On the Completeness of First-Order Knowledge
Compilation for Lifted Probabilistic Inference

Guy Van den Broeck
Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
guy.vandenbroeck@cs.kuleuven.be

Abstract

Probabilistic logics are receiving a lot of attention today because of their expres-
sive power for knowledge representation and learning. However, this expressivity
is detrimental to the tractability of inference, when done at the propositional level.
To solve this problem, various lifted inference algorithms have been proposed
that reason at the first-order level, about groups of objects as a whole. Despite
the existence of various lifted inference approaches, there are currently no com-
pleteness results about these algorithms. The key contribution of this paper is
that we introduce a formal definition of lifted inference that allows us to reason
about the completeness of lifted inference algorithms relative to a particular class
of probabilistic models. We then show how to obtain a completeness result using
a first-order knowledge compilation approach for theories of formulae containing
up to two logical variables.

1 Introduction and related work

Probabilistic logic models build on first-order logic to capture relational structure and on graphical
models to represent and reason about uncertainty [1, 2]. Due to their expressivity, these models can
concisely represent large problems with many interacting random variables. While the semantics of
these logics is often defined through grounding the models [3], performing inference at the proposi-
tional level is — as for first-order logic — inefficient. This has motivated the quest for lifted inference
methods that exploit the structure of probabilistic logic models for efficient inference, by reasoning
about groups of objects as a whole and avoiding repeated computations. The first approaches to ex-
act lifted inference have upgraded the variable elimination algorithm to the first-order level [4, 5, 6].
More recent work is based on methods from logical inference [7, 8, 9, 10], such as knowledge com-
pilation. While these approaches often yield dramatic improvements in runtime over propositional
inference methods on specific problems, it is still largely unclear for which classes of models these
lifted inference operators will be useful and for which ones they will eventually have to resort to
propositional inference. One notable exception in this regard is lifted belief propagation [11], which
performs exact lifted inference on any model whose factor graph representation is a tree.

A first contribution of this paper is that we introduce a notion of domain lifted inference, which
formally defines what lifting means, and which can be used to characterize the classes of proba-
bilistic models to which lifted inference applies. Domain lifted inference essentially requires that
probabilistic inference runs in polynomial time in the domain size of the logical variables appearing
in the model. As a second contribution we show that the class of models expressed as 2-WFOMC
formulae (weighted first-order model counting with up to 2 logical variables per formula) can be
domain lifted using an extended first-order knowledge compilation approach [10]. The resulting
approach allows for lifted inference even in the presence of (anti-) symmetric or total relations in a
theory. These are extremely common and useful concepts that cannot be lifted by any of the existing
first-order knowledge compilation inference rules.



2 Background

We will use standard concepts of function-free first-order logic (FOL). An atom p(t1,...,t,) con-
sists of a predicate p/n of arity n followed by n arguments, which are either constants or logical
variables. An atom is ground if it does not contain any variables. A literal is an atom a or its nega-
tion —a. A clause is a disjunction 1 V ... V [, of literals. If k& = 1, it is a unit clause. An expression
is an atom, literal or clause. The pred(a) function maps an atom to its predicate and the vars(e)
function maps an expression to its logical variables. A theory in conjunctive normal form (CNF) is
a conjunction of clauses. We often represent theories by their set of clauses and clauses by their set
of literals. Furthermore, we will assume that all logical variables are universally quantified.

In addition, we associate a set of constraints with each clause or atom, either of the form X ## ¢,
where X is a logical variable and ¢ is a constant or variable, or of the form X € D, where D is a
domain, or the negation of these constraints. These define a finite domain for each logical variable.
Abusing notation, we will use constraints of the form X = ¢ to denote a substitution of X by ¢. The
function atom(e) maps an expression e to its atoms, now associating the constraints on e with each
atom individually. To add the constraint ¢ to an expression e, we use the notation e A c¢. Two atoms
unify if there is a substitution which makes them identical and if the conjunction of the constraints on
both atoms with the substitution is satisfiable. Two expressions e; and e, are independent, written
e1 L e, if no atom a; € atom(e;) unifies with an atom ay € atom(es).

We adopt the Weighted First-Order Model Counting (WFOMC) [10] formalism to represent proba-
bilistic logic models, building on the notion of a Herbrand interpretation. Herbrand interpretations
are subsets of the Herbrand base HB(T'), which consists of all ground atoms that can be constructed
with the available predicates and constant symbols in 7'. The atoms in a Herbrand interpretation are
assumed to be true. All other atoms in HB(T') are assumed to be false. An interpretation I satisfies
a theory T, written as I |= T, if it satisfies all the clauses ¢ € T'. The WFOMC problem is defined
on a weighted logic theory 7', which is a logic theory augmented with a positive weight function w
and a negative weight function w, which assign a weight to each predicate. The WFOMC problem
involves computing

wmce(T, w, W) = Z Hw(pred(a)) H W(pred(a)). (D)

I=T acl a€HB(T)\I

3 First-order knowledge compilation for lifted probabilistic inference

3.1 Lifted probabilistic inference

A first-order probabilistic model defines a probability distribution P over the set of Herbrand in-
terpretations . Probabilistic inference in these models is concerned with computing the posterior
probability P(g|e) of query ¢ given evidence e, where g and e are logical expressions in general:

ZhEH,hJ:q/\e P(h)
2netne P(h)

P(gle) = 2)

We propose one notion of lifted inference for first-order probabilistic models, defined in terms of the
computational complexity of inference w.r.t. the domains of logical variables. It is clear that other
notions of lifted inference are conceivable, especially in the case of approximate inference.

Definition 1 (Domain Lifted Probabilistic Inference). A probabilistic inference procedure is domain
lifted for a model m, query ¢ and evidence e iff the inference procedure runs in polynomial time in
|D1], ..., |Dy| with D, the domain of the logical variable v; € vars(m, g, e).

Domain lifted inference does not prohibit the algorithm to be exponential in the size of the vocab-
ulary, that is, the number of predicates, arguments and constants, of the probabilistic model, query
and evidence. In fact, the definition allows inference to be exponential in the number of constants
which occur in arguments of atoms in the theory, query or evidence, as long as it is polynomial in
the cardinality of the logical variable domains. This definition of lifted inference stresses the ability
to efficiently deal with the domains of the logical variables that arise, regardless of their size, and
formalizes what seems to be generally accepted in the lifted inference literature.



A class of probabilistic models is a set of probabilistic models expressed in a particular formalism.
As examples, consider Markov logic networks (MLN) [12] or parfactors [4], or the weighted FOL
theories for WFOMC that we introduced above, when the weights are normalized.

Definition 2 (Completeness). Restricting queries to atoms and evidence to a conjunction of literals,
a procedure that is domain lifted for all probabilistic models m in a class of models M and for all
queries ¢ and evidence e, is called complete for M.

3.2 First-order knowledge compilation

First-order knowledge compilation is an approach to lifted probabilistic inference consisting of the
following three steps (see Van den Broeck et al. [10] for details):

1. Convert the probabilistic logical model to a weighted CNF. Converting MLNs or parfactors re-
quires adding new atoms to the theory that represent the (truth) value of each factor or formula.

2 friends(X,Y) A smokes(X) : set-disjunction
Sosmokes(Y) | e

Smokers
C People

(a) MLN Model uthlauseleaf dsg(r)ljr_rlllﬁgts{aotﬁe :
2% [ smokes(X), X € Smokers |
smokes(Y') V = smokes(X) L
V-friends(X,Y) V- {(X,Y) Y [[F(X,Y),Y € Smokers |
friends(X,Y) V {(X,Y) L
smokes(X) V f(X,Y) [ smokes(¥), Y ¢ Smokers |

—smokes(Y) V{(X,Y).

l f(X,Y), X ¢ Smokers,Y ¢ Smokers l

(b) CNF Theory
* deterministic :
disjunction ...,
Predicate | w | W e J
friends 1 1
smokes 1 1
f 62 1 l f(x,y) H — friends(z, y) l l friends(z, y) H —f(z,y) l
(c) Weight Functions (d) First-Order d-DNNF Circuit

Figure 1: Friends-smokers example (taken from [10])

Example 1. The MLN in Figure 1a assigns a weight to a formula in FOL. Figure 1b represents
the same model as a weighted CNF, introducing a new atom (X, Y") to encode the truth value of
the MLN formula. The probabilistic information is captured by the weight functions in Figure 1c.

2. Compile the logical theory into a First-Order d-DNNF (FO d-DNNF) circuit. Figure 1d shows
an example of such a circuit. Leaves represent unit clauses. Inner nodes represent the disjunc-
tion or conjunction of their children [ and r, but with the constraint that disjunctions must be
deterministic (I A r is unsatisfiable) and conjunctions must be decomposable (I L r).

3. Perform WFOMC inference to compute posterior probabilities. In a FO d-DNNF circuit,
WFOMC is polynomial in the size of the circuit and the cardinality of the domains.

To compile the CNF theory into a FO d-DNNF circuit, Van den Broeck et al. [10] propose a set of
compilation rules, which we will refer to as CR;. We will now briefly describe these rules.

Unit Propagation introduces a decomposable conjunction when the theory contains a unit clause. /n-
dependence creates a decomposable conjunction when the theory contains independent subtheories.
Shannon decomposition applies when the theory contains ground atoms and introduces a determin-
istic disjunction between two modified theories: one where the ground atom is true, and one where
it is false. Shattering splits clauses in the theory until all pairs of atoms represent either a disjoint or
identical set of ground atoms.

Example 2. In Figure 2a, the first two clauses are made independent from the friends(X, X') clause
and split off in a decomposable conjunction by unit propagation. The unit clause becomes a leaf of
the FO d-DNNF circuit, while the other operand requires further compilation.



friends(X,Y) V dislikes(X, Y) dislikes(X,Y") V friends(X,Y) fun(X) Vv = friends(X,Y)
- friends(X, Y) V likes(X, Y) fun(X) Vv = friends(X,Y) fun(X) Vv = friends(Y, X)
friends(X, X)

FunPeople
C People

fun(X), X € FunPeople
friends(X,Y) V dislikes(X,Y), X #Y —fun(X), X ¢ FunPeople
—friends(X,Y) V likes(X,Y), X #Y dislikes(z, Y) V friends(z, Y') fun(X) Vv = friends(X,Y")
likes(X, X) fun(z) V - friends(z, Y) fun(X) Vv —friends(Y, X)

(a) Unit propagation of friends(X, X)  (b) Independent partial grounding (c) Atom counting of fun(X)

Figure 2: Examples of compilation rules. Circles are FO d-DNNF inner nodes. White rectangles
show theories before and after applying the rule. All variable domains are People. (taken from [10])

Independent Partial Grounding creates a decomposable conjunction over a set of child circuits,
which are identical up to the value of a grounding constant. Since they are structurally identical,
only one child circuit is actually compiled. Afom Counting applies when the theory contains an atom
with a single logical variable X € D. It explicitly represents the domain DT C D of X for which
the atom is true. It compiles the theory into a deterministic disjunction between all possible such
domains. Again, these child circuits are identical up to the value of DT and only one is compiled.

Example 3. The theory in Figure 2b is compiled into a decomposable set-conjunction of theories
that are independent and identical up to the value of the x constant. The theory in Figure 2c contains
an atom with one logical variable: fun(X). Atom counting compiles it into a deterministic set-
disjunction over theories that differ in FunPeople, which is the domain of X for which fun(X) is
true. Subsequent steps of unit propagation remove the fun(X) atoms from the theory entirely.

3.3 Completeness

We will now characterize those theories where the CR1 compilation rules cannot be used, and where
the inference procedure has to resort to grounding out the theory to propositional logic. For these,
first-order knowledge compilation using CR; is not yet domain lifted.

When a logical theory contains symmetric, anti-symmetric or total relations, such as

friends(X,Y") = friends(Y, X), 3)
parent(X,Y) = —parent(Y, X), X #Y, 4)
< (X, Y)v<(Y,X), ®)

or more general formulas, such as
enemies(X,Y) = —friend(X,Y) A = friend(Y, X), (6)
none of the CR; rules apply. Intuitively, the underlying problem is the presence of either:
e Two unifying (not independent) atoms in the same clause which contain the same logical variable

in different positions of the argument list. Examples include (the CNF of) Formulas 3, 4 and 5,
where the X and Y variable are bound by unifying two atoms from the same clause.

e Two logical variables that bind when unifying one pair of atoms but appear in different positions
of the argument list of two other unifying atoms. Examples include Formula 6, which in CNF is

= friend(X,Y) V - enemies(X,Y)

= friend(Y, X) V -~ enemies(X,Y)
Here, unifying the enemies(X,Y") atoms binds the X variables from both clauses, which appear
in different positions of the argument lists of the unifying atoms friend (X, Y) and friend(Y, X).

Both of these properties preclude the use of C'R; rules. Also in the context of other model classes,
such as MLNs, probabilistic versions of the above formulas cannot be processed by CR; rules.



Even though first-order knowledge compilation with CR; rules does not have a clear completeness
result, we can show some properties of theories to which none of the compilation rules apply. First,
we need to distinguish between the arity of an atom and its dimension. A predicate with arity two
might have atoms with dimension one, when one of the arguments is ground or both are identical.

Definition 3 (Dimension of an Expression). The dimension of an expression e is the number of
logical variables it contains: dim(e) = | vars(e)|.

Lemma 1 (CR; Postconditions). The CR; rules remove all atoms from the theory T which have
zero or one logical variable arguments, such that afterwards Va € atom(T') : dim(a) > 1. When
no CRy rule applies, the theory is shattered and contains no independent subtheories.

Proof. Ground atoms are removed by the Shannon decomposition operator followed by unit prop-
agation. Atoms with a single logical variable (including unary relations) are removed by the atom
counting operator followed by unit propagation. If 7" contains independent subtheories, the inde-
pendence operator can be applied. Shattering is always applied when 7' is not yet shattered. O

4 Extending first-order knowledge compilation
In this section we introduce a new operator which does apply to the theories from Section 3.3.

4.1 Logical variable properties

To formally define the operator we propose, and prove its correctness, we first introduce some math-
ematical concepts related to the logical variables in a theory (partly after Jha et al. [8]).

Definition 4 (Binding Variables). Two logical variables X, Y are directly binding b(X,Y") if they
are bound by unifying a pair of atoms in the theory. The binding relationship b (X,Y) is the
transitive closure of the directly binding relation b(X,Y").

Example 4. In the theory
“p(W, X)V=q(X)
r(Y)V=q(Y)
-r(Z)Vs(Z)
the variable pairs (X,Y") and (Y, Z) are directly binding. The variables X,Y and Z are binding.

Variable W does not bind to any other variable. Note that the binding relationship b* (X, Y) is an
equivalence relation that defines two equivalence classes: {X,Y, Z} and {W}.

Lemma 2 (Binding Domains). After shattering, binding logical variables have identical domains.

Proof. During shattering (see Section 3.2), when two atoms unify, binding two variables with par-
tially overlapping domains, the atoms’ clauses are split up into clauses where the domain of the
variables is identical, and clauses where the domains are disjoint and the atoms no longer unify. [

Definition 5 (Root Binding Class). A root variable is a variable that appears in all the atoms in its
clause. A root binding class is an equivalence class of binding variables where all variables are root.
Example 5. In the theory of Example 4, { X, Y, Z} is a root binding class and {W} is not.

4.2 Domain recursion

We will now introduce the new domain recursion operator, starting with its preconditions.

Definition 6. A theory allows for domain recursion when (i) the theory is shattered, (ii) the theory
contains no independent subtheories and (iii) there exists a root binding class.

From now on, we will denote with C' the set of clauses of the theory at hand and with B a root
binding class guaranteed to exist if C' allows for domain recursion. Lemma 2 states that all variables
in B have identical domains. We will denote the domain of these variables with D.

The intuition behind the domain recursion operator is that it modifies D by making one element
explicit: D = D' U{xp} with xp ¢ D’. This explicit domain element is introduced by the SPLITD
function, which splits clauses w.r.t. the new subdomain D’ and element x .



Definition 7 (SPLITD). For a clause ¢ and given set of variables V. C vars(c) with domain D, let

c, itV =0

SPLITD(c1, V. \ {V}) U SPLITD(co, V. \ {V}), if V. # 0 ™

SPLITD(c, V,) = {

where c; = ¢ A (V =zp)andca = ¢ A (V # xzp) A (V € D') for some V € V.. For a set of
clauses C' and set of variables V with domain D: SPLITD(C, V) = (J,c SPLITD(c, V N vars(c)).

The domain recursion operator creates three sets of clauses: SPLITD(C, B) = C, U C,, U C,., with

Cy={cA /\ (V=ap)lce C}, (8)
VeBnvars(c)

Co={en N\ (V#azp)A(VeD)ceC}, 9)
VeBnvars(c)

C, = SpLITD(C, B)\ C; \ C,. (10)

Proposition 3. The conjunction of the domain recursion sets is equivalent to the original theory:
/\CEC c= /\CESPLITD(C,B) ¢ and therefore /\CEC c= (/\CeCm C) A (/\CECU C) A (/\CECT C)'

We will now show that these sets are independent and that their conjunction is decomposable.
Theorem 4. The theories C,, C,, and C,. are independent: C,, L C,, C,, L C, and C, 1L C,.

The proof of Theorem 4 relies on the following Lemma.

Lemma 5. [fthe theory allows for domain recursion, all clauses and atoms contain the same number
of variables from B:

dn, Ve € C, Va € atom(C) : | vars(c) N B| = |vars(a) N B| = n.

Proof. Denote with C), the clauses in C' that contain n logical variables from B and with CY, its
compliment in C'. If C' is nonempty, there is a n > 0 for which C,, is nonempty. Then every atom
in C,, contains exactly n variables from B (Definition 5). Since the theory contains no independent
subtheories, there must be an atom a in C,, which unifies with an atom «a. in C, or C, is empty.
After shattering, all unifications bind one variable from a to a single variable from a.. Because a
contains exactly n variables from B, a, must also contain exactly n (Definition 4), and because B is
a root binding class, the clause of a. also contains exactly n, which contradicts the definition of C'¢.
Therefore, C¢ is empty, and because the variables in B are root, they also appear in all atoms. [

Proof of Theorem 4. From Lemma 5, all atoms in C' contain the same number of variables from B.
In C,, these variables are all constrained to be equal to xp, while in C, and C,. at least one variable
is constrained to be different from x p. An attempt to unify an atom from C,, with an atom from C,,
or C. therefore creates an unsatisfiable set of constraints. Similarly, atoms from C,, and C). cannot
be unified. O]

Finally, we extend the FO d-DNNF language proposed in Van den Broeck et al. [10] with a new
node, the recursive decomposable conjunction (®,., and define the domain recursion compilation
rule.

Definition 8 (®,.). The FO d-DNNF node ®®,.(ny,n,, D, D', V) represents a decomposable con-
junction between the d-DNNF nodes n, n,. and a d-DNNF node isomorphic to the ®,- node itself.
In particular, the isomorphic operand is identical to the node itself, except for the size of the domain
of the variables in ), which becomes one smaller, going from D to D’ in the isomorphic operand.

We have shown that the conjunction between sets C,, C,, and C. is decomposable (Theorem 4) and
logically equivalent to the original theory (Proposition 3). Furthermore, C, is identical to C, up
to the constraints on the domain of the variables in B. This leads us to the following definition of
domain recursion.

Definition 9 (Domain Recursion). The domain recursion compilation rule compiles C' into
Or(ng,n., D, D', B), where n,, n, are the compiled circuits for C,,, C,.. The third set C, is repre-
sented by the recursion on D, according to Definition 8.



i —friends(z, X) V friends(X,z), X # z
¢ —friends(X, z) V friends(z, X), X # x :

l — friends(z, ") H — friends(z’, x) H friends(z, z") H friends(z’, x) ‘

Figure 3: Circuit for the symmetric relation in Equation 3, rooted in a recursive conjunction.

Example 6. Figure 3 shows the FO d-DNNF circuit for Equation 3. The theory is split up into
three independent theories: C,. and C,, shown in the Figure 3, and C, = {—friends(X,Y) Vv
friends(Y, X), X # z,Y # x}. The conjunction of these theories is equivalent to Equation 3.
Theory C), is identical to Equation 3, up to the inequality constraints on X and Y.

Theorem 6. Given a function size, which maps domains to their size, the weighted first-order model
count of a O (ng,nyr, D, D', V) node is

size(D
wme(®y (g, n, D, D', V), size) = wme(ny, size)*#e(P) 1_([ )Wmc(nr,size U{D’ s s}),
= (1
where size U{D’ — s} adds to the size function that the subdomain D' has cardinality s.
Proof. If C allows for domain recursion, due to Theorem 4, the weighted model count is
wme(C, size) = {iv’mc(C'w) - wmc(Cy, size’) - wme(C,., size”) ii zzgng); > 8 (12)
where size’ = size U{D’ v+ size(D) — 1}. O

Theorem 7. The Independent Partial Grounding compilation rule is a special case of the domain
recursion rule, where V¢ € C : |vars(c) N B| = 1 (and therefore C,. = ().

4.3 Completeness

In this section, we introduce a class of models for which first-order knowledge compilation with
domain recursion is complete.

Definition 10 (k.-WFOMC). The class of k-WFOMC consist of WFOMC theories with clauses that
have up to k logical variables.

A first completeness result is for 2-WFOMC, using the set of knowledge compilation rules CRo,
which are the rules in CR; extended with domain recursion.

Theorem 8 (Completeness for 2-WFOMC). First-order knowledge compilation using the CRy com-
pilation rules is a complete domain lifted probabilistic inference algorithm for 2-WFOMC.

Proof. From Lemma 1, after applying the C'R; rules, the theory contains only atoms with dimension
larger than or equal to two. From Definition 10, each clause has dimension smaller than or equal to
two. Therefore, each logical variable in the theory is a root variable and according to Definition 5,
every equivalence class of binding variables is a root binding class. Because of Lemma 1, the theory
allows for domain recursion, which requires further compilation of two theories: C,, and C,. into n,
and n,.. Both have dimension smaller than 2 and can be lifted by CR; compilation rules. O

The properties of 2-WFOMC are a sufficient but not necessary condition for first-order knowledge
compilation to be domain lifted. We can obtain a similar result for MLNs or parfactors by reducing
them to a WFOMC problem. If an MLN contains only formulae with up to k logical variables, then
its WFOMC representation will be in k-WFOMC.



This result for 2-WFOMC is not trivial. Van den Broeck et al. [10] showed in their experiments that
counting first-order variable elimination (C-FOVE) [6] fails to lift the “Friends Smoker Drinker”
problem, which is in 2-WFOMC. We will show in the next section that the C'R; rules fail to lift
the theory in Figure 4a, which is in 2-WFOMC. Note that there are also useful theories that are not
in 2-WFOMC, such as those containing the transitive relation friends(X,Y) A friends(Y, Z) =
friends(X, Z).

S Empirical evaluation

To complement the theoretical results of the previous section, we extended the WFOMC implemen-
tation! with the domain recursion rule. We performed experiments with the theory in Figure 4a,
which is a version of the friends and smokers model [11] extended with the symmetric relation of
Equation 3. We evaluate the performance querying P(smokes(bob)) with increasing domain size,
comparing our approach to the existing WFOMC implementation and its propositional counterpart,
which first grounds the theory and then compiles it with the c2d compiler [13] to a propositional
d-DNNF circuit. We did not compare to C-FOVE [6] because it cannot perform lifted inference on
this model.

Propositional inference quickly becomes intractable when there are more than 20 people. The lifted
inference algorithms scale much better. The CR; rules can exploit some regularities in the model.
For example, they eliminate all the smokes(X ) atoms from the theory. They do, however, resort
to grounding at a later stage of the compilation process. With the domain recursion rule, there is
no need for grounding. This advantage is clear in the experiments, our approach having an almost
constant inference time in this range of domains sizes. Note that the runtimes for c2d include
compilation and evaluation of the circuit, whereas the WFOMC runtimes only represent evaluation
of the FO d-DNNF. After all, propositional compilation depends on the domain size but first-order
compilation does not. First-order compilation takes a constant two seconds for both rule sets.

10000 T T T —I—=
2 1000 —————-’--—
g o . c2d
2 smokes(X) A friends(X,Y) 5 10 WFOMC - CR; =====
= smokes(Y) 5 1 WFOMC - CR,
friends(X,Y) = friends(Y, X). O%} 1 ; . | I I
10 20 30 40 50 60 70 80
Number of People
(a) MLN Model (b) Evaluation Runtime

Figure 4: Symmetric friends and smokers experiment, comparing propositional knowledge compi-
lation (c2d) to WFOMC using compilation rules CR; and CR5 (which includes domain recursion).

6 Conclusions

We proposed a definition of complete domain lifted probabilistic inference w.r.t. classes of prob-
abilistic logic models. This definition considers algorithms to be lifted if they are polynomial in
the size of logical variable domains. Existing first-order knowledge compilation turns out not to
admit an intuitive completeness result. Therefore, we generalized the existing Independent Partial
Grounding compilation rule to the domain recursion rule. With this one extra rule, we showed that
first-order knowledge compilation is complete for a significant class of probabilistic logic models,
where the WFOMC representation has up to two logical variables per clause.

Acknowledgments

The author would like to thank Luc De Raedt, Jesse Davis and the anonymous reviewers for valuable
feedback. This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen).

"http://dtai.cs.kuleuven.be/wfomc/



References

[1] Lise Getoor and Ben Taskar, editors. An Introduction to Statistical Relational Learning. MIT
Press, 2007.

[2] Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Muggleton, editors. Probabilis-
tic inductive logic programming: theory and applications. Springer-Verlag, Berlin, Heidelberg,
2008.

[3] Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and Luc De Raedt. Inference
in probabilistic logic programs using weighted CNF’s. In Proceedings of UAI, pages 256-265,
2011.

[4] David Poole. First-order probabilistic inference. In Proceedings of IJCAI, pages 985-991,
2003.

[5] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic inference. In
Proceedings of IJCAI, pages 1319-1325, 2005.

[6] Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kael-
bling. Lifted Probabilistic Inference with Counting Formulas. In Proceedings of AAAI pages
1062-1068, 2008.

[7] Vibhav Gogate and Pedro Domingos. Exploiting Logical Structure in Lifted Probabilistic
Inference. In Proceedings of StarAl, 2010.

[8] Abhay Jha, Vibhav Gogate, Alexandra Meliou, and Dan Suciu. Lifted Inference Seen from the
Other Side: The Tractable Features. In Proceedings of NIPS, 2010.

[9] Vibhav Gogate and Pedro Domingos. Probabilistic theorem proving. In Proceedings of UAI,
pages 256-265, 2011.

[10] Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt. Lifted
Probabilistic Inference by First-Order Knowledge Compilation. In Proceedings of 1JCAI,
pages 2178-2185, 2011.

[11] Parag Singla and Pedro Domingos. Lifted first-order belief propagation. In Proceedings of
AAAI, pages 1094-1099, 2008.

[12] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1):
107-136, 2006.

[13] Adnan Darwiche. New advances in compiling CNF to decomposable negation normal form.
In Proceedings of ECAI, pages 328-332, 2004.



