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Abstract

We derive algorithms for generalised tensor factorisati®@fF) by building upon
the well-established theory of Generalised Linear Modésur algorithms are
general in the sense that we can compute arbitrary factiomsain a message
passing framework, derived for a broad class of exponefdiily distribu-
tions including special cases such as Tweedie’s distdhsttorresponding t8-
divergences. By bounding the step size of the Fisher Scaaragion of the GLM,
we obtain general updates for real data and multiplicatpdates for non-negative
data. The GTF framework is, then extended easily to addhesgroblems when
multiple observed tensors are factorised simultaneoMgdyjillustrate our coupled
factorisation approach on synthetic data as well as on acalusiidio restoration
problem.

1 Introduction

A fruitful modelling approach for extracting meaningfuffanmation from highly structured mul-
tivariate datasets is based on matrix factorisations (MFsYact, many standard data processing
methods of machine learning and statistics such as clogtesource separation, independent com-
ponents analysis (ICA), nonnegative matrix factorisatfiMF), latent semantic indexing (LSI)
can be expressed and understood as MF problems. These MHsnatste have well understood
probabilistic interpretations as probabilistic geneatinodels. Indeed, many standard algorithms
mentioned above can be derived as maximum likelihood or maxi a-posteriori parameter esti-
mation procedures. It is also possible to do a full Bayesieatinent for model selection [1].

Tensors appear as a natural generalisation of matrix faat@m, when observed data and/or a latent
representation have several semantically meaningfulmbinas. Before giving a formal definition,
consider the following motivating example
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where X is an observed-way array andX,, X5 are2-way arrays, whileZ, fora = 1...5 are
the laten2-way arrays. Here, th2-way arrays are just matrices but this can be easily extetwled
objects having arbitrary number of indices. As the tefaway array’ is awkward, we prefer using
the more convenient tertensor Here,Z; is a shared factor, coupling all models. As the first model
is a CP (Parafac) while the second and the third ones are ME'sall the combined factorization
as CP/MF/MF model. Such models are of interest when one ctainotlifferent 'views’ of the
same piece of information (het&,) under different experimental conditions. Singh and Gardo
[2] focused on a similar problem called asllective matrix factorisatiofCMF) or multi-matrix
factorisation for relational learning but only for matrix factors and ebsations. In addition, their
generalised Bregman divergence minimisation procedwwanass matching link and loss functions.
For coupled matrix and tensor factorizatiqg@€MTF), recently [3] proposed a gradient-based all-
at-once optimization method as an alternativalternating least squaréALS) optimization and



demonstrated their approach for a CP/MF coupled model. |&imodels are used for protein-
protein interactions (PPI) problems in gene regulation [4]

The main motivation of the current paper is to construct aeganand practical framework for
computation of tensor factorisations (TF), by extendirgwrell-established theory of Generalised
Linear Models (GLM). Our approach is also partially insgitey probabilistic graphical models:
our computation procedures for a given factorisation hawataral message passing interpretation.
This provides a structured and efficient approach that esaldry easy development of application
specific custom models, priors or error measures as welbasithims for joint factorisations where
an arbitrary set of tensors can be factorised simultangod !l known models of multiway analysis
(Parafac, Tucker [5]) appear as special cases and novellsnanid associated inference algorithms
can be automatically be developed. In [6], the authors take#ar approach to tensor factorisations
as ours, but that work is limited t& L and Euclidean costs, generalising MF models of [7] to the
tensor case. Itis possible to generalise this line of woik-ttivergences [8] but none of these works
address the coupled factorisation case and consider oebtrécted class of cost functions.

2 Generalised Linear Models for Matrix/Tensor Factorisation

To set the notation and our approach, we briefly review GLMs¥iong closely the original notation
of [9, ch 5]. A GLM assumes that a data vectdras conditionally independently drawn components
x; according to an exponential family density
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Here,; arecanonical parameterandr? is a known dispersion parametér.;) is the expectation of
x; andb(-) is the log partition function, enforcing normalization. &banonical parameters are not
directly estimated, instead one assumes a link fungt{enthat 'links’ the mean of the distribution
Z; and assumes thg(i;) = ljz whereliT is theith row vector of a known model matrik and
z is the parameter vector to be estimateld, denotes matrix transpose df The model is linear
in the sense that a function of the mean is linear in parasieter,g(Z) = Lz . A Linear Model
(LM) is a special case of GLM that assumes normality,d.e~ N (z;; %;,02) as well as linearity
that implies identity link function ag(s;) = #; = [,/ z assuming; are known. Logistic regression
assumes a log linky(2;) = log #; = I, z; herelog #; andz have a linear relationship [9].

The goal in classical GLM is to estimate the parameter vectofhis is typically achieved via
a Gauss-Newton method (Fisher Scoring). The necessargtsliger this computation are the log
likelihood, the derivative and the Fisher Information (#hected value of negative of the Fisher
Score). These are easily derived as:
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wherew is a vector with elements;, D andG are the diagonal matrices & = diag(w), G =
diag(gz(2:)) and
T L _ Og(@:)
w; = vxlgxz (i) = S 5
(g2 (@) 9s(d0) = "5 (5)
with v(2;) being thevariance functiorrelated to the observation variance by (wa) = 72v(%;).
Via Fisher Scoring, the general update equation in matrimfig written as

PR (LTDL) LG — ) (6)

Although this formulation is somewhat abstract, it covexery broad range of model classes that
are used in practice. For example, an important special aggears when the variance functions
are in the form ofv(Z) = 7. By settingp = {0, 1,2, 3} these correspond to Gaussian, Poisson,
Exponential/Gamma, and Inverse Gaussian distributiodsfdf.30], which are special cases of the
exponential family of distributions for anynamed Tweedie’s family [11]. Those fpr= {0, 1, 2},
in turn, correspond to EU, KL and IS cost functions often usedNMF decompositions [12, 7].



2.1 Tensor Factorisations (TF) as GLM’s

The key observation for expressing a TF model as a GLM is totifyethe multilinear structure
and using an alternating optimization approach. To hidentitational complexity, we will give an
example with a simple matrix factorisation model; extensimtensors will require heavier notation,
but are otherwise conceptually straightforward. Consédet model

9(X) =212, in scalar g(X) ="z zg %

where 7, Z; andg(X) are matrices of compatible sizes. Indeed, by applyingviése operator
(vectorization, stacking columns of a matrix to obtain ategcto both sides of (7) we obtain two
equivalent representation of the same system

vec(g(X)) = (I ® Z1) vee(Zs) = 8(572?) 3;(2):'

wherel|;| denotes thej| x |j| identity matrix,® denotes the Kronecker product [13], anet Z =

Z. Clearly, this is a GLM wher&/, plays the role of a model matrix and, is the parameter
vector. By alternating betweet; and Z,, we can maximise the log-likelihood iteratively; indeed
this alternating maximisation is standard for solving nxatictorisation problems. In the sequel, we
will show that a much broader range of algorithms can be heddrived in the GLM framework.

vec(Zy) = ) vec(Zy) =VaZy  (8)

2.2 Generalised Tensor Factorisation

We define @ensorA as a multiway array with an index sBt= {iy, s, . .., 44|} Where each index
in forn =1...|af runs asi, = 1...i,|. An element of the tensaok is a scalar that we denote
by A(iy,i2,...,i|q) OF A"-*2--"el or as a shorthand notation by(v) with v being a particular

configuration.|v| denotes number of all distinct configurations $grand e.g. if¥ = {i1,i2} then
|v| = |i1]]i2|. We call the formA(v) aselement-wisgthe notatior] | yields a tensor by enumerating
all the indices, i.e.A = [Afi2ial] or A = [A(v)]. For any two tensor& andY of compatible
order,X oY is an element-wise multiplication and if not explicitlyessedX /Y is an element-wise
division. 1 is an object of all ones whose order depends on the contexevithie used.

A generalised tensor factorisation problem is specified mylbserved tensoX (with possibly
missing entries, to be treated later) ancbéection of latent tensor be estimated?.o| = {Za}
fora=1...|a|, and by an exponential family of form (2). The index sefofs denoted by, and

the index set of eacl, by V,. The set of all model indices g = U';il V.. We usev,, (or vg)

to denote a particular configuration of the indices Zar (or X') while v, denoting a configuration
of the compliment, = V/V,. The goal is to find the latenf,, that maximize the likelihood

p(X|Z1.o.) where(X) = X is given via
Q(X(UO)) = ZHZO‘(UO‘) )

To clarify our notation with an example, we express the CPafaa) model, defined a% (i, j, k) =

> Z1(i,7) Z3(j,7) Z3(k, r). In our notation, we take identity link(X) = X and the index sets
withV = {i,5,k, 7}, Vo = {i,5,k}, Vo = {r}, V1 = {i,r}, Vo = {4,r} andVs = {k,r}. Our
notation deliberately follows that of graphical modelse tieader might find it useful to associate
indices with discrete random variables and factors wittbphility tables [14]. Obviously, while a
TF model does not represent a discrete probability meatheealgebraic structure is nevertheless
analogous.

To extend the discussion in Section 2.1 to the tensor caseeed the equivalent of the model
matrix, when updating’,,. This is obtained by summing over the product of all remajrfactors

Q(X(UO)): Z Za(va) Z H Zo(var) = Z Za(va)La(0a)
VoMV« VoNVa &/ #a VoMV«

La(0q) = Z H Zor (Vo) with 0, = (vo U va) N (T U 7a)

VoNVa o/ #a



One related quantity té,, is the derivative of the tenS@t(X ) wrt the latent tensofZ,, denoted as
V. and is defined as (following the convention [13, pp 196])

~ 99(X)
Va = 0Z,

= Jjuorroa] ® La with L, € RIvonelx[vonee| (10)

The importance of.,, is that, all the update rules can be formulated by a produttsaibsequent
contraction ofL,, with another tenso€) having exactly the same index set of the observed tensor
X. As a notational abstraction, it is useful to formulate tbikofving function,

Definition 1. The tensor valued functiol, (Q) : RI*l — RIv=| is defined as

AL@Q =] D Qvo) Lalon)® (11)

VoMV

with A, (Q) being an object of the same order &g ando, = (vo U v,) N (09 U 74). Here, on

the right side, the nonnegative integailenotes the element-wise power, not to be confused with an
index. On the left, it should be interpreted as a parametéreoh function. Arguably,A function
abstracts away all the tedious reshape and unfolding apesafi5]. This abstraction has also an
important practical facet: the computationAfis algebraically (almost) equivalent to computation
of marginal quantities on a factor graph, for which efficier@ssage passing algorithms exist [14].

Example 1. TUCKER3 is defined asX®it = 3> AWwBiaCkrGrer with vV =

{iajakap7q77'}1 VO = {ivjak}i Va = {i,p}, Vg = {]a Q}!YVC = {k,T}, VG = {p7QaT}' Then
for the first factorA, the objectd 4 and A% () are computed as follows

La=|Y practrgrar| = (€ e BYGT,| = [(La)] ] (12)
ALQ) = | Q7 (La)y | = [(QL%)]] (13)
.k

The index sets marginalised out fbr, andA 4 are Vo N V4 = {p,q,r} N {j,q,k,r} = {¢,r} and
VoNVa = {i,5,k} 0 {j,q,k,7} = {j,k}. Also we verify the order of the gradieRt, (10) as
I'® L4} ; =V, ; that conforms the matrix derivation convention [13, ppJL96

2.3 lterative Solution for GTF

As we have now established a one to one relationship betwedhdhd GTF objects such as the

observation: = vec X, the mean (and the model estimatex vec X, the model matrixi. = L,
and the parameter vector= vec Z,,, we can write directly from (6) as

o - -1 i =
Tt T+ (VQTDVQ) VIDG(X - X) with V,, = 8g(ZX )

(14)

There are at least two ways that this update can further Bieghl We may assume an identity
link function, or alternatively we may choose a matchind land lost functions such that they
cancel each other smoothly [2]. In the sequel we considettiigidink g(X) = X that results to
gX(X) = 1. This impliesG to be identity, i.e.G = I. We define a tensdl/, that plays the same
role asw in (5), which becomes simply the precision (inverse varmgfunction), i.e. /W = 1/v(X)
where for the Gaussian, Poisson, Exponential and Inversissgm distributions we have simply

W = X P with p = {0,1,2, 3} [10, pp 30]. Then, the update (14) is reduced to

, o -1 - =

Zo = Zo+ (ngva) VID(X - X) (15)
After this simplification we obtain two update rules for GTd¢¥ hon-negative and real data.

The update (15) can be used to derive multiplicative upddés (MUR) popularised by [15] for the
nonnegative matrix factorisation (NMF). MUR equationsweeghe non-negative parameter updates
as long as starting some non-negative initial values.



Theorem 1. The update equatiofl5) for nonnegative GTF is reduced to multiplicative form as

o 7y o 2aWoX) St Za(va) > 0 (16)
AL(WoX)

(Proof sketch) Due to space limitation we leave the full details of the prdwift idea is that inverse
of H = V' DV is identified as step size and by use of the results of the R&mabenious theorem
[16, pp 125] we further bound it as

Za QZa 2 . (HZQ)<UQ)
= < = < sinceMqz(H) < max ————~
VDX VTDX Amaz (VT DV) (H) Vo Zo(va)
For the special case of the Tweedie family where the pratisi@ function of the mean d% =
X~?forp={0,1,2,3} the update (15) is reduced to
Ag(X7P0 X)
Ay (X1-P)
For example, to updat&, for the NMF modelX = 7,7, A, is Ao (Q) = Z{ Q. Then for the
Gaussiany{ = 0) this reduces to NMF-EU a8, « Z, o (Z, X)/(Z] X). For the Poissory(= 1)
it reduces to NMF-KL a%, + Z, o (Z] (X/X))/(Z{ 1) [15].
By dropping the non-negativity requirement we obtain tHefeing update equation:
Theorem 2. The update equation for GTF with real data can be expressed as
2 AL (Wo (X —X))
)‘oz/() A?y(W)

n= an

o < Zo 0 (18)

Lo Lo +

With A /0 = |va N Tl (19)

(Proof sketch)Again skipping the full details, as part of the proof we 8gt= 1in (17) specifically,
and replacing matrix multiplication o¥ " DV1 by VTQDlAa/O completes the proof. Here the
multiplier A, /o is the cardinality arising from the fact that only, ,, elements are non-zero in a row
of VT DV. Note the example fok, /o that if V, NVo = {p,q} then\, o = |p||g| which is number
of all distinct configurations for the index sgt, ¢}.

Missing datacan be handled easily by dropping the missing data termstfierdikelihood [17]. The
net effect of this is the addition of an indicator variablg to the gradien£/0z = 772 3" (x; —
#)mw; gz (2:)1] with m; = 1if x; is observed otherwise; = 0. Hence we simply define a mask
tensorM having the same order as the observationwhere the elememt/ (vg) is 1 if X (vo) is
observed and zero otherwise. In the update equations, weymeplacell” with W o M.

3 Coupled Tensor Factorization

Here we address the problem when multiple observed tedsprfor v = 1...|v| are factorised
simultaneously. Each observed tensfy now has a corresponding index 3&t,, and a particular
configuration will be denoted by, = u,. Next, we define &/| x |«| coupling matrixR where

v ) 1 X, andZ, connected - B R
R = { 0  otherwise Xy(uy) = Z H Za(Va) (20)

For the coupled factorisation, we get the following expi@ssas the derivative of the log likelihood

oL . X, (uy)
a7 N ne Xy v) — Xl/ v v\Uv) 55 7~ 21
AT I (20 ) = o) W) 522 0 (21)
whereW, = W (X, (u,)) are the precisions. Then proceeding as in section 2.3 (gtting the
Hessian and finding Fisher Information) we arrive at the tpdale in vector form as

Zo Zot (L ROVI,DNL) (L ROVID(E -K)) @
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Figure 1: (Left) Coupled factorisation structure wheredh®w indicates the existence of the influ-
ence of latent tensdf,, onto the observed tensdf, . (Right) The CP/MF/MF coupled factorisation
problemin 1.

whereV, , = Jdg¢(X,)/0Z,. The update equations for the coupled case are quite ir@pitie
calculate the\, ,, functions defined as

2., @ = Y Qu)( I Zarwa)™") | (23)
Uy NVy o' #a
for each submodel and add the results:
Lemma 1. Update for non-negative CTF
Zy RV’O‘AQ,V(WV © XV)

Lo Zyo >, RveA,, (Wu ° XV)

(24)

In the special case of a Tweedie family, i.e. for the distitdns whose precision 8%, = X;p, the
update iSZ,, « Z, o (ZV R"A,, (X;P o XV)) / (ZV R"A,, (X,}—P))
Lemma 2. General update for CTF

2 SR, (Weo (X, - X))
Aa /o 2o, ReAg (W)

Zo < Zo + (25)

For the special case of the Tweedie family we piig = X;P and get the related formula.

4 Experiments
Here we want to solve the CTF problem introduced (1), whichésupled CP/MF/MF problem
Xk = S atrgircke X =N pieper %30 =N BitEeT (26)

where we employ the symbaks : E for the latent tensors instead &f,. This factorisation problem
has the followingR matrix with || = 5, [v| = 3

11100 X, =Y A'BIC'DOE®
R=]01 0 1 0] with X, = 3" A'B1COD'E° (27)
01 0 01 XgZZAOBlCODOEl

We want to use the general update equation (25). This rexidégvation ofA?, () for v = 1 (CP)
andv = 2 (MF) but not forv = 3 since thatA,, 5() has the same shape As, 5(). Here we show
the computation foB, i.e. for Z5, which is the common factor

A%,(Q) = lz QUi (airch) | = Quy(Ce © A7) (28)
ik

52(Q) = [Z Q7 (Dr7)°| = QD" (29)
p




with Q(,,) beingmode-n unfolding operation that turns a tensor into matrix fosh [In addition,
for v = 1 the required scalar valueg  is || here sinc&’s N Vy = {j,r} N {r} = {r} noting that
value g/ is the same for = 2,3. The simulated data size for observable§jis= |j| = |k| =

Ip| = |g| = 30 while the latent dimension is:| = 5. The number of iterations 000 with the
Euclidean cost while the experiment produced similar tedal KL cost as shown in Figure 2.

—+—— Orginal
—— Initial
—O— Final

Figure 2: The figure compares the original, the initial (stgr) and the final (estimate) factors for
Z.=A,B,C,D, E. Only the first column, i.eZ, (1 : 10,1) is plotted. Note that CP factorisation
is unique up to permutation and scaling [5] while MF factatign is not unique, but when coupled
with CP it recovers the original data as shown in the figurer igualisation, to find the correct
permutation, for each of,, the matching permutation between the original and estimedound
by solving anorthogonal Procrustes problefi8, pp 601].

4.1 Audio Experiments

In this section, we illustrate a real data application of approach, where we reconstruct missing
parts of an audio spectrograi( f, t), that represents the STFT coefficient magnitude at frequenc
bin f and time framet of a piano piece, see top left panel of Fig.3. This is a diffienhtrix
completion problem: as entire time frames (columnsXgfare missing, low rank reconstruction
techniques are likely to be ineffective. Yet such missintadeatterns arise often in practice, e.g.,
when packets are dropped during digital communication. Wedevelop here a novel approach,
expressed as a coupled TF model. In particular, the reaaisn will be aided by an approximate
musical score, not necessarily belonging to the playedepiead spectra of isolated piano sounds.

Pioneering work of [19] has demonstrated that, when a aygotsogram of music is decomposed
using NMF asX; (f,t) ~ X(f,t) = > D(f,1)E(i,t), the computed factor® and E tend to be
semantically meaningful and correlate well with the intgitnotion of spectral templates (harmonic
profiles of musical notes) and a musical score (reminisceatmano roll representation such as a
MIDI file). However, as time frames are modeled conditiop@idependently, it is impossible to
reconstruct audio with this model when entire time framesmaissing.

In order to restore the missing parts in the audio, we form dehthat can incorporates musical
information of chords structures and how they evolve in tilneorder to achieve this, we hierarchi-
cally decompose the excitation matiixas a convolution of some basis matrices and their weights:
E(i,t) = >, . B(i,7,k)C(k,t — 7). Here the basis tensd encapsulates both vertical and tem-
poral information of the notes that are likely to be used inusital piece; the musical piece to
be reconstructed will sharB, possibly played at different times or tempi as modelled-byAfter
replacingE with the decomposed version, we get the following model @q 3

Xi(f,t)= > D(f,i)B(i, 7, k)C(k,d)Z(d,t,7) Testfile  (30)
i,7,k,d

Xo(i,n) = Y B(i,7,k)G(k,m)Y (m,n,7) MIDIfile  (31)
T,k,m

Xs(f,p) =Y _ D(f,i)F(i,p)T(i,p) Merged training files  (32)



Here we have introduced new dummy indickandm, and new (fixed) factor& (d,¢,7) = d(d —
t+ 7)andY (m,n,7) = §(m —n + 7) to express this model in our framework. In eq 32, while
forming X3 we concatenate isolated recordings corresponding toréliffenotes. Besideq, is a

0 — 1 matrix, whereT'(i, p) = 1(0) if the note: is played (not played) during the time framend

F models the time varying amplitudes of the training ddtanatrix for this model is defined as

0 0 X, =Y. D'BC'Z*GOY P FOT?
0 0 with X, = 3" D°B1COZ0G Y FOTO (33)
1 1 Xd — Z DIBOCOZ0GOY O FiTl

O ==
OO
OO
o= O
O = O

Figure 3 illustrates the performance the model, ugiff cost (7 = X ') on a30 second piano
recording where th&0% of the data is missing; we get abdidB SNR improvement, gracefully
degrading from. 0% to80% missing data: the results are encouraging as quite lorigppsiof audio
are missing, see bottom right panel of Fig.3.

X2 (Transcription Data) X3 (Isolated Recordings)
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Figure 3: Top row, left to right: Observed matric&s: spectrum of the piano performance, darker
colors imply higher magnitude (missing da®@%) are shown white)X>, a piano roll obtained
from a musical score of the piec&(s, spectra o8 isolated notes from a piano. Bottom Row:
Reconstructed(;, the ground truth, and the SNR results with increasing misdata. Here, initial
SNR is computed by substitutirigas missing values.

5 Discussion

This paper establishes a link between GLMs and TFs and pewédeneral solution for the compu-
tation of arbitrary coupled TFs, using message passingtu@s. The current treatment focused on
ML estimation; as immediate future work, the probabilistiterpretation is to be extended to a full
Bayesian inference with appropriate priors and inferene¢hods. A powerful aspect, which we
have not been able to summarize here is assigning diffecshffenctions, i.e. distributions, to dif-
ferent observation tensors in a coupled factorization rhaok@s requires only minor modifications
to the update equations. We believe that, as a whole, the G@Rtework covers a broad range
of models that can be useful in many different applicaticgaarbeyond audio processing, such as
network analysis, bioinformatics or collaborative filtegi
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