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Abstract

Vector Auto-regressive models (VAR) are useful tools for analyzing time series
data. In quite a few modern time series modelling tasks, the collection of reliable
time series turns out to be a major challenge, either due to the slow progression of
the dynamic process of interest, or inaccessibility of repetitive measurements of
the same dynamic process over time. In those situations, however, we observe that
it is often easier to collect a large amount of non-sequence samples, or snapshots
of the dynamic process of interest. In this work, we assume a small amount of time
series data are available, and propose methods to incorporate non-sequence data
into penalized least-square estimation of VAR models. We consider non-sequence
data as samples drawn from the stationary distribution of the underlying VAR
model, and devise a novel penalization scheme based on the Lyapunov equation
concerning the covariance of the stationary distribution.Experiments on synthetic
and video data demonstrate the effectiveness of the proposed methods.

1 Introduction

Vector Auto-regressive models (VAR) are an important classof models for analyzing multivariate
time series data. They have proven to be very useful in capturing and forecasting the dynamic
properties of time series in a number of domains, such as finance and economics [18, 13]. Recently,
researchers in computational biology applied VAR models inthe analysis of genomic time series
[12], and found interesting results that were unknown previously.

In quite a few scientific modeling tasks, a major difficulty turns out to be the collection of reliable
time series data. In some situations, the dynamic process ofinterest may evolve slowly over time,
such as the progression of Alzheimer’s or Parkinson’s diseases, and researchers may need to spend
months or even years tracking the dynamic process to obtain enough time series data for analysis.
In other situations, the dynamic process of interest may notbe able to undergo repetitive measure-
ments, so researchers have to measure multiple instances ofthe same process while maintaining
synchronization among these instances. One such example isgene expression time series. In their
study, [19] measured expression profiles of yeast genes along consecutive metabolic cycles. Due to
the destructive nature of the measurement technique, they collected expression data from multiple
yeast cells. In order to obtain reliable time series data, they spent a lot of effort developing a stable
environment to synchronize the cells during the metabolic cycles. Yet, they point out in their discus-
sion that such a synchronization scheme may not work for other species, e.g., certain bacteria and
fungi, as effectively as for yeast.

While obtaining reliable time series can be difficult, we observe that it is often easier to collect non-
sequence samples, or snapshots of the dynamic process of interest1. For example, a scientist studying

1 In several disciplines, such as social and medical sciences, the former is usually referred to as alongitudi-
nal study, while the latter is similar to what is called across-sectional study.
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Alzheimer’s or Parkinson’s can collect samples from his or her current pool of patients, each of
whom may be in a different stage of the disease. Or in gene expression analysis, current technology
already enables large-scale collection of static gene expression data. Previously [6] investigated
ways to extract dynamics from such static gene expression data, and more recently [8, 9] proposed
methods for learning first-order dynamic models from general non-sequence data. However, most
of these efforts suffer from a fundamental limitation: due to lack of temporal information, multiple
dynamic models may fit the data equally well and hence certaincharacteristics of dynamics, such as
the step size of a discrete-time model and the overall temporal direction, become non-identifiable.

In this work, we aim to combine these two types of data to improve learning of dynamic models. We
assume that a small amount of sequence samples and a large amount of non-sequence samples are
available. Our aim is to rely on the few sequence samples to obtain a rough estimate of the model,
while refining this rough estimate using the non-sequence samples. We consider the following first-
orderp-dimensional vector auto-regressive model:

x
t+1 = x

tA + ǫ
t+1, (1)

wherex
t ∈ R

1×p is the state vector at timet, A ∈ R
p×p is the transition matrix, andǫt is a white-

noise process with a time-invariant varianceσ2I. Given a sequence sample, a common estimation
method forA is the least-square estimator, whose properties have been studied extensively (see e.g.,
[7]). We assume that the process (1) is stable, i.e., the eigenvalues ofA have modulus less than one.
As a result, the process (1) has a stationary distribution, whose covarianceQ is determined by the
following discrete-time Lyapunov equation:

A⊤QA + σ2I = Q. (2)

Linear quadratic Lyapunov theory (see e.g., [1]) gives thatQ is uniquelydetermined if and only if
λi(A)λj(A) 6= 1 for 1 ≤ i, j ≤ p, whereλi(A) is thei-th eigenvalue ofA. If the noise process
ǫ

t follows a normal distribution, the stationary distribution also follows a normal distribution, with
covarianceQ determined as above. Since our goal is to estimateA, a more relevant perspective is
viewing (2) as a system of constraints onA. What motivates this work is that the estimation ofQ
requires only samples drawn from the stationary distribution rather than sequence data. However,
even if we have the trueQ andσ2, we still cannot uniquely determineA because (2) is an under-
determined system2 of A. We thus rely on the few sequence samples to resolve the ambiguity.

We describe the proposed methods in Section2, and demonstrate their performance through exper-
iments on synthetic and video data in Section3. Our finding in short is that when the amount of
sequence data is small and our VAR model assumption is valid,the proposed methods of incorporat-
ing non-sequence data into estimation significantly improve over standard methods, which use only
the sequence data. We conclude this work and discuss future directions in Section4.

2 Proposed Methods

Let {xi}Ti=1 be a sequence of observations generated by the process (1). The standard least-square
estimator for the transition matrixA is the solution to the following minimization problem:

min
A

‖Y −XA‖2F , (3)

whereY ⊤ := [(x2)⊤ (x3)⊤ · · · (xT )⊤], X⊤ := [(x1)⊤ (x2)⊤ · · · (xT−1)⊤], and‖ · ‖F denotes
the matrix Frobenius norm. Whenp > T , which is often the case in modern time series modeling
tasks, the least square problem (3) has multiple solutions all achieving zero squared error, and the
resulting estimator overfitts the data. A common remedy is adding a penalty term onA to (3) and
minimizing the resulting regularized sum of squared errors. Usual penalty terms include the ridge
penalty‖A‖2F and the sparse penalty‖A‖1 :=

∑
i,j |Aij |.

Now suppose we also have a set of non-sequence observations{zi}
n
i=1 drawn independently from

the stationary distribution of (1). Note that we use superscripts for time indices and subscripts for
data indices. As described in Section1, the sizen of the non-sequence sample can usually be much
larger than the sizeT of the sequence data. To incorporate the non-sequence observations into the

2If we further requireA to be symmetric, (2) would be a simplifiedContinuous-time Algebraic Riccati
Equation, which has a unique solution under some conditions (c.f. [1]).
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(a) SSE and Ridge (b) Lyap (c) SSE+Ridge+1
2
Lyap

Figure 1: Level sets of different functions in a bivariate ARexample

estimation procedure, we first obtain a covariance estimateQ̂ of the stationary distribution from
the non-sequence sample, and then turn the Lyapunov equation (2) into a regularization term onA.
More precisely, in addition to the usual ridge or sparse penalty terms, we also consider the following
regularization:

‖A⊤Q̂A + σ2I − Q̂‖2F , (4)
which we refer to as theLyapunov penalty. To compare (4) with the ridge penalty and the sparse
penalty, we consider (3) as a multiple-response regression problem and view thei-th column ofA as
the regression coefficient vector for thei-th output dimension. From this viewpoint, we immediately
see that both the ridge and the sparse penalizations treat thep regression problems as unrelated. On
the contrary, the Lyapunov penalty incorporates relationsbetween pairs of columns ofA by using a
covariance estimatêQ. In other words, although the non-sequence sample does not provide direct
information about the individual regression problems, it does reveal how the regression problems
are related to one another. To illustrate how the Lyapunov penalty may help to improve learning, we
give an example in Figure1. The true transition matrix is

A =

[
−0.4280 0.5723
−1.0428 −0.7144

]
(5)

andǫ
t ∼ N (0, I). We generate a sequence of 4 points, draw a non-sequence sample of 20 points

independently from the stationary distribution and obtainthe sample covariancêQ. We fix the
second column ofA but vary the first, and plot in Figure1(a) the resulting level sets of the sum of
squared errors on the sequence (SSE) and the ridge penalty (Ridge), and in Figure1(b) the level
sets of the Lyapunov penalty (Lyap). We also give coordinates of the true[A11 A21]

⊤, the minima
of SSE, Ridge, and Lyap, respectively. To see the behavior ofthe ridge regression, we trace out
a path of the ridge regression solution by varying the penalization parameter, as indicated by the
red-to-black curve in Figure1(a). This path is pretty far from the true model, due to insufficient
sequence data. For the Lyapunov penalty, we observe that it has two local minima, one of which is
very close to the true model, while the other, also the globalminimum, is very far. Thus, neither
ridge regression nor the Lyapunov penalty can be used on its own to estimate the true model well.
But as shown in Figure1(c), the combined objective, SSE+Ridge+ 1

2Lyap, has its global minimum
very close to the true model. This demonstrates how the ridgeregression and the Lyapunov penalty
may complement each other: the former by itself gives an inaccurate estimation of the true model,
but is just enough to identify a good model from the many candidate local minima provided by the
latter.

In the following we describe our proposed methods for incorporating the Lyapunov penalty (4) into
ridge and sparse least-square estimation. We also discuss robust estimation for the covarianceQ.

2.1 Ridge and Lyapunov penalty

Here we estimateA by solving the following problem:

min
A

1

2
‖Y −XA‖2F +

λ1

2
‖A‖2F +

λ2

4
‖A⊤Q̂A + σ2I − Q̂‖2F , (6)
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whereQ̂ is a covariance estimate obtained from the non-sequence sample. We treatλ1, λ2 andσ2

as hyperparameters and determine their values on a validation set. Given these hyperparameters, we
solve (6) by gradient descent with back-tracking line search for thestep size. The gradient of the
objective function is given by

−X⊤Y + X⊤XA + λ1A + λ2Q̂A(A⊤Q̂A + σ2I − Q̂). (7)

As mentioned before, (6) is a non-convex problem and thus requires good initialization. We use the
following two initial estimates ofA:

Âlsq := (X⊤X)†X⊤Y and Âridge := (X⊤X + λ1I)−1X⊤Y, (8)

where(·)† denotes the Moore-Penrose pseudo inverse of a matrix, making Âlsq the minimum-norm
solution to the least square problem (3). We run the gradient descent algorithm with these two initial
estimates, and choose the estimatedA that gives a smaller objective.

2.2 Sparse and Lyapunov penalty

Sparse learning for vector auto-regressive models has become a useful tool in many modern time
series modeling tasks, where the numberp of states in the system is usually larger than the length
T of the time series. For example, an important problem in computational biology is to understand
the progression of certain biological processes from some measurements, such as temporal gene
expression data.

Using an idea similar to (6), we estimateA by

min
A

1

2
‖Y −XA‖2F +

λ2

4
‖A⊤Q̂A + σ2I − Q̂‖2F ,

s.t. ‖A‖1 ≤ λ1.
(9)

Instead of adding a sparse penalty onA to the objective function, we impose a constraint on the
ℓ1 norm ofA. Both the penalty and the constraint formulations have beenconsidered in the sparse
learning literature, and shown to be equivalent in the case of a convex objective. Here we choose
the constraint formulation because it can be solved by a simple projected gradient descent method.
On the contrary, the penalty formulation leads to a non-smooth and non-convex optimization prob-
lem, which is difficult to solve with standard methods for sparse learning. In particular, the soft-
thresholding-based coordinate descent method for LASSO does not apply due to the Lyapunov
regularization term. Moreover, most of the common methods for non-smooth optimization, such
as bundle methods, solve convex problems and need non-trivial modification in order to handle
non-convex problems [14].

Let J(A) denote the objective function in (9) andA(k) denote the intermediate solution at thek-th
iteration. Our projected gradient method updatesA(k) to A(k+1) by the following rule:

A(k+1) ← Π(A(k) − η(k)∇J(A(k))), (10)

whereη(k) > 0 denotes a proper step size,∇J(A(k)) denotes the gradient ofJ(·) atA(k), andΠ(·)
denotes the projection onto the feasible region‖A‖1 ≤ λ1. More precisely, for anyp-by-p real
matrixV we define

Π(V ) := arg min
‖A‖1≤λ1

‖A− V ‖2F . (11)

To compute the projection, we use the efficientℓ1 projection technique given in Figure 2 of [5],
whose expected running time is linear in the size ofV .

For choosing a proper step sizeη(k), we consider the simple and effectiveArmijo rule along the
projection arcdescribed in [2]. This procedure is given in Algorithm1, and the main idea is to
ensure a sufficient decrease in the objective value per iteration (13). [2] proved that there always
existsη(k) = βrk > 0 satisfying (13), and every limit point of{A(k)}∞k=0 is a stationary point of
(9). In our experiments we setc = 0.01 andβ = 0.1, both of which are typical values used in
gradient descent. As in the previous section, we need good initializations for the projected gradient
descent method. Here we use these two initial estimates:

Âlsq′

:= arg min
‖A‖≤λ1

‖A− Âlsq‖2F and Âsp := arg min
‖A‖≤λ1

1

2
‖Y −XA‖2F , (12)

whereÂlsq is defined in (8), and then choose the one that leads to a smaller objective value.
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Algorithm 1: Armijo’s rule along the projection arc

Input : A(k),∇J(A(k)), 0 < β < 1, 0 < c < 1.
Output: A(k+1)

1 Findη(k) = max{βrk |rk ∈ {0, 1, . . .}} such thatA(k+1) := Π(A(k) − η(k)∇J(A(k))) satisfies

J(A(k+1))− J(A(k)) ≤ c trace
(
∇J(A(k))⊤(A(k+1) −A(k))

)
(13)

2.3 Robust estimation of covariance matrices

To obtain a good estimator forA using the proposed methods, we need a good estimator for the
covariance of the stationary distribution of (1). Given an independent sample{zi}

n
i=1 drawn from

the stationary distribution, the sample covariance is defined as

S :=
1

n− 1

n∑

i=1

(zi − z̄)⊤(zi − z̄), wherez̄ :=

∑n
i=1 zi

n
. (14)

Although unbiased, the sample covariance is known to be vulnerable to outliers, and ill-conditioned
when the number of sample pointsn is smaller than the dimensionp. Both issues arise in many
real world problems, and the latter is particularly common in gene expression analysis. Therefore,
researchers in many fields, such as statistics [17, 20, 11], finance [10], signal processing [3, 4], and
recently computational biology [15], have investigated robust estimators of covariances. Most of
these results originate from the idea ofshrinkage estimators, which shrink the covariance matrix
towards some target covariance with a simple structure, such as a diagonal matrix. It has been
shown in, e.g., [17, 10] that shrinking the sample covariance can achieve a smallermean-squared
error (MSE). More specifically, [10] considers the following linear shrinkage:

Q̂ = (1− α)S + αF (15)

for 0 < α < 1 and some target covarianceF , and derive a formula for the optimalα that minimizes
the mean-squared error:

α∗ := arg min
0≤α≤1

E(‖Q̂−Q‖2F ), (16)

which involves unknown quantities such as true covariancesof S. [15] proposed to estimateα∗ by
replacing all the population quantities appearing inα∗ by their unbiased empirical estimates, and
derived the resulting estimator̂α∗ for several types of targetF . For the experiments in this paper we
use the estimator proposed in [15] with the followingF :

Fij =

{
Sij , if i = j,

0 otherwise,
1 ≤ i, j ≤ p. (17)

Denoting the sample correlation matrix asR, we give the final estimator̂Q (Table 1 in [15]) below:

Q̂ij :=

{
Sij , if i = j,

R̂ij

√
SiiSjj otherwise,

R̂ij :=

{
1, if i = j,

Rij min(1,max(0, 1− α̂∗)) otherwise,
(18)

α̂∗ :=

∑
i6=j V̂ar(Rij)∑

i6=j R2
ij

=

∑
i6=j

n
(n−1)3

∑n

k=1(wkij − w̄ij)
2

∑
i6=j R2

ij

, (19)

where

wkij := (z̃k)i(z̃k)j , w̄ij :=

∑n

k=1 wkij

n
, (20)

and{z̃i}
n
i=1 arestandardizednon-sequence samples.
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(a) (b) (c) (d) Eigenvalues in modulus

Figure 2: Testing performances and eigenvalues in modulus for the dense model

3 Experiments

To evaluate the proposed methods, we conduct experiments onsynthetic and video data. In both sets
of experiments we use the following two performance measures for a learnt model̂A:

Normalized error:
1

T − 1

T−1∑

t=1

‖xt+1 − x
tÂ‖2

‖xt+1 − xt‖2
.

Cosine score:
1

T − 1

∣∣∣∣∣

T−1∑

t=1

(xt+1 − x
t)⊤(xtÂ− x

t)

‖xt+1 − xt‖‖xtÂ− xt‖

∣∣∣∣∣ .

To give an idea of how a good estimatêA would perform under these two measures, we point
out that a constant prediction̂xt+1 = x

t leads to a normalized error of 1, and a random-walk
prediction x̂

t+1 = x
t + ǫ

t+1, ǫ
t+1 being a white-noise process, results in a nearly-zero cosine

score. Thus, when the true model is more than a simple random walk, a good estimatêA should
achieve a normalized error much smaller than 1 and a cosine score way above 0. We also note that
the cosine score is upper-bounded by 1. In experiments on synthetic data we have the true transition
matrixA, so we consider a third criterion, the matrix error:‖Â−A‖F /‖A‖F .

In all our experiments, we have a training sequence, a testing sequence, and a non-sequence sample.
To choose the hyper-parametersλ1, λ2 andσ2, we split the training sequence into two halves and
use the second half as the validation sequence. Once we find the best hyper-parameters according to
the validation performance, we train a model on the full training sequence and predict on the testing
sequence. Forλ1 andλ2, we adopt the usual grid-search scheme with a suitable rangeof values.
Forσ2, we observe that (2) impliesQ̂− σ2I should be positive semidefinite, and thus search the set
{0.9j mini λi(Q̂) | 1 ≤ j ≤ 3}. In most of our experiments, we find that the proposed methodsare
much less sensitive toσ2 than toλ1 andλ2.

3.1 Synthetic Data

We consider the following two VAR models with a Gaussian white noise processǫt ∼ N (0, I).

Dense Model: A =
0.95M

max(|λi(M)|)
,Mij ∼ N (0, 1), 1 ≤ i, j ≤ 200.

Sparse Model: A =
0.95(M ⊙B)

max(|λi(M ⊙B)|)
,Mij ∼ N (0, 1), Bij ∼ Bern(1/8), 1 ≤ i, j ≤ 200,

where Bern(h) is the Bernoulli distribution with success probabilityh, and⊙ denotes the entrywise
product of two matrices. By settingh = 1/8, we make the sparse transition matrixA have roughly
40000/8 = 5000 non-zero entries. Both models are stable, and the stationary distribution for each
model is a zero-mean Gaussian. We obtain the covarianceQ of each stationary distribution by
solving the Lyapunov equation (2). For a single experiment, we generate a training sequence and a
testing sequence, both initialized from the stationary distribution, and draw a non-sequence sample
independently from the stationary distribution. We set thelength of the testing sequence to be
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(a) (b) (c) (d) Eigenvalues in modulus

Figure 3: Testing performances and eigenvalues in modulus for the sparse model

800, and vary the training sequence lengthT and the non-sequence sample sizen: for the dense
model,T ∈ {50, 100, 150, 200, 300, 400, 600, 800} andn ∈ {50, 400, 1600}; for the sparse model,
T ∈ {25, 75, 150, 400} andn ∈ {50, 400, 1600}. Under each combination ofT andn, we compare
the proposed Lyapunov penalization method with the baseline approach of penalized least square,
which uses only the sequence data. To investigate the limit of the proposed methods, we also use the
trueQ for the Lyapunov penalization. We run 10 such experiments for the dense model and 5 for the
sparse model, and report the overall performances of both the proposed and the baseline methods.

3.1.1 Experimental results for the dense model

We give boxplots of the three performance measures in the 10 experiments in Figures2(a) to 2(c).
The ridge regression approach and the proposed Lyapunov penalization method (6) are abbreviated
as Ridge and Lyap, respectively. For normalized error and cosine score, we also report the perfor-
mance of the trueA on testing sequences.

We observe that Lyap improves over Ridge more significantly when the training sequence length
T is small (≤ 200) and the non-sequence sample sizen is large (≥ 400). WhenT is large, Ridge
already performs quite well and Lyap does not improve the performance much. But with the true
stationary covarianceQ, Lyap outperforms Ridge significantly for allT . Whenn is small, the
covariance estimatêQ is far from the trueQ and the Lyapunov penalty does not provide useful
information aboutA. In this case, the value ofλ2 determined by the validation performance is
usually quite small (0.5 or 1) compared toλ1 (256), so the two methods perform similarly on testing
sequences. We note that if instead of the robust covariance estimate in (18) and (19) we use the
sample covariance, the performance of Lyap can be marginally worse than Ridge whenn is small.
A precise statement on how the estimation error inQ affectsÂ is worth studying in the future. As a
qualitative assessment of the estimated transition matrices, in Figure2(d)we plot the eigenvalues in
modulus of the trueA and theÂ’s obtained by different methods whenT = 50 andn = 1600. The
eigenvalues are sorted according to their modulus. Both Ridge and Lyap severely under-estimate the
eigenvalues in modulus, but Lyap preserves the spectrum much better than Ridge.

3.1.2 Experimental results for the sparse model

We give boxplots of the performance measures in the 5 experiments in Figures3(a)to 3(c), and the
eigenvalues in modulus of the trueA and someÂ’s in Figure3(d). The sparse least-square method
and the proposed method (9) are abbreviated as Sparse and Lyap, respectively.

We observe the same type of improvement as in the dense model:Lyap improves over Sparse more
significantly whenT is small andn is large. But the largest improvement occurs whenT = 75, not
the shortest training sequence lengthT = 25. A major difference lies in the impact of the Lyapunov
penalization on the spectrum of̂A, as revealed in Figure3(d). WhenT is as small as 25, the sparse
least-square method shrinks all the eigenvalues but still keep most of them non-zero, while Lyap
with a non-sequence sample of size 1600 over-estimates the first few largest eigenvalues in modulus
but shrink the rest to have very small modulus. In contrast, Lyap with the trueQ preserves the
spectrum much better. We may thus need an even better covariance estimate for the sparse model.
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(a) The pendulum
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(b) Normalized error
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(c) Cosine score

Figure 4: Results on the pendulum video data

3.2 Video Data

We test our methods using a video sequence of a periodically swinging pendulum3, which consists
of 500 frames of 75-by-80 grayscale images. One such frame isgiven in Figure4(a) The period
is about 23 frames. To further reduce the dimension we take the second-level Gaussian pyramids,
resulting in images of size 9-by-11. We then treat each reduced image as a 99-dimensional vector,
and normalize each dimension to be zero-mean and standard deviation 1. We analyze this sequence
with a 99-dimensional first-order VAR model. To check whether a VAR model is a suitable choice,
we estimate a transition matrix from the first 400 frames by ridge regression while choosing the
penalization parameter on the next 50 frames, and predict onthe last 50 frames. The best penal-
ization parameter is 0.0156, and the testing normalized error and cosine score are 0.33 and 0.97,
respectively, suggesting that the dynamics of the video sequence is well-captured by a VAR model.

We compare the proposed method (6) with the ridge regression for two lengths of the training se-
quence:T ∈ {6, 10, 20, 50}, and treat the last 50 frames as the testing sequence. For both methods,
we split the training sequence into two halves and use the second half as a validation sequence. For
the proposed method, we simulate a non-sequence sample by randomly choosing 300 frames from
between the(T + 1)-st frame and the 450-th frame without replacement. We repeat this 10 times.

The testing normalized errors and cosine scores of both methods are given in Figures4(b) and4(c).
For the proposed method, we report the mean performance measures over the 10 simulated non-
sequence samples with standard deviation. WhenT ≤ 20, which is close to the period, the proposed
method outperforms ridge regression very significantly except whenT = 10 the cosine score of
Lyap is barely better than Ridge. However, when we increaseT to 50, the difference between the
two methods vanishes, even though there is still much room for improvement as indicated by the
result of our model sanity check before. This may be due to ouruse of dependent data as the non-
sequence sample, or simply insufficient non-sequence data.As for λ1 andλ2, their values decrease
respectively from 512 and 2,048 to less than 32 asT increases, but since we fix the amount of non-
sequence data, the interaction between their value changesis less clear than on the synthetic data.

4 Conclusion

We propose to improve penalized least-square estimation ofVAR models by incorporating non-
sequence data, which are assumed to be samples drawn from thestationary distribution of the
underlying VAR model. We construct a novel penalization term based on the discrete-time Lya-
punov equation concerning the covariance (estimate) of thestationary distribution. Preliminary
experimental results demonstrate that our methods can improve significantly over standard penal-
ized least-square methods when there are only few sequence data but abundant non-sequence data
and when the model assumption is valid. In the future, we would like to investigate the impact of̂Q
on Â in a precise manner. Also, we may consider noise processesǫ

t with more general covariances,
and incorporate the noise covariance estimation into the proposed Lyapunov penalization scheme.
Finally and the most importantly, we aim to apply the proposed methods to real scientific time series
data and provide a more effective tool for those modelling tasks.

3A similar video sequence has been used in [16].
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