� p̃) where p̃ comes from the t-exponential family. Algorithms which
minimize D(p̃ �p) are described in the supplementary material.

Given an arbitrary probability distribution p(x), in order to obtain a good approximation p̃(x; θ) in
the t-exponential family, we minimize the relative t-relative entropy (19)

p̃ = argmin
p̃

Dt(p� p̃) =
�

q(x) logt p(x)− q(x) logt p̃(x; θ)dx. (24)

Here q(x) = 1
Z p(x)t denotes the escort of the original distribution p(x). Since

p̃(x; θ) = expt(�Φ(x), θ� − gt(θ)), (25)
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using the fact that ∇θgt(θ) = Eq̃[Φ(x)], one can take the derivative of (24) with respect to θ:

Eq[Φ(x)] = Eq̃[Φ(x)]. (26)

In other words, the approximate distribution can be obtained by matching the escort expectation of
Φ(x) between the two distributions.

The escort expectation matching in (26) is reminiscent of the moment matching in the Power-EP [5]
or the Fractional BP [23] algorithm, where the approximate distribution is obtained by

Ep̃[Φ(x)] = Epα p̃1−α /Z [Φ(x)]. (27)

The main reason for using the t-divergence, however, is not to address the computational or conver-
gence issues as is done in the case of power EP/fractional BP. In contrast, we use the generalized
exponential family (t-exponential family) to build our approximate models. In this context, the
t-divergence plays the same role as KL divergence in the exponential family.

To illustrate our ideas on a non-trivial problem, we apply escort expectation matching to the Bayes
Point Machine (BPM) [3] with a Student’s t-distribution prior.

6 Bayes Point Machine with Student’s t-Prior

Let D = {(x1, y1), . . . , (xn, yn)} be the training data. Consider a linear model parametrized by the
k-dim weight vectorw. For each training data point (xi, yi), the conditional distribution of the label
yi given xi and w is modeled as [3]:

ti(w) = p(yi | xi,w) = �+ (1− 2�)Θ(yi �w,xi�), (28)

where Θ(z) is the step function: Θ(z) = 1 if z > 0 and = 0 otherwise. By making a standard i.i.d.
assumption about the data, the posterior distribution can be written as

p(w | D) ∝ p0(w)
�

i

ti(w), (29)

where p0(w) denotes a prior distribution. Instead of using multivariate Gaussian distribution as a
prior as was done by Minka [3], we will use a Student’s t-prior, because we want to build robust
models:

p0(w) = St(w;0, I, v). (30)

As it turns out, the posterior p(w | D) is infeasible to obtain in practice. Therefore we will find a
multivariate Student’s t-distribution to approximate the true posterior.

p(w | D) � p̃(w) = St(w; µ̃, Σ̃, v). (31)

In order to obtain such a distribution, we implement the Bayesian online learning method [24],
which is also known as Assumed Density Filter [25]. The extension to the expectation propagation is
similar to [3] and omitted due to space limitation. The main idea is to process data points one by one
and update the posterior by using escort moment matching. Assume the approximate distribution
after processing (x1, y1), . . . , (xi−1, yi−1) to be p̃i−1(w) and define

p̃0(w) = p0(w) (32)
pi(w) ∝ p̃i−1(w)ti(w) (33)

Then the approximate posterior p̃i(w) is updated as

p̃i(w) = St(w;µ(i),Σ(i), v) = argmin
µ,Σ

Dt(pi(w)�St(w;µ,Σ, v)). (34)

Because p̃i(w) is a k-dim Student’s t-distribution with degree of freedom v, for which Φ(w) =
[w,ww�] and t = 1 + 2/(v + k) (see example 5 in Appendix A), it turns out that we only need

�
qi(w)w dw =

�
q̃i(w)w dw, and (35)

�
qi(w)ww� dw =

�
q̃i(w)ww� dw . (36)
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Here q̃i(w) ∝ p̃i(w)t, qi(w) ∝ p̃i−1(w)tt̃i(w) and

t̃i(w) = ti(w)t = �t +
�
(1− �)t − �t

�
Θ(yi �w,xi�). (37)

Denote p̃i−1(w) = St(w;µ(i−1),Σ(i−1), v), q̃i−1(w) = St(w;µ(i−1), vΣ(i−1) /(v + 2), v + 2)
(also see example 5), and we make use of the following relations:

Z1 =

�
p̃i−1(w)t̃i(w)dw (38)

= �t +
�
(1− �)t − �t

� � z

−∞
St(x; 0, 1, v)dx (39)

Z2 =

�
q̃i−1(w)t̃i(w)dw (40)

= �t +
�
(1− �)t − �t

� � z

−∞
St(x; 0, v/(v + 2), v + 2)dx (41)

g =
1

Z2
∇µZ1 = yiαxi (42)

G =
1

Z2
∇ΣZ1 = −1

2

yiα
�
xi,µ

(i−1)
�

x�
i Σ(i−1) xi

xi x
�
i (43)

where,

α =
((1− �)t − �t)St(z; 0, 1, v)

Z2

�
x�
i Σ(i−1) xi

and z =
yi
�
xi,µ

(i−1)
�

�
x�
i Σ(i−1) xi

.

Equations (39) and (41) are analogous to Eq. (5.17) in [3]. By assuming that a regularity condition4
holds,

�
and ∇ can be interchanged in ∇Z1 of (42) and (43). Combining with (38) and (40), we

obtain the escort expectations of pi(w) from Z1 and Z2 (similar to Eq. (5.12) and (5.13) in [3]),

Eq[w] =
1

Z2

�
q̃i−1(w)t̃i(w)w dw = µ(i−1) +Σ(i−1) g (44)

Eq[ww�]− Eq[w]Eq[w]� =
1

Z2

�
q̃i−1(w)t̃i(w)ww� dw−Eq[w]Eq[w]�

= rΣ(i−1) −Σ(i−1)
�
g g� −2G

�
Σ(i−1) (45)

where r = Z1/Z2 and Eq[·] means the expectation with respect to qi(w).

Since the mean and variance of the escort of p̃i(w) is µ(i) and Σ(i) (again see example 5), after
combining with (42) and (43),

µ(i) = Eq[w] = µ(i−1) + αyi Σ
(i−1) xi (46)

Σ(i) = Eq[ww�]− Eq[w]Eq[w]� = rΣ(i−1) −(Σ(i−1) xi)

�
αyi

�
xi,µ

(i)
�

x�
i Σ(i−1) xi

�
(Σ(i−1) xi)

�.

(47)

6.1 Results

In the above Bayesian online learning algorithm, everytime a new data xn coming in,
p(θ |x1, . . . ,xn−1) is used as a prior, and the posterior is computed by incorporating the likeli-
hood p(xn |θ). The Student’s t-distribution is a more conservative or non-subjective prior than the
Gaussian distribution because its heavy-tailed nature. More specifically, it means that the Student’s
t-based BPM can be more strongly influenced by the newly coming in points.

In many binary classfication problems, it is assumed that the underlying classfication hyperplane
is always fixed. However, in some real situations, this assumption might not hold. Especially, in

4This is a fairly standard technical requirement which is often proved using the Dominated Convergence
Theorem (see e.g. Section 9.2 of Rosenthal [26]).
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Figure 3: The number of wrong signs between w. Left: case I; Right: case II

Table 1: The classification error of all the data points
Gauss v=3 v=10

Case I 0.337 0.242 0.254
Case II 0.150 0.130 0.128

an online learning problem, the data sequence coming in is time dependent. It is possible that the
underlying classifier is also time dependent. For a senario like this, we require our learning machine
is able to self-adjust during the time given the data.

In our experiment, we build a synthetic online dataset which mimics the above senario, that is the
underlying classification hyperplane is changed during a certain time interval. Our sequence of
data is composed of 4000 data points randomly generated by a 100 dimension isotropic Gaussian
distribution N (0, I). The sequence can be partitioned into 10 sub-sequences of length 400. During
each sub-sequence s, there is a base weight vector wb

(s) ∈ {−1,+1}100. Each point x(i) of the

subsequence is labeled as y(i) = sign
�
w�

(i) x(i)

�
where w(i) = wb

(s)+n and n is a random noise

from [−0.1,+0.1]100. The base weight vector wb
(s) can be (I) totally randomly generated, or (II)

generated based on the base weight vector wb
(s−1) in the following way:

wb
(s)j =

�
Rand{−1,+1} j ∈ [400s− 399, 400s]

wb
(s−1)j otherwise.

(48)

Namely, only 10% of the base weight vector is changed based upon the previous base weight vector.
We compare the Bayes Point Machine with Student’s t-prior (with v = 3 and v = 10) with the
Gaussian prior. For both method, � = 0.01. We report (1) for each point the number of different
signs between the base weight vector and the mean of the posterior (2) the error rate of all the points.

According to the Fig. 3 and Table. 1, we find that the Bayes Point Machine with the Student’s-
t prior adjusts itself significantly faster than the Gaussian prior and it also ends up with a better
classification results. We believe that is mostly resulted from its heavy-tailness.

7 Discussion

In this paper, we investigated the convex duality of the log-partition function of the t-exponential
family, and defined a new t-entropy. By using the t-divergence as a divergence measure, we pro-
posed approximate inference on the t-exponential family by matching the expectation of the escort
distributions. The results in this paper can be extended to the more generalized φ-exponential family
by Naudts [15].

The t-divergence based approximate inference is only applied in a toy example. The focus of our
future work is on utilizing this approach in various graphical models. Especially, it is important to
investigate a new family of graphical models based on heavy-tailed distributions for applications
involving noisy data.
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