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Abstract

We consider the problem of computing the Euclidean projection of a vector
of length p onto a non-negative max-heap—an ordered tree where the val-
ues of the nodes are all nonnegative and the value of any parent node is no
less than the value(s) of its child node(s). This Euclidean projection plays
a building block role in the optimization problem with a non-negative max-
heap constraint. Such a constraint is desirable when the features follow
an ordered tree structure, that is, a given feature is selected for the given
regression/classification task only if its parent node is selected. In this pa-
per, we show that such Euclidean projection problem admits an analytical
solution and we develop a top-down algorithm where the key operation is
to find the so-called maximal root-tree of the subtree rooted at each node.
A naive approach for finding the maximal root-tree is to enumerate all the
possible root-trees, which, however, does not scale well. We reveal several
important properties of the maximal root-tree, based on which we design a
bottom-up algorithm with merge for efficiently finding the maximal root-
tree. The proposed algorithm has a (worst-case) linear time complexity
for a sequential list, and O(p2) for a general tree. We report simulation
results showing the effectiveness of the max-heap for regression with an or-
dered tree structure. Empirical results show that the proposed algorithm
has an expected linear time complexity for many special cases including a
sequential list, a full binary tree, and a tree with depth 1.

1 Introduction

In many regression/classification problems, the features exhibit certain hierarchical or struc-
tural relationships, the usage of which can yield an interpretable model with improved regres-
sion/classification performance [25]. Recently, there have been increasing interests on struc-
tured sparisty with various approaches for incorporating structures; see [7, 8, 9, 17, 24, 25]
and references therein. In this paper, we consider an ordered tree structure: a given feature
is selected for the given regression/classification task only if its parent node is selected. To
incorporate such ordered tree structure, we assume that the model parameter x ∈ R

p follows
the non-negative max-heap structure1:

P = {x ≥ 0, xi ≥ xj ∀(xi, xj) ∈ Et}, (1)

where T t = (V t, Et) is a target tree with V t = {x1, x2, . . . , xp} containing all the nodes and
Et all the edges. The constraint set P implies that if xi is the parent node of a child node
xj then the value of xi is no less than the value of xj . In other words, if a parent node xi is
0, then any of its child nodes xj is also 0. Figure 1 illustrates three special tree structures:
1) a full binary tree, 2) a sequential list, and 3) a tree with depth 1.

1To deal with the negative model parameters, one can make use of the technique employed
in [24], which solves the scaled version of the least square estimate.
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Figure 1: Illustration of a non-negative max-heap depicted in (1). Plots (a), (b), and (c) correspond
to a full binary tree, a sequential list, and a tree with depth 1, respectively.

The set P defined in (1) induces the so-called “heredity principle” [3, 6, 18, 24], which has
been proven effective for high-dimensional variable selection. In a recent study [12], Li et al.
conducted a meta-analysis of 113 data sets from published factorial experiments and con-
cluded that an overwhelming majority of these real studies conform with the heredity princi-
ples. The ordered tree structure is a special case of the non-negative garrote discussed in [24]
when the hierarchical relationship is depicted by a tree. Therefore, the asymptotic properties
established in [24] are applicable to the ordered tree structrue. Several related approaches
that can incorporate the ordered tree structure include the Wedge approach [17] and the
hierarchical group Lasso [25]. The Wedge approach incorporates such ordering information

by designing a penalty for the model parameter x as Ω(x|P ) = inft∈P
1
2

∑p
i=1(

x2

i

ti
+ ti), with

tree being a sequential list. By imposing the mixed ℓ1-ℓ2 norm on each group formed by
the nodes in the subtree of a parent node, the hierarchical group Lasso is able to incorpo-
rate such ordering information. The hierarchical group Lasso has been applied for multi-task
learning in [11] with a tree structure, and the efficient computation was discussed in [10, 15].
Compared to Wedge and hierarchical group Lasso, the max-heap in (1) incorporates such
ordering information in a direct way, and our simulation results show that the max-heap
can achieve lower reconstruction error than both approaches.

In estimating the model parameter satisfying the ordered tree structure, one needs to solve
the following constrained optimization problem:

min
x∈P

f(x) (2)

for some convex function f(·). The problem (2) can be solved via many approaches including
subgradient descent, cutting plane method, gradient descent, accelerated gradient descent,
etc [19, 20]. In applying these approaches, a key building block is the so-called Euclidean
projection of a vector v onto the convex set P :

πP (v) = argmin
x∈P

1

2
‖x− v‖22, (3)

which ensures that the solution belongs to the constraint set P . For some special set P (e.g.,
hyperplane, halfspace, and rectangle), the Euclidean projection admits a simple analytical
solution, see [2]. In the literature, researchers have developed efficient Euclidean projection
algorithms for the ℓ1-ball [5, 14], the ℓ1/ℓ2-ball [1], and the polyhedra [4, 22]. When P is
induced by a sequential list, a linear time algorithm was recently proposed in [26]. Without
the non-negative constraints, problem (3) is the so-called isotonic regression problem [16, 21].

Our major technical contribution in this paper is the efficient computation of (3) for the set
P defined in (1). In Section 2, we show that the Euclidean projection admits an analytical
solution, and we develop a top-down algorithm where the key operation is to find the
so-called maximal root-tree of the subtree rooted at each node. In Section 3, we design
a bottom-up algorithm with merge for efficiently finding the maximal root-tree by using
its properties. We provide empirical results for the proposed algorithm in Section 4, and
conclude this paper in Section 5.

2 Atda: A Top-Down Algorithm

In this section, we develop an algorithm in a top-down manner called Atda for solving (3).
With the target tree T t = (V t, Et), we construct the input tree T = (V,E) with the input
vector v, where V = {v1, v2, . . . , vp} and E = {(vi, vj)|(xi, xj) ∈ Et}. For the convenience
of presenting our proposed algorithm, we begin with several definitions. We also provide
some examples for elaborating the definitions in the supplementary file A.1.
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Definition 1. For a non-empty tree T = (V,E), we define its root-tree as any non-empty

tree T̃ = (Ṽ , Ẽ) that satisfies: 1) Ṽ ⊆ V , 2) Ẽ ⊆ E, and 3) T̃ shares the same root as T .

Definition 2. For a non-empty tree T = (V,E), we define R(T ) as the root-tree set con-
taining all its root-trees.

Definition 3. For a non-empty tree T = (V,E), we define

m(T ) = max

(

∑

vi∈V vi

|V |
, 0

)

, (4)

which equals the mean of all the nodes in T if such mean is non-negative, and 0 otherwise.

Definition 4. For a non-empty tree T = (V,E), we define its maximal root-tree as:

Mmax(T ) = arg max
T̃=(Ṽ ,Ẽ):T̃∈R(T ),m(T̃ )=mmax(T )

|Ṽ |, (5)

where
mmax(T ) = max

T̃∈R(T )
m(T̃ ) (6)

is the maximal value of all the root-trees of the tree T . Note that if two root-trees share the
same maximal value, (5) selects the one with the largest tree size.

When T̃ = (Ṽ , Ẽ) is a part of a “larger” tree T = (V,E), i.e., Ṽ ⊆ V and Ẽ ⊆ E, we

can treat T̃ as a “super-node” of the tree T with value m(T̃ ). Thus, we have the following
definition of a super-tree (note that a super-tree provides a disjoint partition of the given
tree):

Definition 5. For a non-empty tree T = (V,E), we define its super-tree as S = (VS , ES),
which satisfies: 1) each node in VS = {T1, T2, . . . , Tn} is a non-empty tree with Ti = (Vi, Ei),
2) Vi ⊆ V and Ei ⊆ E, 3) Vi

⋂

Vj = ∅, i 6= j and V =
⋃n

i=1 Vi, and 4) (Ti, Tj) ∈ ES if and
only if there exists a node in Tj whose parent node is in Ti.

2.1 Proposed Algorithm

We present the pseudo code for solving (3) in Algorithm 1. The key idea of the proposed
algorithm is that, in the i-th call, we find Ti = Mmax(T ), the maximal root-tree of T , set
x̃ corresponding to the nodes of Ti to mi = mmax(T ) = m(Ti), remove Ti from the tree T ,
and apply Atda to the resulting trees one by one recursively.

Algorithm 1 A Top-Down Algorithm: Atda

Input: the tree structure T = (V,E), i
Output: x̃ ∈ R

p

1: Set i = i+ 1
2: Find the maximal root-tree of T , denoted by Ti = (Vi, Ei), and set mi = m(Ti)
3: if mi > 0 then
4: Set x̃j = mi, ∀vj ∈ Vi

5: Remove the root-tree Ti from T , denote the resulting trees as T̃1, T̃2, . . . , T̃ri , and

apply Atda(T̃j ,i), ∀j = 1, 2, . . . , ri
6: else
7: Set x̃j = mi, ∀vj ∈ Vi

8: end if

2.2 Illustration & Justification

For a better illustration and justification of the proposed algorithm, we provide the analysis
of Atda for a special case—the sequential list—in the supplementary file A.2.

Let us analyze Algorithm 1 for the general tree. Figure 2 illustrates solving (3) via Algo-
rithm 1 for a tree with depth 3. Plot (a) shows a target tree T t, and plot (b) denotes the
input tree T . The dashed frame of plot (b) shows Mmax(T ), the maximal root-tree of T , and
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Figure 2: Illustration of Algorithm 1 for solving (3) for a tree with depth 3. Plot (a) shows the
target tree T t, and plots (b-e) illustrate Atda. Specifically, plot (b) denotes the input tree T ,
with the dashed frame displaying its maximal root-tree; plot (c) depicts the resulting trees after
removing the maximal root-tree in plot (b); plot (d) shows the resulting super-tree (we treat each
tree enclosed by the dashed frame as a super-node) of the algorithm; plot (e) gives the solution
x̃ ∈ R

15; and the edges of plot (f) show the dual variables, from which we can also obtain the
optimal solution x̃ (refer to the proof of Theorem 1).

we have Mmax(T ) = 3. Thus, we set the corresponding entries of x̃ to 3. Plot (c) depicts
the resulting trees after removing the maximal root-tree in plot (b), and plot (d) shows the
generated maximal root-trees (enclosed by dashed frame) by the algorithm. When treating
each generated maximal root-tree as a super-node with the value defined in Definition 3,
plot (d) is a super-tree of the input tree T . In addition, the super-tree is a max-heap, i.e.,
the value of the parent node is no less than the values of its child nodes. Plot (e) gives the
solution x̃ ∈ R

15. The edges of plot (f) correspond to the values of the dual variables, from
which we can also obtain the optimal solution x̃ ∈ R

15. Finally, we can observe that the
non-zero entries of x̃ constitute a cut of the original tree.

We verify the correctness of Algorithm 1 for the general tree in the following theorem. We
make use of the KKT conditions and variational inequality [20] in the proof.

Theorem 1. x̃ = Atda(T, 0) provides the unique optimal solution to (3).

Proof: As the objective function of (3) is strictly convex and the constraints are affine, it
admits a unique solution. After running Algorithm 1, we obtain the sequences {Ti}

k
i=1 and

{mi}
k
i=1, where k satisfies 1 ≤ k ≤ p. It is easy to verify that the trees Ti, i = 1, 2, . . . , k

constitute a disjoint partition of the input tree T . With the sequences {Ti}
k
i=1 and {mi}

k
i=1,

we can construct a super-tree of the input tree T as follows: 1) we treat Ti as a super-node
with value mi, and 2) we put an edge between Ti and Tj if there is an edge between the
nodes of Ti and Tj in the input tree T . With Algorithm 1, we can verify that the resulting
super-tree has the property that the value of the parent node is no less than its child nodes.
Therefore, x̃ = Atda(T, 0) satisfies x̃ ∈ P .

Let xl and vl denote a subset of x and v corresponding to the indices appearing in the
subtree Tl, respectively. Denote P l = {xl : xl ≥ 0, xi ≥ xj , (vi, vj) ∈ El}, I1 = {l : ml >
0}, I2 = {l : ml = 0}. Our proof is based on the following inequality:

min
x∈P

1

2
‖x− v‖22 ≥

∑

l∈I1

min
xl∈P l

1

2
‖xl − vl‖22 +

∑

l∈I2

min
xl∈P l

1

2
‖xl − vl‖22, (7)

which holds as the left hand side has the additional inequality constraints compared to the
right hand side. Our methodology is to show that x̃ = Atda(T, 0) provides the optimal
solution to the right hand side of (7), i.e.,

x̃l = arg min
xl∈P l

1

2
‖xl − vl‖22, ∀l ∈ I1, (8)

x̃l = arg min
xl∈P l

1

2
‖xl − vl‖22, ∀l ∈ I2, (9)
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which, together with the fact 1
2‖x̃ − v‖22 ≥ minx∈P

1
2‖x − v‖22, x̃ ∈ P lead to our main

argument. Next, we prove (8) by the KKT conditions, and prove (9) by the variational
inequality [20].

Firstly, ∀l ∈ I1, we introduce the dual variable yij for the edge (vi, vj) ∈ El, and yii if
vi ∈ Ll, where Ll contains all the leaf nodes of the tree Tl. Denote the root of Tl by vrl .
For all vi ∈ Vl, vi 6= vrl , we denote its parent node by vji , and for the root vrl , we denote
jrl = rl. We let

Cl
i = {j|vj is a child node of vi in the tree Tl}.

Rl
i = {j|vj is in the subtree of Tl rooted at vi}.

To prove (8), we verify that the primal variable x̃ = Atda(T, 0) and the dual variable ỹ
satisfy the following KKT conditions:

∀(vi, vj) ∈ El, x̃i ≥ x̃j ≥ 0 (10)

∀(vi, vj) ∈ El, (x̃i − x̃j)ỹij = 0 (11)

∀vi ∈ Ll, ỹiix̃i = 0 (12)

∀vi ∈ Vl, x̃i − vi −
∑

j∈Cl
i

ỹij + ỹjii = 0 (13)

∀(vi, vj) ∈ El, ỹij ≥ 0 (14)

∀vi ∈ Ll, ỹii ≥ 0, (15)

where ỹjrlrl = 0 (Note that ỹjrlrl is a dual variable, and it is introduced for the simplicity

of presenting (12)), and the dual variable ỹ is set as:

ỹii = 0, ∀i ∈ Ll, (16)

ỹjii = vi −ml +
∑

j∈Cl
i

ỹij , ∀vi ∈ Vl. (17)

According to Algorithm 1, x̃i = ml > 0, ∀vi ∈ Vl, l ∈ I1. Thus, we have (10)-(12) and (15).
It follows from (17) that (13) holds. According to (16) and (17), we have

ỹjii =
∑

j∈Rl
i

vj − |Rl
i|ml, ∀vi ∈ Vl, (18)

where |Rl
i| denotes the number of elements in Rl

i, the subtree of Tl rooted at vi. From
the nature of the maximal root-tree Tl, l ∈ I1, we have

∑

j∈Rl
i
vj ≥ |Rl

i|ml. Otherwise, if
∑

j∈Rl
i
vj < |Rl

i|ml, we can construct from Tl a new root-tree T̄l by removing the subtree

of Tl rooted at vi, so that T̄l achieves a larger value than Tl. This contradicts with the
argument that Tl, l ∈ I1 is the maximal root-tree of the working tree T . Therefore, it
follows from (18) that (14) holds.

Secondly, we prove (9) by verifying the following optimality condition:

〈xl − x̃l, x̃l − vl〉 ≥ 0, ∀xl ∈ P l, l ∈ I2, (19)

which is the so-called variational inequality condition for x̃l being the optimal solution to (9).
According to Algorithm 1, if l ∈ I2, we have x̃i = 0, ∀vi ∈ Vl. Thus, (19) is equivalent to

〈xl,vl〉 ≤ 0, ∀xl ∈ P l, l ∈ I2. (20)

For a given xl ∈ P l, if xi = 0, ∀vi ∈ V l, (20) naturally holds. Next, we consider xl 6= 0.
Denote by x̄l

1 the minimal nonzero element in xl, and T 1
l = (V 1

l , E
1
l ) a tree constructed by

removing the nodes corresponding to the indices in the set {i : xl
i = 0, vi ∈ Vl} from Tl. It is

clear that T 1
l shares the same root as Tl. It follows from Algorithm 1 that

∑

i:vi∈V 1

l
vi ≤ 0.

Thus, we have

〈xl,vl〉 = x̄l
1

∑

i:vi∈V 1

l

vi +
∑

i:vi∈V 1

l

(xi − x̄l
1)vi ≤

∑

i:vi∈V 1

l

(xi − x̄l
1)vi.
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If xl
i = x̄l

1, ∀vi ∈ V 1
l , we arrive at (20). Otherwise, we set r = 2; denote by x̄l

r the minimal

nonzero element in the set {xi −
∑r−1

j=1 x̄
l
j : vi ∈ V r−1

l }, and T r
l = (V r

l , E
r
l ) a subtree of

T r−1
l by removing those nodes with the indices in the set {i : xl

i−
∑r−1

j=1 x̄
l
j = 0, vi ∈ V r−1

l }.

It is clear that T r
l shares the same root as T r−1

l and Tl as well, so that it follows from
Algorithm 1 that

∑

i:vi∈V r
l
vi ≤ 0. Therefore, we have

∑

i:vi∈V r−1

l

(xi −
r−1
∑

j=1

x̄l
j)vi = x̄l

r

∑

i:vi∈V r
l

vi +
∑

i:vi∈V r
l

(xi −
r
∑

j=1

x̄l
j)vi ≤

∑

i:vi∈V r
l

(xi −
r
∑

j=1

x̄l
j)vi. (21)

Repeating the above process until V r
l is empty, we can verify that (20) holds. �

For a better understanding of the proof, we make use of the edges of Figure 2 (f) to show
the dual variables, where the edge connecting vi and vj corresponds to the dual variable ỹij ,
and the edge starting from the leaf node vi corresponds to the dual variable ỹii. With the
dual variables, we can compute x̃ via (13). We note that, for the maximal root-tree with a
positive value, the associated dual variables are unique, but for the maximal root-tree with
zero value, the associated dual variables may not be unique. For example, in Figure 2 (f),
we set ỹii = 1 for i = 12, ỹii = 0 for i = 13, ỹij = 2 for i = 6, j = 12, and ỹij = 2 for
i = 6, j = 13. It is easy to check that the dual variables can also be set as follows: ỹii = 0
for i = 12, ỹii = 1 for i = 13, ỹij = 1 for i = 6, j = 12, and ỹij = 3 for i = 6, j = 13.

3 Finding the Maximal Root-Tree

A key operation of Algorithm 1 is to find the maximal root-tree used in Step 2. A naive
approach for finding the maximal root-tree of a tree T is to enumerate all possible root-
trees in the root-tree set R(T ), and identify the maximal root-tree via (5). We call such
an approach Anae, which stands for a naive algorithm with enumeration. Although Anae
is simple to describe, it has a very high time complexity (see the analysis given in supple-
mentary file A.3). To this end, we develop Abuam (A Bottom-Up Algorithm with Merge).
The underlying idea is to make use of the special structure of the maximal root-tree defined
in (5) for avoiding the enumeration of all possible root-trees.

We begin the discussion with some key properties of the maximal root-tree, and the proof
is given in the supplementary file A.4.

Lemma 1. For a non-empty tree T = (V,E), denote its maximal root-tree as Tmax =

(Vmax, Emax). Let T̃ = (Ṽ , Ẽ) be a root-tree of Tmax. Assume that there are n nodes

vi1 , . . . , vin , which satisfy: 1) vij /∈ Ṽ , 2) vij ∈ V , and 3) the parent node of vij is in

Ṽ . If n ≥ 1, we denote the subtree of T rooted at vij as T j = (V j , Ej), j = 1, 2, . . . , n,

T j
max = (V j

max, E
j
max) as the maximal root-trees of T j, and m̃ = maxj=1,2,...,n m(T j

max).

Then, the followings hold: (1) If n = 0, then Tmax = T̃ = T ; (2) If n ≥ 1, m(T̃ ) = 0, and

m̃ = 0, then Tmax = T ; (3) If n ≥ 1, m(T̃ ) > 0, and m(T̃ ) > m̃, then Tmax = T̃ ; (4) If

n ≥ 1, m(T̃ ) > 0, and m(T̃ ) ≤ m̃, then V j
max ⊆ Vmax, E

j
max ⊆ Emax and (vi0 , vij ) ∈ Emax,

∀j : m(T j
max) = m̃; and (5) If n ≥ 1, m(T̃ ) = 0, and m̃ > 0, then V j

max ⊆ Vmax, E
j
max ⊆

Emax and (vi0 , vij ) ∈ Emax, ∀j : m(T j
max) = m̃.

For the convenience of presenting our proposed algorithm, we define the operation “merge”
as follows:

Definition 6. Let T = (V,E) be a non-empty tree, and T1 = (V 1, E1) and T2 = (V 2, E2)
be two trees that satisfy: 1) they are composed of a subset of the nodes and edges of T , i.e.,
V 1 ∈ V , V 2 ∈ V , E1 ∈ E, and E2 ∈ E; 2) they do not overlap, i.e., V 1

⋂

V 2 = ∅, and
E1
⋂

E2 = ∅; and 3) in the tree T , vi2 , the root node of T2 is a child of vi1 , a leaf node

of T1. We define the operation “merge” as T̃ = merge(T1, T2, T ), where T̃ = (Ṽ , Ẽ) with
V = V1

⋃

V2 and E = E1

⋃

E2

⋃

{(vi1 , vi2)}.

Next, we make use of Lemma 1 to efficiently compute the maximal root-tree, and present
the pseudo code for Abuam in Algorithm 2. We provide the illustration of the proposed
algorithm and the analysis of its computational cost in the supplementary file A.5 and A.6,
respectively.
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Algorithm 2 A Bottom-Up Algorithm with Merge: Abuam

Input: the input tree T = (V,E)
Output: the maximal root-tree Tmax = (Vmax, Emax)
1: Set T0 = (V0, E0), where V0 = {xi0} and E0 = ∅
2: if vi0 does not have a child node in T then
3: Set Tmax = T0, return
4: end if
5: while 1 do
6: Set m̃ = 0, denote by vi1 , . . . , vin the n nodes that satisfy: 1) vij /∈ V0, 2) vij ∈ V ,

and 3) the parent node of vij is in V0, and denote by T j = (V j , Ej), j = 1, 2, . . . , n
the subtree of T rooted at vij .

7: if n = 0 then
8: Set Tmax = T0 = T , return
9: end if

10: for j = 1 to n do
11: Set T j

max = Abuam(T j), and m̃ = max(m(T j
max), m̃)

12: end for
13: if m(T0) = m̃ = 0 then
14: Set Tmax = T , return
15: else if m(T̃ ) > 0 and m(T̃ ) > m̃ then
16: Set Tmax = T0, return
17: else
18: Set T0=merge(T0, T

j
max, T ), ∀j : m(T j

max) = m̃
19: end if
20: end while

Making use of the fact that T0 is always a valid root-tree of Tmax, the maximal root-tree of
T , we can easily prove the following result using Lemma 1.

Theorem 2. Tmax returned by Algorithm 2 is the maximal root-tree of the input tree T .

4 Numerical Simulations

Effectiveness of the Max-Heap Structure We test the effectiveness of the max-heap
structure for linear regression b = Ax, following the same experimental setting as in [17].
Specifically, the elements of A ∈ R

n×p are generated i.i.d. from the Gaussian distribution
with zero mean and standard derivation and the columns of A are then normalized to have
unit length. The regression vector x has p = 127 nonincreasing elements, where the first
10 elements are set as x∗

i = 11 − i, i = 1, 2, . . . , 10 and the rest are zeros. We compared
with the following three approaches: Lasso [23], Group Lasso [25], and Wedge [17]. Lasso
makes no use of such ordering, while Wedge incorporates the structure by using an auxiliary
ordered variable. For Group Lasso and Max-Heap, we try binary-tree grouping and list-tree
grouping, where the associated trees are a full binary tree and a sequential list, respectively.
The regression vector is put on the tree so that, the closer the node to the root, the larger
the element is placed. In Group Lasso, the nodes appearing in the same subtree form a
group. For the compared approaches, we use the implementations provided in [17]2; and for
Max-Heap, we solve (2) with f(x) = 1

2‖Ax−b‖22+ρ‖x‖1 for some small ρ = r×‖AT b‖∞ (we

set r = 10−4, and 10−8 for the binary-tree grouping and list-tree grouping, respectively) and
apply the accelerated gradient descent [19] approach with our proposed Euclidean projection.
We compute the average model error ‖x − x∗‖2 over 50 independent runs, and report the
results with a varying number of sample size n in Figure 3 (a) & (b). As expected, GL-binary,
MH-binary, Wedge, GL-list and MH-list outperform Lasso which does not incorporate such
ordering information. MH-binary performs better than GL-binary, and MH-list performs
better than Wedge and GL-list, due to the direct usage of such ordering information. In
addition, the list-tree grouping performs better than the binary-tree grouping, as it makes
better usage of such ordering information.

2http://www.cs.ucl.ac.uk/staff/M.Pontil/software/sparsity.html
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Figure 3: Simulation results. In plots (a) and (b), we show the average model error ‖x − x
∗‖2

over 50 independet runs by different approaches with the full binary-tree ordering and the list-tree
ordering. In plots (c) and (d), we report the computational time (in seconds) of the proposed Atda
(averaged over 100 runs) with different randomly initialized input v. In plots (e) and (f), we show
the computational time of Atda over 100 runs.

Efficiency of the Proposed Projection We test the efficiency of the proposed Atda
approach for solving the Euclidean projection onto the non-negative max-heap, equipped
with our proposed Abuam approach for finding the maximal root-trees. In the experiments,
we make use of the three tree structures as depicted in Figure 1, and try two different
distributions: 1) Gaussian distribution with zero mean and standard derivation and 2)
uniform distribution in [0, 1] for randomly and independently generating the entries of the
input v ∈ R

p. In Figure 3 (c) & (d), we report the average computational time (in seconds)
over 100 runs under different values of p = 2d+1 − 1, where d = 10, 12, . . . , 20. We can
observe that, the proposed algorithm scales linearly with the size of p. In Figure 3 (e) & (f),
we report the computational time of Atda over 100 runs when the ordered tree structure is
a full binary tree. The results show that the computational time of the proposed algorithm
is relatively stable for different runs, especially for larger d or p. Note that, the source codes
for our proposed algorithm have been included in the SLEP package [13].

5 Conclusion

In this paper, we have developed an efficient algorithm for the computation of the Euclidean
projection onto a non-negative max-heap. The proposed algorithm has a (worst-case) linear
time complexity for a sequential list, and O(p2) for a general tree. Empirical results show
that: 1) the proposed approach deals with the ordering information better than existing
approaches, and 2) the proposed algorithm has an expected linear time complexity for the
sequential list, the full binary tree, and the tree of depth 1. It will be interesting to explore
whether the proposed Abuam has a worst case linear (or linearithmic) time complexity for
the binary tree. We plan to apply the proposed algorithms to real-world applications with
an ordered tree structure. We also plan to extend our proposed approaches to the general
hierarchical structure.
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