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Abstract

Vector Auto-regressive models (VAR) are useful tools foalgming time series
data. In quite a few modern time series modelling tasks, ¢tieation of reliable
time series turns out to be a major challenge, either dueetsltw progression of
the dynamic process of interest, or inaccessibility of ti#jpe measurements of
the same dynamic process over time. In those situationsgveywe observe that
it is often easier to collect a large amount of non-sequeao®tes, or snapshots
of the dynamic process of interest. In this work, we assunmeadlsmount of time
series data are available, and propose methods to incoepooa-sequence data
into penalized least-square estimation of VAR models. Wesiter non-sequence
data as samples drawn from the stationary distribution efuhderlying VAR
model, and devise a novel penalization scheme based on #puhgv equation
concerning the covariance of the stationary distributiexperiments on synthetic
and video data demonstrate the effectiveness of the prdposthods.

1 Introduction

Vector Auto-regressive models (VAR) are an important clafssodels for analyzing multivariate
time series data. They have proven to be very useful in caugfiand forecasting the dynamic
properties of time series in a number of domains, such asdemand economicdB, 13]. Recently,
researchers in computational biology applied VAR modelth analysis of genomic time series
[12], and found interesting results that were unknown previous

In quite a few scientific modeling tasks, a major difficultyrts out to be the collection of reliable
time series data. In some situations, the dynamic procesgesest may evolve slowly over time,
such as the progression of Alzheimer’s or Parkinson’s disgaand researchers may need to spend
months or even years tracking the dynamic process to obtaingh time series data for analysis.
In other situations, the dynamic process of interest maybeadble to undergo repetitive measure-
ments, so researchers have to measure multiple instandes shme process while maintaining
synchronization among these instances. One such examgpdmésexpression time series. In their
study, L9 measured expression profiles of yeast genes along consem#tabolic cycles. Due to
the destructive nature of the measurement technique, tilscted expression data from multiple
yeast cells. In order to obtain reliable time series datey 8pent a lot of effort developing a stable
environment to synchronize the cells during the metabglates. Yet, they point out in their discus-
sion that such a synchronization scheme may not work forratpecies, e.g., certain bacteria and
fungi, as effectively as for yeast.

While obtaining reliable time series can be difficult, we aliedhat it is often easier to collect non-
sequence samples, or snapshots of the dynamic processrelihtFor example, a scientist studying

! In several disciplines, such as social and medical sciences, therfizmsually referred to aslangitudi-
nal study while the latter is similar to what is calledcaoss-sectional study



Alzheimer’s or Parkinson’s can collect samples from his er éurrent pool of patients, each of
whom may be in a different stage of the disease. Or in genessgjun analysis, current technology
already enables large-scale collection of static geneesgjmn data. Previoush] investigated
ways to extract dynamics from such static gene expressita) dad more recenth\8[ 9] proposed
methods for learning first-order dynamic models from geheos-sequence data. However, most
of these efforts suffer from a fundamental limitation: dodack of temporal information, multiple
dynamic models may fit the data equally well and hence cectanacteristics of dynamics, such as
the step size of a discrete-time model and the overall teatpiinection, become non-identifiable.

In this work, we aim to combine these two types of data to imeilearning of dynamic models. We
assume that a small amount of sequence samples and a largatashoon-sequence samples are
available. Our aim is to rely on the few sequence samplestmiroh rough estimate of the model,
while refining this rough estimate using the non-sequencgkss. We consider the following first-
orderp-dimensional vector auto-regressive model:

x'Th = x'A 4 €t 1)

wherex! € R'*? is the state vector at timg A € RP*? is the transition matrix, ane’ is a white-
noise process with a time-invariant variane&l. Given a sequence sample, a common estimation
method forA is the least-square estimator, whose properties have hedied extensively (see e.g.,
[7]). We assume that the proced3 is stable, i.e., the eigenvalues Athave modulus less than one.
As a result, the procesg)(has a stationary distribution, whose covariaités determined by the
following discrete-time Lyapunov equation:

ATQA+ oI = Q. 2)

Linear quadratic Lyapunov theory (see e.d]) [gives that@ is uniquelydetermined if and only if
Ai(A)Nj(A) # 1forl < 4,5 < p, where);(A) is thei-th eigenvalue ofd. If the noise process
€' follows a normal distribution, the stationary distributialso follows a normal distribution, with
covariance) determined as above. Since our goal is to estimgta more relevant perspective is
viewing (2) as a system of constraints oh What motivates this work is that the estimation(pf
requires only samples drawn from the stationary distrinutiather than sequence data. However,
even if we have the tru@ ando?, we still cannot uniquely determiné becauseZ) is an under-
determined systefrof A. We thus rely on the few sequence samples to resolve the aitybig

We describe the proposed methods in SecBipand demonstrate their performance through exper-
iments on synthetic and video data in Sect®nOur finding in short is that when the amount of
sequence data is small and our VAR model assumption is ¥aédgyroposed methods of incorporat-
ing non-sequence data into estimation significantly imerover standard methods, which use only
the sequence data. We conclude this work and discuss futetidns in Sectior!.

2 Proposed Methods

Let {x'}Z_, be a sequence of observations generated by the praeskhe standard least-square
estimator for the transition matri® is the solution to the following minimization problem:

min Y - XAJ}, ©)

whereY " = [(x2)T x*)T - xD)T], XT = [(x1)T x2)T---(xT~1)T], and| - || denotes
the matrix Frobenius norm. When> T', which is often the case in modern time series modeling
tasks, the least square proble&) fias multiple solutions all achieving zero squared ermd #e
resulting estimator overfitts the data. A common remedy diregla penalty term onl to (3) and
minimizing the resulting regularized sum of squared errdtsual penalty terms include the ridge
penalty|| A||% and the sparse penaly!|; := >i 1A

Now suppose we also have a set of non-sequence observétigris, drawn independently from
the stationary distribution ofl). Note that we use superscripts for time indices and suftscior
data indices. As described in Sectibrthe sizen of the non-sequence sample can usually be much
larger than the siz&' of the sequence data. To incorporate the non-sequencevatieas into the

2If we further requireA to be symmetric, Z) would be a simplifiedContinuous-time Algebraic Riccati
Equation which has a unique solution under some conditions (&]J. [
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Figure 1: Level sets of different functions in a bivariate Akample

estimation procedure, we first obtain a covariance esti@atﬁ the stationary distribution from
the non-sequence sample, and then turn the Lyapunov egya}imto a regularization term on.
More precisely, in addition to the usual ridge or sparse [igt@rms, we also consider the following
regularization:

IATQA+ 01 = Q| %, 4)
which we refer to as theyapunov penalty To compare 4) with the ridge penalty and the sparse
penalty, we consideB] as a multiple-response regression problem and vievi-theolumn ofA as
the regression coefficient vector for thh output dimension. From this viewpoint, we immediately
see that both the ridge and the sparse penalizations teeatrdgression problems as unrelated. On
the contrary, the Lyapunov penalty incorporates relattogtsveen pairs of columns of by using a

covariance estimat€. In other words, although the non-sequence sample doesovtp direct
information about the individual regression problems,des reveal how the regression problems
are related to one another. To illustrate how the Lyapunmaltg may help to improve learning, we
give an example in Figurgé. The true transition matrix is

—0.4280 0.5723 (5)
—1.0428 —0.7144

ande’ ~ N(0,1). We generate a sequence of 4 points, draw a non-sequencéesaap points

independently from the stationary distribution and obttie sample covariancg. We fix the
second column ofd but vary the first, and plot in Figurg(a) the resulting level sets of the sum of
squared errors on the sequence (SSE) and the ridge penaiyejRand in Figurel(b) the level
sets of the Lyapunov penalty (Lyap). We also give coordmafethe trug/A;; A,;]", the minima
of SSE, Ridge, and Lyap, respectively. To see the behavitheofidge regression, we trace out
a path of the ridge regression solution by varying the peatibn parameter, as indicated by the
red-to-black curve in Figuré(a) This path is pretty far from the true model, due to insuffitie
sequence data. For the Lyapunov penalty, we observe thas itwo local minima, one of which is
very close to the true model, while the other, also the glob@aimum, is very far. Thus, neither
ridge regression nor the Lyapunov penalty can be used omvitsto estimate the true model well.
But as shown in Figuré(c), the combined objective, SSERidgeJr%Lyap, has its global minimum
very close to the true model. This demonstrates how the rielgession and the Lyapunov penalty
may complement each other: the former by itself gives andneate estimation of the true model,
but is just enough to identify a good model from the many cdatdi local minima provided by the
latter.

A:

In the following we describe our proposed methods for inoogging the Lyapunov penaltyl) into
ridge and sparse least-square estimation. We also disgligstrestimation for the covarianée

2.1 Ridgeand Lyapunov penalty
Here we estimatel by solving the following problem:

. 1 A A ~ .
min S|V - XA} + AR + Z2[ATQA+ T - QI3 ©)

3



where@ is a covariance estimate obtained from the non-sequencglsalVe treat\;, A\, ando?

as hyperparameters and determine their values on a validsgit. Given these hyperparameters, we
solve @) by gradient descent with back-tracking line search fordtep size. The gradient of the
objective function is given by

XY+ XTXA+MA+AQAATQA + 0% — Q). )

As mentioned beforef] is a non-convex problem and thus requires good initialratWe use the
following two initial estimates ofd:

A = (XTX)IXTY and AT = (XTX +MI)T'XTY, (8)

where(-)t denotes the Moore-Penrose pseudo inverse of a matrix, akifi the minimum-norm
solution to the least square probleB).(We run the gradient descent algorithm with these twoahiti
estimates, and choose the estimateithat gives a smaller objective.

2.2 Sparseand Lyapunov penalty

Sparse learning for vector auto-regressive models hasnieeouseful tool in many modern time
series modeling tasks, where the numpef states in the system is usually larger than the length
T of the time series. For example, an important problem in agatonal biology is to understand
the progression of certain biological processes from soreasmrements, such as temporal gene
expression data.

Using an idea similar tod), we estimated by

. 1 Ao ~ ~
min §HY—XA||%+Z||ATQA+021—QH2F, )

Instead of adding a sparse penalty 4rto the objective function, we impose a constraint on the
£1 norm of A. Both the penalty and the constraint formulations have lweasidered in the sparse
learning literature, and shown to be equivalent in the cdseamnvex objective. Here we choose
the constraint formulation because it can be solved by alsipojected gradient descent method.
On the contrary, the penalty formulation leads to a non-gaad non-convex optimization prob-
lem, which is difficult to solve with standard methods for iggalearning. In particular, the soft-
thresholding-based coordinate descent method for LASSE3 dot apply due to the Lyapunov
regularization term. Moreover, most of the common methastsnbn-smooth optimization, such
as bundle methods, solve convex problems and need noakttmadification in order to handle
non-convex problemslH].

Let J(A) denote the objective function i®Xand A*) denote the intermediate solution at th¢h
iteration. Our projected gradient method updaté® to A*+1) by the following rule:

AFFD AR — (g g (AR))), (10)

wheren*) > 0 denotes a proper step siZé,J(A*)) denotes the gradient of(-) at A*), andTI(-)
denotes the projection onto the feasible regjioti|; < \;. More precisely, for any-by-p real
matrix V' we define )

(V) := arg HAI\?ngl |A = V] %. (112)
To compute the projection, we use the efficiéntprojection technique given in Figure 2 ][
whose expected running time is linear in the sizé’of

For choosing a proper step siz€"), we consider the simple and effecti®emijo rule along the
projection arcdescribed in 2]. This procedure is given in Algorithm, and the main idea is to
ensure a sufficient decrease in the objective value pettitiarél3). [2] proved that there always
existsn(*) = g™ > 0 satisfying (L3), and every limit point off A®)}° is a stationary point of
(9). In our experiments we set= 0.01 and = 0.1, both of which are typical values used in
gradient descent. As in the previous section, we need gataliirations for the projected gradient
descent method. Here we use these two initial estimates:

—~ ~ -~ 1
AT = arg min ||[A— A®2 and AP := arg min —=||Y — XA|?%, 12
s, min 14— A% g min IV - XA, (@12)

whereA'*¢ is defined in 8), and then choose the one that leads to a smaller objective.va



Algorithm 1. Armijo’s rule along the projection arc

Input : AR VJ(AF) 0<p<1,0<c< 1.
Output: AK+1)

Findn™®) = max{3"|ry, € {0,1,...}} such thatA*+1) .= TI(A%) — )V J(AR))) satisfies

J(A®DY — g(A®) < ¢ trace(VJ(A(k))T(A(k“) - A(k))> (13)

2.3 Robust estimation of covariance matrices

To obtain a good estimator fo# using the proposed methods, we need a good estimator for the
covariance of the stationary distribution df)( Given an independent sample; }*_, drawn from
the stationary distribution, the sample covariance is eeffias

S = > (zi—2) (zi—2), wherez := & (14)

n—1 n
1

1 n

Although unbiased, the sample covariance is known to besvabie to outliers, and ill-conditioned
when the number of sample pointsis smaller than the dimensign Both issues arise in many
real world problems, and the latter is particularly commormyéne expression analysis. Therefore,
researchers in many fields, such as statisti@s20, 11], finance [L0], signal processing3, 4], and
recently computational biologylp], have investigated robust estimators of covariances. tibs
these results originate from the ideagfrinkage estimatorsvhich shrink the covariance matrix
towards some target covariance with a simple structureh sisca diagonal matrix. It has been
shown in, e.g.,17, 1Q] that shrinking the sample covariance can achieve a smakeam-squared
error (MSE). More specifically,1[0] considers the following linear shrinkage:

Q= (1-a)S+aF (15)

for 0 < a < 1 and some target covarianég and derive a formula for the optimalthat minimizes
the mean-squared error:

o = arg min E(|Q - QJ3), (16)

which involves unknown quantities such as true covarianées [15) proposed to estimate™ by
replacing all the population quantities appearingvinby their unbiased empirical estimates, and
derived the resulting estimatar for several types of targdt. For the experiments in this paper we
use the estimator proposed itH with the following F:

Sy, ifi—=j o
F.. = KX ’ 1< < p. 17
* {O otherwise = — LI=P (17)

Denoting the sample correlation matrix Bswe give the final estimata@ (Table 1 in [L5]) below:
@z‘j = %j7 i= J Eij = {17 . s i = /> (18)
Rij\ / Sn‘SJ‘j 0therW|Se Rij mln(l, maX(O, 1—a )) othervwse

& > iz Var(Rij) D iri Ty ket (Whij — w;;)*

= = ; (19)
Zi;ﬁj B?J Zi;éj Rz?j
where
- - _ n, Whkii
wiij = (Zk)i(Zk);, wi; = @ (20)

and{z;}?_, arestandardizedhon-sequence samples.
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Figure 2: Testing performances and eigenvalues in modolub& dense model

3 Experiments

To evaluate the proposed methods, we conduct experimestatinetic and video data. In both sets
of experiments we use the following two performance measfimea learnt modeH:

T-1 ||Xt+1 _ XtA\”Q

T—1 & X
t=1

Normalized error:

1 T—1
Cosine score:
71|

(x!1 — Xt)T(XtA\ —x!)
I+t — x| [t A =t |

To give an idea of how a good estimatewould perform under these two measures, we point
out that a constant predictiot’*! = x' leads to a normalized error of 1, and a random-walk
predictionx!*t! = x! + €1, ¢! being a white-noise process, results in a nearly-zero eosin
score. Thus, when the true model is more than a simple randal & good estimatel should
achieve a normalized error much smaller than 1 and a cosore sy above 0. We also note that
the cosine score is upper-bounded by 1. In experiments dhalyndata we have the true transition

matrix A, so we consider a third criterion, the matrix erred — A|| /|| A|| p.

In all our experiments, we have a training sequence, a teséguence, and a non-sequence sample.
To choose the hyper-parameters A\, ando?, we split the training sequence into two halves and
use the second half as the validation sequence. Once we @ #t hyper-parameters according to
the validation performance, we train a model on the fullrtirag sequence and predict on the testing

sequence. Fok; and )\, we adopt the usual grid-search scheme with a suitable rahgalues.
Foro?, we observe that?] impliesQ — 021 should be positive semidefinite, and thus search the set
{0.97 min; X\;(Q) | 1 < j < 3}. In most of our experiments, we find that the proposed methcels

much less sensitive t®* than to)\; and\s.

3.1 Synthetic Data

We consider the following two VAR models with a Gaussian wmibise process’ ~ A (0, I).

0.95M

D Model: A= ———— M, ~ 0,1),1<14,75 <200.
ense Mode max( a0 Mo N(0,1),1<1,5<

0.95(M © B)

max(|A;(M © B)])

where Berifh) is the Bernoulli distribution with success probabilityand® denotes the entrywise
product of two matrices. By setting = 1/8, we make the sparse transition matixhave roughly
40000/8 = 5000 non-zero entries. Both models are stable, and the stagiatistribution for each
model is a zero-mean Gaussian. We obtain the covarighoé each stationary distribution by
solving the Lyapunov equatior2). For a single experiment, we generate a training sequantea a
testing sequence, both initialized from the stationaryrifhigtion, and draw a non-sequence sample
independently from the stationary distribution. We set lgregth of the testing sequence to be

Sparse Model: A=

,Mij NN(O, 1)7Bij ~ Bern(1/8),1 <i,7 <200,
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Figure 3: Testing performances and eigenvalues in modoluhé sparse model

800, and vary the training sequence len@thand the non-sequence sample sizefor the dense
model, T € {50, 100, 150, 200, 300, 400, 600, 800} andn € {50,400, 1600}; for the sparse model,
T € {25,75,150,400} andn € {50, 400,1600}. Under each combination @f andn, we compare
the proposed Lyapunov penalization method with the baselpproach of penalized least square,
which uses only the sequence data. To investigate the lfrtlieqproposed methods, we also use the
true @ for the Lyapunov penalization. We run 10 such experimentthi® dense model and 5 for the
sparse model, and report the overall performances of betbithposed and the baseline methods.

3.1.1 Experimental resultsfor the dense model

We give boxplots of the three performance measures in thex€rienents in Figure&(a)to 2(c).
The ridge regression approach and the proposed Lyapuna@lipgiion method®) are abbreviated
as Ridge and Lyap, respectively. For normalized error arsiheoscore, we also report the perfor-
mance of the truel on testing sequences.

We observe that Lyap improves over Ridge more significantigmvthe training sequence length
T is small € 200) and the non-sequence sample sizis large & 400). WhenT' is large, Ridge
already performs quite well and Lyap does not improve thégperance much. But with the true
stationary covarianc€), Lyap outperforms Ridge significantly for . Whenn is small, the
covariance estimat@ is far from the true) and the Lyapunov penalty does not provide useful
information aboutA. In this case, the value of; determined by the validation performance is
usually quite small (0.5 or 1) comparedXe (256), so the two methods perform similarly on testing
sequences. We note that if instead of the robust covariastomate in (8) and (L9) we use the
sample covariance, the performance of Lyap can be marginalise than Ridge when is small.

A precise statement on how the estimation errc@iaﬁectsﬁ is worth studying in the future. As a
gualitative assessment of the estimated transition nestria Figure?(d) we plot the eigenvalues in
modulus of the trued and theA'’s obtained by different methods wh&h= 50 andn = 1600. The
eigenvalues are sorted according to their modulus. Botgé&éohd Lyap severely under-estimate the
eigenvalues in modulus, but Lyap preserves the spectrunh imetter than Ridge.

3.1.2 Experimental resultsfor the sparse model

We give boxplots of the performance measures in the 5 expatisrin Figures(a)to 3(c), and the

eigenvalues in modulus of the trueand somed’s in Figure3(d). The sparse least-square method
and the proposed metho€l) @re abbreviated as Sparse and Lyap, respectively.

We observe the same type of improvement as in the dense mg@gl:improves over Sparse more
significantly wherl" is small andr is large. But the largest improvement occurs whée: 75, not
the shortest training sequence len@th- 25. A major difference lies in the impact of the Lyapunov
penalization on the spectrum df, as revealed in Figurg(d). WhenT is as small as 25, the sparse
least-square method shrinks all the eigenvalues but st@pkmost of them non-zero, while Lyap
with a non-sequence sample of size 1600 over-estimatesshéefi largest eigenvalues in modulus
but shrink the rest to have very small modulus. In contraggpLwith the trueQ) preserves the
spectrum much better. We may thus need an even better covarstimate for the sparse model.
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Figure 4: Results on the pendulum video data

3.2 Video Data

We test our methods using a video sequence of a periodiasihging pendulurd, which consists
of 500 frames of 75-by-80 grayscale images. One such frarg&és in Figure4(a) The period

is about 23 frames. To further reduce the dimension we ta&kesdicond-level Gaussian pyramids,
resulting in images of size 9-by-11. We then treat each redlimage as a 99-dimensional vector,
and normalize each dimension to be zero-mean and standaedide 1. We analyze this sequence
with a 99-dimensional first-order VAR model. To check wheth&/AR model is a suitable choice,
we estimate a transition matrix from the first 400 frames hige regression while choosing the
penalization parameter on the next 50 frames, and predith®tast 50 frames. The best penal-
ization parameter is 0.0156, and the testing normalizeor @md cosine score are 0.33 and 0.97,
respectively, suggesting that the dynamics of the videaesece is well-captured by a VAR model.

We compare the proposed meth@) (vith the ridge regression for two lengths of the training se
quencel € {6,10, 20,50}, and treat the last 50 frames as the testing sequence. Fomethods,
we split the training sequence into two halves and use thensklgalf as a validation sequence. For
the proposed method, we simulate a non-sequence sampladiynnéy choosing 300 frames from
between théT + 1)-st frame and the 450-th frame without replacement. We rtefhéal10 times.

The testing normalized errors and cosine scores of bothadsthare given in Figure$(b) and4(c).
For the proposed method, we report the mean performanceunesagver the 10 simulated non-
sequence samples with standard deviation. Wheh 20, which is close to the period, the proposed
method outperforms ridge regression very significantlyegtovhenT = 10 the cosine score of
Lyap is barely better than Ridge. However, when we incrdase 50, the difference between the
two methods vanishes, even though there is still much roanmiprovement as indicated by the
result of our model sanity check before. This may be due taugerof dependent data as the non-
sequence sample, or simply insufficient non-sequence Aatfor \; and \, their values decrease
respectively from 512 and 2,048 to less than 3Z'ascreases, but since we fix the amount of non-
sequence data, the interaction between their value chamdgss clear than on the synthetic data.

4 Conclusion

We propose to improve penalized least-square estimatiovA& models by incorporating non-
sequence data, which are assumed to be samples drawn frostatimnary distribution of the
underlying VAR model. We construct a novel penalizatiomtdyased on the discrete-time Lya-
punov equation concerning the covariance (estimate) ofstagonary distribution. Preliminary
experimental results demonstrate that our methods carowaignificantly over standard penal-
ized least-square methods when there are only few sequeataddt abundant non-sequence data
and when the model assumption is valid. In the future, we d/bké to investigate the impact «i}
on A in a precise manner. Also, we may consider noise proce$seish more general covariances,
and incorporate the noise covariance estimation into tbpgsed Lyapunov penalization scheme.
Finally and the most importantly, we aim to apply the progbsethods to real scientific time series
data and provide a more effective tool for those modellirsi$a

3A similar video sequence has been usedlif].[
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