
Active Learning Ranking from Pairwise Preferences
with Almost Optimal Query Complexity

Nir Ailon∗
Technion, Haifa, Israel nailon@cs.technion.ac.il

Abstract

Given a set V of n elements we wish to linearly order them using pairwise
preference labels which may be non-transitive (due to irrationality or arbitrary
noise). The goal is to linearly order the elements while disagreeing with as
few pairwise preference labels as possible. Our performance is measured by
two parameters: The number of disagreements (loss) and the query complex-
ity (number of pairwise preference labels). Our algorithm adaptively queries at
most O(n poly(log n, ε−1)) preference labels for a regret of ε times the optimal
loss. This is strictly better, and often significantly better than what non-adaptive
sampling could achieve. Our main result helps settle an open problem posed
by learning-to-rank (from pairwise information) theoreticians and practitioners:
What is a provably correct way to sample preference labels?

1 Introduction

We study the problem of learning to rank from pairwise preferences, and solve an open problem
that has led to development of many heuristics but no provable results. The input is a set V of n
elements from some universe, and we wish to linearly order them given pairwise preference labels,
given as response to which is preferred, u or v? for pairs u, v ∈ V . The goal is to linearly order
the elements from the most preferred to the least preferred, while disagreeing with as few pairwise
preference labels as possible. Our performance is measured by two parameters: The loss (number of
disagreements) and query complexity (number of preference responses we need). This is a learning
problem, with a finite sample space of

(
n
2

)
possibilities only (hence a transductive learning problem).

The loss minimization problem given the entire n × n preference matrix is a well known NP-hard
problem called MFAST (minimum feedback arc-set in tournaments) [5]. Recently, Kenyon and
Schudy [23] have devised a PTAS for it, namely, a polynomial (in n) -time algorithm computing a
solution with loss at most (1 + ε) the optimal, for and ε > 0 (the degree of the polynomial there
may depend on ε). In our case each edge from the input graph is given for a unit cost, hence we seek
query efficiency. Our algorithm samples preference labels non-uniformly and adaptively, hence we
obtain an active learning algorithm. Our output is not a solution to MFAST, but rather a reduction of
the original learning problem to a simpler one decomposed into small instances in which the optimal
loss is high, consequently, uniform sampling of preferences can be shown to be sufficiently good.

Our Setting vs. The Usual “Learning to Rank” Problem. Our setting defers from much of
the learning to rank (LTR) literature. Usually, the labels used in LTR problems are responses to
individual elements, and not to pairs of elements. A typical example is the 1..5 scale rating for
restaurants, or 0, 1 rating (irrelevant/relevant) for candidate documents retrieved for a query (known
as the binary ranking problem). The preference graph induced from these labels is transitive, hence
no combinatorial problems arise due to nontransitivity. We do not discuss this version of LTR. Some
LTR literature does consider the pairwise preference label approach, and there is much justification
to it (see [11, 22] and reference therein). Other works (e.g. [26]) discuss pairwise or higher order
∗Supported by a Marie Curie International Reintegration Grant PIRG07-GA-2010-268403

1

(listwise) approaches, but a close inspection reveals that they do not use pairwise (or listwise) labels,
only pairwise (or listwise) loss functions.

Using Kenyon and Schudy’s PTAS as a starting point. As mentioned above, our main algorithm
is derived from the PTAS of [23], but with a significant difference. We use their algorithm to obtain
a certain decomposition of the input. A key change to their algorithm, which is not query efficient,
involves careful sampling followed by iterated sample refreshing steps.

Our work can be studied in various contexts, aside from LTR. Machine Learning Reductions: Our
main algorithm reduces a given instance to smaller subproblems decomposing it. We mention other
work in this vein: [6, 3, 9]. Active Learning: An important field of statistical learning theory and
practice ([8, 21, 15, 14, 24, 17, 13, 20, 16, 13]). In the most general setting, one wishes to improve
on standard statistical learning theoretical complexity bounds by actively choosing instances for
labels. Many heuristics have been developed, while algorithms with provable bounds (especially in
the agnostic case) are known for few problems, often toys. General bounds are difficult to use: [8]
provides general purpose active learning bounds which are quite difficult to use in actual specific
problems; The A2 algorithm [7], analyzed in [21] using the disagreement coefficient is not useful
here. It can be shown that the disagreement coefficient here is trivial (omitted due to lack of space).
Noisy Sorting: There is much literature in theoretical computer science on sorting noisy data.
[10] work in a Bayesian setting; In [19], the input preference graph is transitive, and labels are
nondeterministic. In other work, elements from the set of alternatives are assumed to have a latent
value. In this work the input is worst case and not Bayesian, query responses are deterministic and
elements do not necessarily have a latent value.

Paper Organization: Section 2 presents basic definitions and lemmata, and in particular defines
what a good decomposition is and how it can be used in learning permutations from pairwise pref-
erences. Section 3 presents our main active learning algorithm which is, in fact, an algorithm for
producing a good decomposition query efficiently. The main result is presented in Theorem 3.1.
Section 4 discusses future work and followup work appearing in the full version of this paper.

2 Notation and Basic Lemmata

Let V denote a finite set of size n that we wish to rank.1 We assume an unknown preference function
W on pairs of elements in V , which is unknown to us. For any pair u, v ∈ V , W (u, v) is 1 if u is
deemed preferred over v, and 0 otherwise. We enforce W (u, v) + W (v, u) = 1 (no abstentation)
hence, (V,W) is a tournament. We assume that W is agnostic: it is not necessarily transitive and
may contain errors and inconsistencies. For convenience, for any two real numbers a, b we will let
[a, b] denote the interval {x : a ≤ x ≤ b} if a ≤ b and {x : b ≤ x ≤ a} otherwise.

We wish to predict W using a hypothesis h from concept class H = Π(V), where Π(V) is the
set of permutations π over V viewed equivalently as binary functions over V × V satisfying, for
all u, v, w ∈ V , π(u, v) = 1 − π(v, u) and π(u,w) = 1 whenever π(u, v) = π(v, w) = 1. For
π ∈ Π(V) we also use notation: π(u, v) = 1 if and only if u ≺π v, namely, if u precedes v in π.
Abusing notation, we also view permutations as injective functions from [n] to V , so that the element
π(1) ∈ V is in the first, most preferred position and π(n) is the least preferred one. We also define
the function ρπ inverse to π as the unique function satisfying π(ρπ(v)) = v for all v ∈ V . Hence,
u ≺π v is equivalent to ρπ(u) < ρπ(v).) As in standard ERM, we define a risk function Cu,v
penalizing the error of π with respect to the pair u, v, namely, Cu,v(π, V,W) = 1π(u,v)6=W (u,v) .
The total loss, C(h, V,W) is defined as Cu,v summed over all unordered u, v ∈ V . Our goal is to
devise an active learning algorithm for the purpose of minimizing this loss.

In this paper we show an improved, almost optimal statistical learning theoretical bound using recent
important breakthroughs in combinatorial optimization of a related problem called minimum feed-
back arc-set in tournaments (MFAST). The relation between this NP-Hard problem and our learning
problem has been noted before in (eg [12]), when these breakthroughs were yet to be known.

MFAST is more precisely defined as follows: V and W are given in entirety (we pay no price for
reading W), and we seek π ∈ Π(V) minimizing the MFAST cost C(π, V,W). A PTAS has been

1In a more general setting we are given a sequence V 1, V 2, . . . of sets, but there is enough structure and
interest in the single set case, which we focus on in this work.

2

discovered for this NP-Hard very recently in groundbreaking work by Kenyon and Schudy [23].
This PTAS is not useful however for the purpose of learning to rank from pairwise preferences
because it is not query efficient. It may require to read all quadratically many entries in W . In this
work we fix this drawback, and use the PTAS to obtain a certain useful decomposition.
Definition 2.1. Given a set V of size n, an ordered decomposition is a list of pairwise disjoint
subsets V1, . . . , Vk ⊆ V such that ∪ki=1Vi = V . We let W |Vi denote the restriction of W to Vi × Vi
for i = 1, . . . , k. For a permutation π ∈ Π(v) we let π|Vi denote its restriction to the elements of Vi
(hence, π|Vi ∈ Π(Vi)). We say that π ∈ Π(V) respects V1, . . . , Vk if for all u ∈ Vi, v ∈ Vj , i < j,
u ≺π v. We denote the set of permutations π ∈ Π(V) respecting the decomposition V1, . . . , Vk by
Π(V1, . . . , Vk). We say that a subset U of V is small in V if |U | ≤ log n/ log log n, otherwise we
say that U is big in V . A decomposition V1, . . . , Vk is ε-good with respect to W if:2

Local Chaos: min
π∈Π(V)

∑
i:Vi big in V

C(π|Vi , Vi,W|Vi) ≥ ε
2

∑
i:Vi big in V

(
ni
2

)
. (2.1)

Approximate Optimality: min
σ∈Π(V1,...,Vk)

C(σ, V,W) ≤ (1 + ε) min
π∈Π(V)

C(π, V,W) . (2.2)

We will show how to use an ε-good decomposition, and how to obtain one query-efficiently.

Basic (suboptimal) results from statistical learning theory: Viewing pairs of V -elements as data
points, the loss C(π, V,W) is, up to normalization, an expected cost over a random draw of a data
point. A sample E of unordered pairs gives rise to a partial cost, CE defined as: CE(π, V,W) =(
n
2

)
|E|−1∑

(u,v)∈E
u≺πv

W (v, u). (We assume throughout that E is chosen with repetitions and is hence

a multiset; the accounting of parallel edges is clear.) CE(·, ·, ·) is an empirical unbiased estimator
of C(π, V,W) if E ⊆

(
V
2

)
is chosen uniformly at random among all (multi)subsets of a given size.

The basic question in statistical learning theory is, how good is the minimizer π of CE , in terms of
C? The notion of VC dimension [25] gives us a nontrivial (albeit suboptimal - see below) bound.
Lemma 2.2. The VC dimension of the set of permutations on V , viewed as binary classifiers on
pairs of elements, is n− 1.

It is easy to show that the VC dimension is at mostO(n log n), which is the logarithm of the number
of permutations. See [4] for a linear bound. The implications are:
Proposition 2.3. If E is chosen uniformly at random (with repetitions) as a sample of m elements
from

(
V
2

)
, where m > n, then with probability at least 1 − δ over the sample, all permutations π

satisfy: |CE(π, V,W)− C(π, V,W)| = n2O

(√
n logm+log(1/δ)

m

)
.

Hence, if we want to minimizeC(π, V,W) over π to within an additive error of µn2 with probability
at least 1−δ, it suffices to choose a sampleE ofm = O(µ−2(n log n+log δ−1)) elements from

(
V
2

)
uniformly at random (with repetitions), and optimize CE(π, V,W) instead.3 Assume δ ≥ e−n, so
that we get a more manageable sample bound of O(µ−2n log n). Is this bound at all interesting?
For two permutations π, σ, the Kendall-Tau metric dτ (π, σ) is defined as dτ (π, σ) =

∑
u6=v 1[(u ≺π

v)∧ (v ≺σ u)] . The Spearman Footrule metric dfoot(π, σ) is defined as dfoot(π, σ) =
∑
u |ρπ(u)−

ρσ(u)| . The following is well known [18]:

dτ (π, σ) ≤ dfoot(π, σ) ≤ 2dτ (π, σ) . (2.3)

Clearly C(·, V, ·) extends dτ (·, ·) to distances between permutations and binary tournaments, with
the triangle inequality dτ (π, σ) ≤ C(π, V,W) + C(σ, V,W) satisfied for all W and π, σ ∈ Π(V).

Assume we use Proposition 2.3 to find π ∈ Π(V) with an additive regret of O(µn2) with respect to
an optimal solution π∗ for some µ > 0. The triangle inequality implies dτ (π, π∗) = Ω(µn2). By
(2.3), hence, dfoot(π, π

∗) = Ω(µn2). By definition of dfoot, this means that the averege element v ∈
V is translated Ω(µn) positions away from its position in π∗. In some applications (e.g. IR), one may

2We will just say ε-good if W is clear from the context.
3(V

2

)
denotes the set of unordered pairs of distinct elements in V .

3

want elements to be at most a constant γ positions off. This translates to a sought regret of O(γn)
for constant γ, and using our notation, to µ = γ/n. Proposition 2.3 cannot guarantee less than a
quadratic sample size for such a regret, which is tantamount to querying all ofW . We can do better:
For any ε > 0 we achieve an additive regret of O(εC(π∗, V,W)) using O(poly(log n, ε−1)) W -
queries, for arbitrarily small optimal loss C(π∗, V,W). This is not achievable using Proposition 2.3.
One may argue that the VC bound may be too pessimistic, and other arguments may work for the
uniform sample case. A simple extremal case (omitted from this abstract) shows that this is false.
Proposition 2.4. Let V1, . . . , Vk be an ordered decomposition of V . Let B denote the set of indices
i ∈ [k] such that Vi is big in V . Assume E is chosen uniformly at random (with repetitions) as a
sample of m elements from

⋃
i∈B
(
Vi
2

)
, where m > n. For each i = 1, . . . , k, let Ei = E ∩

(
Vi
2

)
.

Define CE(π, {V1, . . . , Vk},W) to be
CE(π, {V1, . . . , Vk},W) =

(∑
i∈B
(
ni
2

))
|E|−1

∑
i∈B
(
ni
2

)−1|Ei|CEi(π|Vi , Vi,W|Vi) . (The nor-
malization is defined so that the expression is an unbiased estimator of

∑
i∈B C(π|Vi , Vi,W|Vi). If

|Ei| = 0 for some i, formally define
(
ni
2

)−1|Ei|CEi(π|Vi , Vi,W|Vi) = 0.) Then with probability at
least 1− e−n over the sample, all permutations π ∈ Π(V) satisfy:∣∣CE(π, {V1, . . . , Vk},W)−

∑
i∈B C(π|Vi , Vi,W |Vi)

∣∣ =
∑
i∈B
(
ni
2

)
O

(√
n logm+log(1/δ)

m

)
.

The proof (omitted from this abstract) uses simple VC dimension arithmetic. Now, why is ε-
goodness good?
Lemma 2.5. Fix ε > 0 and assume we have an ε-good partition (Definition 2.1) V1, . . . , Vk
of V . Let B denote the set of i ∈ [k] such that Vi is big in V , and let B̄ = [k] \ B. Let
ni = |Vi| for i = 1, . . . , n, and let E denote a random sample of O(ε−6n log n) elements from⋃
i∈B
(
Vi
2

)
, each element chosen uniformly at random with repetitions. Let Ei denote E ∩

(
Vi
2

)
. Let

CE(π, {V1, . . . , Vk},W) be defined as in Proposition 2.4. For any π ∈ Π(V1, . . . , Vk) define:

C̃(π) := CE(π, {V1, . . . , Vk},W) +
∑
i∈B̄

C(π|Vi , Vi,W|Vi) +
∑

1≤i<j≤k

∑
(u,v)∈Vi×Vj

1v≺πu . (2.4)

Then the following event occurs with probability at least 1 − e−n: For any minimizer σ∗ of C̃(·)
over Π(V1, . . . , Vk): C(σ∗, V,W) ≤ (1 + 2ε) minπ∈Π(V) C(π, V,W).

(Proof omitted from abstract.) The consequence: Given an ε-good decomposition V1, . . . , Vk, op-
timizing C̃(σ) over σ ∈ Π(V1, . . . , Vk), would give a solution with relative regret of 2ε w.r.t. the
optimum. The first and last terms in the RHS of (2.4) require no more than O(ε−6n log n) W -
queries to compute (by definition of E, and given the decomposition). The middle term runs over
small Vi’s, and can be computed from O(n log n/ log log n) W -queries. If we now assume that
a good decomposition can be efficiently computed using O(npolylog(n, ε−1)) W -queries (as we
indeed show), then we would beat the VC bound whenever the optimal loss is at most O(n2−ν) for
some ν > 0.

3 A Query Efficient Algorithm for ε-Good Decompositions

Theorem 3.1. Given a set V of size n, a preference oracle W and an error tolerance parameter
0 < ε < 1, there exists a poly(n, ε−1)-time algorithm returning, with constant probabiliy, an
ε-good partition of V , querying at most O(ε−6n log5 n) locations in W on expectation.

Before describing the algorithm and its analysis, we need some definitions:
Definition 3.2. Let π denote a permutation over V . Let v ∈ V and i ∈ [n]. We define πv→i to be
the permutation obtained by moving the rank of v to i in π, and leaving the rest of the elements in
the same order.4

Definition 3.3. Fix π ∈ Π(V), v ∈ V and i ∈ [n]. We define TestMove(π, V,W, v, i) :=
C(π, V,W) − C(πv→i, V,W) . Equivalently, if i ≥ ρπ(v) then TestMove(π, V,W, v, i) :=

4For example, if V = {x, y, z} and (π(1), π(2), π(3)) = (x, y, z), then (πx→3(1), πx→3(2), πx→3(3)) =
(y, z, x).

4

∑
u:ρπ(u)∈[ρπ(v)+1,i](Wuv −Wvu) . A similar expression can be written for i < ρπ(v). For a multi-

set E ⊆
(
V
2

)
, define TestMoveE(π, V,W, v, i), for i ≥ ρπ(v), as TestMoveE(π, V,W, v, i) :=

|i−ρπ(v)|
|Ẽ|

∑
u:(u,v)∈Ẽ(W (u, v) − W (v, u)). where the multiset Ẽ is defined as {(u, v) ∈ E :

ρπ(u) ∈ [ρπ(v) + 1, i]}. Similarly, for i < ρπ(v) we define TestMoveE(π, V,W, v, i) :=
|i−ρπ(v)|
|Ẽ|

∑
u:(u,v)∈Ẽ(W (v, u)−W (u, v)). where Ẽ is now {(u, v) ∈ E : ρπ(u) ∈ [i, ρπ(v)− 1]}.

Lemma 3.4. Fix π ∈ Π(V), v ∈ V , i ∈ [n] and an integer N . Let E ⊆
(
V
2

)
be a random (multi)-

set of size N with elements (v, u1), . . . , (v, uN), drawn so that for each j ∈ [N] the element uj
is chosen uniformly at random from among the elements lying between v (exclusive) and position i
(inclusive) in π. Then E[TestMoveE(π, V,W, v, i)] = TestMove(π, V,W, v, i). Additionally, for
any δ > 0, except with probability of failure δ,

|TestMoveE(π, V,W, v, i)− TestMove(π, V,W, v, i)| = O

(
|i− ρπ(v)|

√
log δ−1

N

)
.

The lemma is easily proven using Hoeffding tail bounds, using the fact that |W (u, v)| ≤ 1 for all
u, v. Our decomposition algorithm SampleAndRank is detailed in Algorithm 1, with
subroutines in Algorithms 2 and 3. It is a query efficient improvement of the PTAS in [23] with
the following difference: here we are not interested in an approximation algorithm for MFAST,
but just in an ε-good decomposition. Whenever we reach a small block (line 3) or a big block
with a probably approximately sufficiently high cost (line 8) in our recursion of Algorithm 2), we
simply output it as a block in our partition. Denote the resulting outputted partition by V1, . . . , Vk.
Denote by π̂ the minimizer of C(·, V,W) over Π(V1, . . . , Vk). We need to show that C(π̂, V,W) ≤
(1 + ε) minπ∈Π(V) C(π, V,W), thus establishing (2.2). The analysis closely follows [23]. Due to
space limitations, we focus on the differences, and specifically on Procedure ApproxLocalImprove
(Algorithm 3), replacing a greedy local improvement step in [23] which is not query efficient.

SampleAndRank (Algorithm 1) takes the following arguments: The set V , the preference ma-
trix W and an accuracy argument ε. It is implicitly understood that the argument W passed to
SampleAndRank is given as a query oracle, incurring a unit cost upon each access. The first warm
start step in SampleAndRank computes an expected constant factor approximation π to MFAST
on V,W using QuickSort [2]. The query complexity of this step is O(n log n) on expectation (see
[3]). Before continuing, we make the following assumption, which holds with constant probability
using Markov probability bounds.

Assumption 3.5. The cost C(π, V,W) of π computed in line 2 of SampleAndRank is O(1) times
that of the optimal π∗, and the query cost incurred in the computation is O(n log n).

Next, a recursive procedure SampleAndDecompose is called, running a divide-and-conquer algo-
rithm. Before branching, it executes the following: Lines 5 to 9 identify local chaos (2.1) (with
high probability). Line 10 calls ApproxLocalImprove (Algorithm 3), responsible for performing
query-efficient approximate greedy steps, as we now explain.

Approximate local improvement steps. ApproxLocalImprove takes a set V of size N , W , a
permutation π on V , two numbers C0, ε and an integer n.5 The number n is always the size of
the input in the root call to SampleAndDecompose, passed down in the recursion, and used for the
purpose of controlling success probabilities. The goal of is to repeatedly identify w.h.p. single vertex
moves that considerably decrease the cost. The procedure starts by creating a sample ensemble
S = {Ev,i : v ∈ V, i ∈ [B,L]}, where B = logbΘ(εN/ log n)c and L = dlogNe. The size of each
Ev,i ∈ S is Θ(ε−2 log2 n), and each element (v, x) ∈ Ev,i was added (with possible multiplicity)
by uniformly at random selecting, with repetitions, an element x ∈ V positioned at distance at most
2i from the position of v in π. Let Dπ denote the distribution space from which S was drawn, and
let PrX∼Dπ [X = S] denote the probability of obtaining a given sample ensemble S. S will enable
us to approximate the improvement in cost obtained by moving a single element u to position j.

Definition 3.6. Fix u ∈ V and j ∈ [n], and assume log |j − ρπ(u)| ≥ B. Let ` = dlog |j −
ρπ(u)|e. We say that S is successful at u, j if |{x : (u, x) ∈ Eu,`} ∩ {x : ρπ(x) ∈ [ρπ(u), j]}| =

Ω(ε−2 log2 n) .

5Notation abuse: V here is a subset of the original input.

5

Success of S at u, j means that sufficiently many samples x ∈ V such that ρπ(x) is between ρπ(u)
and j are represented in Eu,`. Conditioned on S being successful at u, j, note that the denominator
from the definition of TestMoveE does not vanish, and we can thereby define:
Definition 3.7. S is a good approximation at u, j if (defining ` as in Definition 3.6):∣∣TestMoveEu,`(π, V,W, u, j)− TestMove(π, V,W, u, j)

∣∣ ≤ 1
2ε|j − ρπ(u)|/ log n . S is a good

approximation if it is succesful and a good approximation at all u ∈ V , j ∈ [n] satisfying
dlog |j − ρπ(u)|e ∈ [B,L].

Using Chernoff to ensure success and Hoeffding to ensure good approximation, union bounding:
Lemma 3.8. Except with probability 1−O(n−4), S is a good approximation.

Algorithm 1 SampleAndRank(V,W, ε)

1: n← |V |
2: π ← Expected O(1)-approx solution to MFAST using O(n log n) W -queries on expectation

using QuickSort [2]
3: return SampleAndDecompose(V,W, ε, n, π)

Algorithm 2 SampleAndDecompose(V,W, ε, n, π)

1: N ← |V |
2: if N ≤ log n/ log log n then
3: return trivial partition {V }
4: end if
5: E ← random subset of O(ε−4 log n) elements from

(
V
2

)
(with repetitions)

6: C ← CE(π, V,W) (C is an additive O(ε2N2) approximation of C w.p. ≥ 1− n−4)
7: if C = Ω(ε2N2) then
8: return trivial partition {V }
9: end if

10: π1 ← ApproxLocalImprove(V,W, π, ε, n)
11: k ← random integer in the range [N/3, 2N/3]
12: VL ← {v ∈ V : ρπ(v) ≤ k}, πL ← restriction of π1 to VL
13: VR ← V \ VL, πR ← restriction of π1 to VR
14: return concatenation of SampleAndDecompose(VL,W, ε, n, πL),

SampleAndDecompose(VR,W, ε, n, πR)

Mutating the Pair Sample To Reflect a Single Element Move. Line 16 in ApproxLocalImprove
requires elaboration. In lines 15-18 we sought (using S) an element u and position j, such that
moving u to j (giving rise to πu→j) would considerably improve the cost w.h.p. If such an element
u existed, we executed the exchange π ← πu→j . Unfortunately the sample ensemble S becomes
stale: even if S was a good approximation, it is no longer necessarily so w.r.t. the new value of π.
We refresh it in line 16 by applying a transformation ϕu→j on S, resulting in a new sample ensemble
ϕu→j(S) approximately distributed by Dπu→j . More precisely, ϕ (defined below) is such that

ϕu→j(Dπ) = Dπu→j , (3.1)

where the left hand side denotes the distribution obtained by drawing from Dπ and applying ϕu→j
to the result. We now define ϕu→j . Denoting ϕu→j(S) = S ′ = {E′v,i : v ∈ V, i ∈ [B,L]}, we
need to define each E′v,i.
Definition 3.9. Ev,i is interesting in the context of π and πu→j if the two sets T1, T2 defined as
T1 = {x ∈ V : |ρπ(x)− ρπ(v)| ≤ 2i}, T2 = {x ∈ V : |ρπu→j (x)− ρπu→j (v)| ≤ 2i} differ.

We set E′v,i = Ev,i for all v, i for which Ev,i is not interesting. Fix one interesting choice v, i. Let
T1, T2 be as in Defintion 3.9. It can be easily shown that each of T1 and T2 contains O(1) elements
that are not contained in the other, and it can be assumed (using a simple clipping argument - omitted)
that this number is exactly 1, hence |T1| = |T2|. let X1 = T1 \ T2, and X2 = T2 \ T1. Fix any
injection α : X1 → X2, and extend α : T1 → T2 so that α(x) = x for all x ∈ T1 ∩ T2. Finally,

6

Algorithm 3 ApproxLocalImprove(V,W, π, ε, n) (Note: π used as both input and output)
1: N ← |V |, B ← dlog(Θ(εN/ log n)e, L← dlogNe
2: if N = O(ε−3 log3 n) then
3: return
4: end if
5: for v ∈ V do
6: r ← ρπ(v)
7: for i = B . . . L do
8: Ev,i ← ∅
9: for m = 1..Θ(ε−2 log2 n) do

10: j ← integer uniformly at random chosen from [max{1, r − 2i},min{n, r + 2i}]
11: Ev,i ← Ev,i ∪ {(v, π(j))}
12: end for
13: end for
14: end for
15: while ∃u ∈ V and j ∈ [n] s.t. (setting ` := dlog |j − ρπ(u)|e):

` ∈ [B,L] and TestMoveEu,`(π, V,W, u, j) > ε|j − ρπ(u)|/ log n do
16: For v ∈ V , i ∈ [B,L] refresh Ev,i w.r.t. the move u→ j using ϕu→j (Section 3)
17: π ← πu→j
18: end while

define E′v,i = {(v, α(x)) : (v, x) ∈ Ev,i}. For v = u we create E′v,i from scratch by repeating the
loop in line 7 for that v. It is easy to see that (3.1) holds. By Lemma 3.8, the total variation distance
between (Dπ| good approximation) and Dπu→j is O(n−4). Using a simple chain rule argument:

Lemma 3.10. Fix π0 on V of size N , and fix u1, . . . , uk ∈ V and j1, . . . , jk ∈ [n]. Draw
S0 from Dπ0 , and define S1 = ϕu1→j1(S0),S2 = ϕu2→j2(S1), · · · ,Sk = ϕuk→jk(Sk−1),
π1 = π0

u1→j1 , π
2 = π1

u2→j2 , · · · , π
k = πk−1

uk→jk . Consider the random variable Sk conditioned on
S0,S1, . . . ,Sk−1 being good approximations for π0, . . . , π

k−1, respectively. Then the total vari-
ation distance between the distribution of Sk and the distribution (Dπk |πk) (corresponding to the
process of obtaning πk and drawing from Dπk ”from scratch”) is at most O(kn−4).

The difference between S and S ′, defined as dist(S,S ′) :=
∣∣∣⋃v,iEv,i∆E′v,i∣∣∣ bounds the query

complexity of computing mutations. The proof of the following has been omitted from this abstract.

Lemma 3.11. Assume S ∼ Dπ for some π, and S ′ = ϕu→j . Then E[dist(S,S ′)] = O(ε−3 log3 n).

Analysis of SampleAndDecompose. Various high probability events must occur in order for the al-
gorithm guarantees to hold. Let E1 denote the event that the first Θ(n4) sample ensembles S1,S2, . . .
ApproxLocalImprove, either in lines 5 and 14, or via mutations, are good approximations By Lem-
mas 3.8 and 3.10, using a union bound, with constant probability (say, 0.99) this happens. Let E2
denote the event that the cost approximations obtained in line 5 of SampleAndDecompose are suc-
cessful at all recursive calls. By Hoeffding tail bounds, this happens with probability 1 − O(n−4)
for each call, there are O(n log n) calls, hence we can lower bound the probability of success of all
executions by 0.99. Concluding, the following holds with probability at least 0.97:
Assumption 3.12. Events E1 and E2 hold true.

We condition what follows on this assumption.6 Let π∗ denote the optimal permutation for the
root call to SampleAndDecompose with V,W, ε. The permutation π is, by Assumption 3.5, a
constant factor approximation for π∗. By the triangle inequality, dτ (π, π∗) ≤ C(π, V,W) +
C(π∗, V,W), hence, E[dτ (π, π∗)] = O(C(π∗, V,W)) . From this, using (2.3), E[dfoot(π, π

∗)] =
O(C(π∗, V,W)). Now consider the recursion tree T of SampleAndDecompose. Denote I
the set of internal nodes, and by L the set of leaves (i.e. executions exiting from line 8).
For a call SampleAndDecompose corresponding to a node X , denote the input arguments by
(VX ,W, ε, n, πX). Let L[X], R[X] denote the left and right children of X respectively. Let kX

6This may bias some expectation upper bounds derived earlier and in what follows. This bias can multiply
the estimates by at most 1/0.97, which can be absorbed in our O-notations.

7

denote the integer k in 11 in the context of X ∈ I. Hence, by our definitions, VL[X], VR[X], πL[X]

and πR[X] are precisely VL, VR, πL, πR from lines 12-13 in the context of node X . Take, as
in line 1, NX = |VX |. Let π∗X denote the optimal MFAST solution for instance (VX ,W|VX).
By E1 we conclude that the cost of πXu→j is always an actual improvement compared to πX
(for the current value of πX , u and j in iteration), and the improvement in cost is of magni-
tude at least Ω(ε|ρπX (u) − j|/ log n), which is Ω(ε2NX/ log2 n) due to the use of B defined in
line 1.7 But then the number of iterations of the while loop in line 15 of ApproxLocalImprove
is O(ε−2C(πX , VX ,W|VX) log2 n/NX) (Otherwise the true cost of the running solution would
go below 0.) Since C(πX , VX ,W|VX) ≤

(
NX
2

)
, the number of iterations is hence at most

O(ε−2NX log2 n). By Lemma 3.11 the expected query complexity incurred by the call to
ApproxLocalImprove is therefore O(ε−5NX log5 n). Summing over the recursion tree, the
total query complexity incurred by calls to ApproxLocalImprove is, on expectation, at most
O(ε−5n log6 n). Now consider the moment at which the while loop of ApproxLocalImprove ter-
minates. Let π1X denote the permutation obtained at that point, returned to SampleAndDecompose
in line 10. We classify the elements v ∈ VX to two families: V short

X denotes all u ∈ VX s.t.
|ρπ1X

(u)− ρπ∗X (u)| = O(εNX/ log n), and V long
X denotes VX \ V short

X . We know by assumption,
that the last sample ensemble S used in ApproxLocalImprove was a good approximation, hence
for all u ∈ V long

X : (*) TestMove(π1X , VX ,W|VX , u, ρπ∗X (u)) = O(ε|ρπ1X
(u) − ρπ∗X (u)|/ log n).

Following [23], we say for u ∈ VX that u crosses kX if [ρπ1X
(u), ρπ∗X (u)] contains kX . Let

V cross
X denote the (random) set of elements u ∈ VX that cross kX . We define a key quan-

tity as in [23]: TX :=
∑
u∈V cross

X
TestMove(π1X , VX ,W|VX , u, ρπ∗X (u)). Following (*), the

elements u ∈ V long
X can contribute at most O

(
ε
∑
u∈V long

X
|ρπ1X

(u)− ρπ∗X (u)|/ log n
)

to TX .
This latter bound is, by definition, O(εdfoot(π1X , π

∗
X)/ log n) which is, using (2.3) at most

O(εdτ (π1X , π
∗
X)/ log n). By the triangle inequality and the definition of π∗X , the last expres-

sion is O(εC(π1X , VX ,W|VX)/ log n). How much can elements in V short
X contribute to TX?

The probability of each such element to cross k is O(|ρπ1X
(u) − ρπ∗X (u)|/NX). Hence, the

total expected contribution is O
(∑

u∈V short
X
|ρπ1X

(u)− ρπ∗X (u)|2/NX
)

. Under the constraints∑
u∈V short

X
|ρπ1X

(u) − ρπ∗X (u)| ≤ dfoot(π1X , π
∗
X) and |ρπ1X

(u) − ρπ∗X (u)| = O(εNX/ log n),
this is O(dfoot(π1X , π

∗
X)εNX/(NX log n)) = O(dfoot(π1X , π

∗
X)ε/ log n). Again using (2.3) and

the triangle inequality, the bound becomes O(εC(π1X , VX ,W|VX)/ log n). Combining for V long

and V short, we conclude: (**) EkX [TX] = O(εC(π∗X , VX ,W|VX)/ log n), (the expectation is over
the choice of kX .) The bound (**) is the main improvement over [23], and should be compared with
Lemma 3.2 there, stating (in our notation) TX = O(εC∗NX/(4n log n)). The latter bound is more
restrictive than ours in certain cases, and obtaining it relies on a procedure that cannot be performed
without having access W in its entirety. (**) however can be achieved using efficient querying of
W , as we have shown. The remaineder of the arguments leading to proof of Theorem 3.1 closely
follow those in Section 4 of [23]. The details have been omitted from this abstract.

4 Future Work
We presented a statistical learning theoretical active learning result for pairwise ranking. The main
vehicle was a query (and time) efficient decomposition procedure, reducing the problem to smaller
ones in which the optimal loss is high and uniform sampling suffices. The main drawback of our
result is the inability to use it in order to search in a limited subspace of permutations. A typical
example of such a subspace is the case in which each element v ∈ V has a corresponding feature
vector in a real vector space, and we only seek permutations induced by linear score functions. In
followup work, Ailon, Begleiter and Ezra [1] show a novel technique achieving a slightly better
query complexity than here with a simpler proof, while also admitting search in restricted spaces.

Acknowledgements The author gratefully acknowledges the help of Warren Schudy with derivation
of some of the bounds in this work. Special thanks to Ron Begleiter for helpful comments. Apolo-
gizes for omitting references to much relevant work that could not fit in this version’s bibliography.

7This also bounds the number of times a sample ensemble is created by O(n4), as required by E1.

8

References
[1] Nir Ailon, Ron Begleiter, and Esther Ezra, A new active learning scheme with applications to

learning to rank from pairwise preferences, arxiv.org/abs/1110.2136 (2011).
[2] Nir Ailon, Moses Charikar, and Alantha Newman, Aggregating inconsistent information:

Ranking and clustering, J. ACM 55 (2008), no. 5.
[3] Nir Ailon and Mehryar Mohri, Preference based learning to rank, vol. 80, 2010, pp. 189–212.
[4] Nir Ailon and Kira Radinsky, Ranking from pairs and triplets: Information quality, evaluation

methods and query complexity, WSDM, 2011.
[5] Noga Alon, Ranking tournaments, SIAM J. Discret. Math. 20 (2006), no. 1, 137–142.
[6] M. F. Balcan, N. Bansal, A. Beygelzimer, D. Coppersmith, J. Langford, and G. B. Sorkin,

Robust reductions from ranking to classification, Machine Learning 72 (2008), no. 1-2, 139–
153.

[7] Maria-Florina Balcan, Alina Beygelzimer, and John Langford, Agnostic active learning, J.
Comput. Syst. Sci. 75 (2009), no. 1, 78–89.

[8] Maria-Florina Balcan, Steve Hanneke, and Jennifer Vaughan, The true sample complexity of
active learning, Machine Learning 80 (2010), 111–139.

[9] A. Beygelzimer, J. Langford, and P. Ravikumar, Error-correcting tournaments, ALT, 2009,
pp. 247–262.

[10] M. Braverman and E. Mossel, Noisy sorting without resampling, SODA: Proceedings of the
19th annual ACM-SIAM symposium on Discrete algorithms, 2008, pp. 268–276.

[11] B. Carterette, P. N. Bennett, D. Maxwell Chickering, and S. T. Dumais, Here or there: Prefer-
ence judgments for relevance, ECIR, 2008.

[12] William W. Cohen, Robert E. Schapire, and Yoram Singer, Learning to order things, NIPS ’97,
1998, pp. 451–457.

[13] D. Cohn, L. Atlas, and R. Ladner, Improving generalization with active learning, Machine
Learning 15 (1994), no. 2, 201–221.

[14] A. Culotta and A. McCallum, Reducing labeling effort for structured prediction tasks, AAAI:
Proceedings of the 20th national conference on Artificial intelligence, 2005, pp. 746–751.

[15] S. Dasgupta, Coarse sample complexity bounds for active learning, Advances in Neural Infor-
mation Processing Systems 18, 2005, pp. 235–242.

[16] S. Dasgupta, A. Tauman Kalai, and C. Monteleoni, Analysis of perceptron-based active learn-
ing, Journal of Machine Learning Research 10 (2009), 281–299.

[17] Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni, A general agnostic active learning al-
gorithm, NIPS, 2007.

[18] Persi Diaconis and R. L. Graham, Spearman’s footrule as a measure of disarray, Journal of
the Royal Statistical Society. Series B (Methodological) 39 (1977), no. 2, pp. 262–268.

[19] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Computing with unreliable information, STOC:
Proceedings of the 22nd annual ACM symposium on Theory of computing, 1990, pp. 128–137.

[20] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby, Selective sampling using the
query by committee algorithm, Mach. Learn. 28 (1997), no. 2-3, 133–168.

[21] Steve Hanneke, A bound on the label complexity of agnostic active learning, ICML, 2007,
pp. 353–360.

[22] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker, Label ranking by
learning pairwise preferences, Artif. Intell. 172 (2008), no. 16-17, 1897–1916.

[23] Claire Kenyon-Mathieu and Warren Schudy, How to rank with few errors, STOC, 2007, pp. 95–
103.

[24] Dan Roth and Kevin Small, Margin-based active learning for structured output spaces, 2006.
[25] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of

events to their probabilities, Theory of Prob. and its Applications 16 (1971), no. 2, 264–280.
[26] F. Xia, T-Y Liu, J. Wang, W. Zhang, and H. Li, Listwise approach to learning to rank: theory

and algorithm, ICML ’08, 2008, pp. 1192–1199.

9

