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Abstract

We consider a general inference setting for discrete probabilistic graphical models
where we seek maximum a posteriori (MAP) estimates for a subset of the random
variables (max nodes), marginalizing over the rest (sum nodes). We present a hy-
brid message-passing algorithm to accomplish this. The hybrid algorithm passes
a mix of sum and max messages depending on the type of source node (sum or
max). We derive our algorithm by showing that it falls out as the solution of a par-
ticular relaxation of a variational framework. We further show that the Expectation
Maximization algorithm can be seen as an approximation to our algorithm. Ex-
perimental results on synthetic and real-world datasets, against several baselines,
demonstrate the efficacy of our proposed algorithm.

1 Introduction

Probabilistic graphical models provide a compact and principled representation for capturing com-
plex statistical dependencies among a set of random variables. In this paper, we consider the general
maximuma posteriori (MAP) problem in which we want to maximize over a subset of thevariables
(max nodes, denotedX), marginalizing the rest (sum nodes, denotedZ). This problem is termed
as the Marginal-MAP problem. A typical example is the minimum Bayes risk (MBR) problem [1]
where the goal is to find an assignmentx̂ which optimizes a lossℓ(x̂, x) with regard to some usually
unknown truthx. Sincex is latent, we need to marginalize it before optimizing with respect tox̂.

Although the specific problems of estimating marginals and estimating MAP individually have been
studied extensively [2, 3, 4], similar developments for themore general problem of simultaneous
marginaland MAP estimation are lacking. More recently, [5] proposed a method based optimizing
a variational objective on specific graph structures, and isa simultaneous development as the method
we propose in this paper (please refer to the supplementary material for further details and other
related work).

This problem is fundamentally difficult. As mentioned in [6,7], even for a tree-structured model,
we cannot solve the Marginal-MAP problem exactly in poly-time unlessP = NP . Moreover, it
has been shown [8] that even if a joint distributionp(x, z) belongs to the exponential family, the
corresponding marginal distributionp(x) =

∑

z p(x, z) is in generalnot exponential family (with a
very short list of exceptions, such as Gaussian random fields). This means that we cannot directly
apply algorithms for MAP inference to our task. Motivated bythis problem, we propose a hybrid
message passing algorithm which is both intuitive and justified according to variational principles.
Our hybrid message passing algorithm uses a mix of sum and maxmessages with the message type
depending on the source node type.

Experimental results on chain and grid structured synthetic data sets and another real-world dataset
show that our hybrid message-passing algorithm works favorably compared to standard sum-
product, standard max-product, or the Expectation-Maximization algorithm which iteratively pro-
vides MAP and marginal estimates. Our estimates can be further improved by a few steps of local
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search [6]. Therefore, using the solution found by our hybrid algorithm to initialize some local
search algorithms largely improves the performance on bothaccuracy and convergence speed, com-
pared to the greedy stochastic search method described in [6]. We also give an example in Sec. 5
of how our algorithm can also be used to solve other practicalproblem which can be cast under the
Marginal-MAP framework. In particular, the Minimum Bayes Risk [9] problem for decomposable
loss-functions can be readily solved under this framework.

2 Problem Setting

In our setting, the nodes in a graphical model with discrete random variables are divided into two
sets:max andsum nodes. We denote a graphG = (V,E), V = X ∪ Z whereX is the set of nodes
for which we want to compute the MAP assignment (max nodes), andZ is the set of nodes for which
we need the marginals (sum nodes). Letx = {x1, . . . , xm} (xs ∈ Xs), z = {z1, . . . , zn} (zs ∈ Zs)
be the random variables associated with the nodes inX andZ respectively. The exponential family
distributionp over these random variables is defined as follows:

pθ(x, z) = exp [〈θ, φ(x, z)〉 −A(θ)]

whereφ(x, z) is the sufficient statistics of the enumeration of all node assignments, andθ is the vec-
tor of canonical or exponential parameters.A(θ) = log

∑

x,z exp[〈θ, φ(x, z)〉] is the log-partition
function. In this paper, we consider only pairwise node interactions and use standard overcomplete
representation of the sufficient statistics [10] (defined byindicator functionI later).

The general MAP problem can be formalized as the following maximization problem:

x∗ = argmax
x

∑

z

pθ(x, z) (1)

with corresponding marginal probabilities of thez nodes, givenx∗.

p(zs|x
∗) =

∑

Z\{zs}

p(z|x∗), s = 1, . . . , n (2)

Before proceeding, we introduce some notations for clarityof exposition: Subscriptss, u, t, etc.
denote nodes in the graphical model.zs, xs are sum and maxrandom variables respectively, asso-
ciated with some nodes. vs can be either a sum (zs) or a max random (xs) variable, associated with
some nodes. N(s) is the set of neighbors of nodes. Xs,Zs,Vs are the state spaces from whichxs,
zs, vs take values.

2.1 Message Passing Algorithms

The sum-product and max-product algorithms are standard message-passing algorithms for inferring
marginal and MAP estimates respectively in probabilistic graphical models. Their idea is to store
a belief state associated with each node, and iteratively passing messages between adjacent nodes,
which are used to update the belief states. It is known [11] that these algorithms are guaranteed to
converge to the exact solution on trees or polytrees. On loopy graphs, they are no longer guaranteed
to converge, but they can still provide good estimates when converged [12].

In the standard sum product algorithm, the messageMts passed from nodes to one of its neighbors
t is as follows:

Mts(vs)← κ
∑

v′

t
∈Vt







exp[θst(vs, v
′
t) + θt(v

′
t)]

∏

u∈N(t)\s

Mut(v
′
t)







(3)

whereκ is a normalization constant. When the messages converge, i.e. {Mts,Mst} does not change
for every pair of nodess andt, the belief (psuedomarginal distribution) for the nodes is given by
µs(vs) = κ exp{θs(vs)}

∏

t∈N(s)Mts(vs). The outgoing messages for max product algorithm have
the same form but with a maximization instead of a summation in Eq. (3). After convergence, the
MAP assignment for each node is the assignment with the highest max-marginal probability.

On loopy graphs, the tree-weighted sum and max product [13, 14] can help find the upper bound
of the marginal or MAP problem. They decompose the loopy graph into several spanning trees and
reweight the messages by the edge appearance probability.
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2.2 Local Search Algorithm

Eq (1) can be viewed as doing a variable elimination forz nodes first, followed by a maximization
overx. Its maximization step may be performed using heuristic search techniques [7, 6]. Eq (2) can
be computed by running standard sum-product overz, given the MAPx∗ assignments. In [6], the
assignment for the MAP nodes are found by greedily searchingthe best neighboring assignments
which only differs on one node. However, the hybrid algorithm we propose allows simultaneously
approximating both Eq (1) and Eq (2).

3 HYBRID MESSAGE PASSING

In our setting, we wish to compute MAP estimates for one set ofnodes and marginals for the rest.
One possible approach is to run standard sum/max product algorithms over the graph, and find the
most-likely assignment for each max node according to the maximum of sum or max marginals1.
These näıve approaches have their own shortcomings; for example, although using standard max-
product may perform reasonably when there are many max nodes, it inevitably ignores the effect of
sum nodes which should ideally be summed over. This is analogous to the difference between EM
for Gaussian mixture models andK-means. (See Sec. 6)

3.1 ALGORITHM

We now present a hybrid message-passing algorithm which passes sum-style or max-style messages
based on the type of nodes from which the message originates.In the hybrid message-passing
algorithm, a sum node sends sum messages to its neighbors anda max node sends max messages.
The type of message passed depends on the type of source node,not the destination node.

More specifically, the outgoing messages from a source node are as follows:
• Message fromsum nodet to any neighbors:

Mts(vs)← κ1
∑

z′

t
∈Zt







exp[θst(vs, z
′
t) + θt(z

′
t)]

∏

u∈N(t)\s

Mut(z
′
t)







(4)

• Message frommax nodet to any neighbors:

Mts(vs)← κ2 max
x′

t
∈Xt







exp[θst(vs, x
′
t) + θt(x

′
t)]

∏

u∈N(t)\s

Mut(x
′
t)







(5)

andκ1,κ2 are normalization constants. Algo 1 shows the procedure to do hybrid message-passing.

Algorithm 1 Hybrid Message-Passing Algorithm

Inputs: GraphG = (V,E), V = X ∪ Z, potentialsθs, s ∈ V andθst, (s, t) ∈ E.
1. Initialize the messages to some arbitrary value.
2. For each nodes ∈ V inG, do the following until messages converge (or maximum number

of iterations reached)
• If s ∈ X, update messages by Eq.(5).
• If s ∈ Z, update messages by Eq.(4).

3. Compute the local belief for each nodes.
µs(ys) = κ exp{θs(vs)}

∏

t∈N(s)Mts(vs)
4. For allxs ∈ X, returnargmaxxs∈Xs

µs(xs)
5. For allzs ∈ Z, returnµs(zs).

When there is only a single type of node in the graph, the hybridalgorithm reduces to the standard
max or sum-product algorithm. Otherwise, it passes different messages simultaneously and gives an
approximation to the MAP assignment on max nodes as well as the marginals on sum nodes. On
the loopy graphs, we can also apply this scheme to pass hybridtree-reweighted messages between
nodes to obtain marginal and MAP estimates. (See Appendix C of the supplementary material)

1Running the standard sum-product algorithm and choosing the maximum likelihood assignment for the
max nodes is also called maximum marginal decoding [15, 16].
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3.2 VARIATIONAL DERIVATION

In this section, we show that the Marginal-MAP problem can beframed under a variational frame-
work, and the hybrid message passing algorithm turns out to be a solution of it. (a detailed derivation
is in Appendix A of the supplementary material). To see this,we construct a new graphGx̄ with xs’
assignments fixed to bēx ∈ X = X1 × · · · × Xm, so the log-partition functionA(θx̄) of the graph
Gx̄ is

A(θx̄) = log
∑

z

p(x̄, z) + logA(θ) = log p(x̄) + const (6)

As the constant only depends on the log-partition function of the original graph and does not vary
with different assignments of MAP nodes,A(θx̄) exactly estimates the log-likelihood of assignment
x̄. Thereforeargmax

x̄∈X log p(x̄) = argmax
x̄∈X A(θx̄). Moreover,A(θx̄) can be approximated

by the following [10]:
A(θx̄) ≈ sup

µ∈M(Gx̄)

〈θ, µ〉+HBethe(µ) (7)

whereM(Gx̄) is the following marginal polytope of graphGx:

M(Gx̄) =







µ

∣

∣

∣

∣

∣

∣

µs(zs), µst(vs, vt): marginals withx̄ fixed to its assignment

µs(xs) =

{

1 if xs = x̄s
0 else







(8)

Recall,vs stands forxs or zs. HBethe(µ) is the Bethe energy of the graph:

HBethe(µ) =
∑

s

Hs(µs)−
∑

(s,t)∈E

Ist(µst), Hs(µs) = −
∑

vs∈Vs

µs(vs) log µs(vs)

(9)
Ist(µst) =

∑

(vs,vt)∈Vs×Vt

µst(vs, vt) log
µst(vs, vt)

µs(vs)µt(vt)

For readability, we useµsum, µmax to subsume the node and pairwise marginals for sum/max nodes
andµsum→max, µmax→sum are the pairwise marginals for edges between different types of nodes. The
direction here is used to be consistent with the distinctionof the constraints as well as the messages.

Solving the Marginal-MAP problem is therefore equivalent to solving the following optimization
problem:

max
x̄∈X

sup
µother∈M(Gx̄)

〈θ, µ〉+HBethe(µ) ≈ sup
µmax∈Mx̄

sup
µother∈M(Gx̄)

〈θ, µ〉+HBethe(µ) (10)

µother contains all other node/pairwise marginals exceptµmax. The Bethe entropy terms can be
written as (H is the entropy andI is mutual information)

HBethe(µ) = Hµmax +Hµsum− Iµmax→µmax − Iµsum→µsum− Iµmax→µsum− Iµsum→µmax

If we force to satisfy the second condition in (8), the entropy of max nodesHµmax = Hs(µs) = 0,
∀s ∈ X and the mutual information between max nodesIµmax→µmax = Ist(xs, xt) = 0, ∀s, t ∈ X.
For mutual information between different types of nodes, wecan either forcexs to have integral so-
lutions, or relaxxs to have non-integral solution, or relaxxs on one direction2. In practice, we relax
the mutual information on the message from sum nodes to max nodes, so the mutual information
on the other directionIµmax→µsum = Ist(xs, zt) =

∑

(xs,zt)∈Xs×Zt
µst(xs, zt) log

µst(xs,zt)
µs(xs)µt(zt)

=
∑

zt∈Zt
µst(x

∗, zt) log
µst(x

∗,zt)
µs(x∗)µt(zt)

= 0, ∀s ∈ X, t ∈ Z, wherex∗ is the assigned state ofx at node
s. Finally, we only require sum nodes to satisfy normalization and marginalization conditions, the
entropy for sum nodes, mutual information between sum nodes, and from sum node to max node
can be nonzero.

The above process relaxes the polytopeM(Gx̄) to beMx̄ × Lz(Gx̄), where

Lz(Gx̄) =



















µ ≥ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

zs
µs(zs) = 1, µs(xs) = 1 iff xs = x̄s,
∑

zt
µst(vs, zt) = µs(vs),

∑

zs
µst(zs, vt) = µt(vt),

µst(xs, zt) = µt(zt) iff xs = x̄s,
µst(xs, xt) = 1 iff xs = x̄s, xt = x̄t.



















2This results in four different relaxations for different combinations ofmessage types and the hybrid algo-
rithm performed empirically the best.

4



This analysis results in the following optimization problem.

sup
µmax∈Mx̄

sup
µothers∈M(Gx̄)

〈θ, µ〉+H(µsum)− I(µsum→sum)− I(µsum→max)

Further relaxingµx̄s to have non-integral solutions, define

L(G) =







µ ≥ 0

∣

∣

∣

∣

∣

∣

∑

vs
µs(vs) = 1,

∑

vt
µst(vs, vt) = µs(vs),

∑

vs
µst(vs, vt) = µt(vt).







Finally we get
sup

µ∈L(G)

〈µ, θ〉+H(µsum)− I(µsum→sum)− I(µsum→max) (11)

SoMx̄×Mz(Gx̄) ⊆Mx̄×Lz(Gx̄) ⊆ L(G). Unfortunately,Mx̄×Mz(Gx̄) is not guaranteed to be
convex and we can only obtain an approximate solution to the problem defined in Eq (11). Taking
the Lagrangian formulation, for anx node, the partial derivative of the Lagrangian with respectto
µs(xs), s ∈ X keeps the same form as in max product derivation[10], and thesituations are identical
for µs(zs), s ∈ Z and pairwise psuedo-marginals, so the hybrid message-passing algorithm provides
a solution to Eq (11) (see Appendix A of the supplementary material for a detailed derivation).

4 Expectation Maximization

Another plausible approach to solve the Marginal MAP problem is by the Expectation Maximiza-
tion(EM) algorithm [17], typically used for maximum likelihood parameter estimation in latent vari-
able models. In our setting, the variablesZ correspond to the latent variables. We now show one
way of approaching this problem by applying the sum-productand max-product algorithms in the E
and M step respectively. To see this, let us first define3:

F (p̃, x) = Ep̃[log p(x, z)] +H(p̃(z)) (12)
whereH(p̃) = −Ep̃[log p̃(z)].

Then EM can be interpreted as a joint maximization of the function F [18]: At iteration t, for
the E-step,p̃(t) is set to be thẽp that maximizesF (p̃, x(t−1)) and for the M-step,x(t) is thex
that maximizesF (p̃(t), x). GivenF , the following two properties4 show that jointly maximizing
functionF is equivalent to maximizing the objective functionp(x) =

∑

z p(x, z).

1. With the value ofx fixed in functionF , the unique solution to maximizingF (p̃, x) is given
by p̃(z) = p(z|x).

2. If p̃(z) = p(z|x), thenF (p̃, x) = log p(x) = log
∑

z p(x, z).

4.1 Expectation Maximization via Message Passing

Now we can derive the EM algorithm for solving the Marginal-MAP problem by jointly maximizing
functionF . In the E-step, we need to estimatep̃(z) = p(z|x) givenx. This can be done by fixingx
values at their MAP assignments and running the sum-productalgorithm over the resulting graph:

The M-step works by maximizingEpθ(z | x̄) log pθ(x, z), wherex̄ is the assignment given by the pre-
vious M-step. This is equivalent to maximizingEz∼pθ(z | x̄) log pθ(x | z), as thelog pθ(z) term in the
maximization is independent ofx. maxx Ez∼pθ(z | x̄) log pθ(x | z) = maxx

∑

z p(z | x̄)〈θ, φ(x, z)〉,
which in the overcomplete representation [10] can be approximated by

∑

s∈X,i



θs;i +
∑

t∈Z,j

µt;jθst;ij



 Is;i(xs) +
∑

(s,t)∈E,s,t∈X

∑

(i,j)

θst;ijIst;ij(xs, xt) + C

whereC subsumes the terms irrelevant to the maximization overx, µt is the psuedo-marginal of
nodet givenx̄5. Then, the M-step amounts to running the max product algorithm with potentials on
x nodes modified according to Eq. (13). Summarizing, the EM algorithm for solving marginal-MAP
estimation can be interpreted as follows:

• E-step: Fix xs to be the MAP assignment value from iteration(k−1) and run sum product
to get beliefs on sum nodeszs, sayµt, t ∈ Z.

3By directly applying Jensen’s inequality to the objective functionmaxx log
∑

z
p(x, z)

4The proofs are straightforward following Lemma 1 and 2 in [18] page 4-5. More details are in Appendix
B of the supplementary material

5A detailed derivation is in Appendix B.4 of the supplementary material
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• M-step: Build a new graphG̃ = (Ṽ , Ẽ) only containing the max nodes.̃V =X andẼ =
{(s, t)|∀(s, t) ∈ E, s, t ∈ X}. For each max nodes in the graph, set its potential as
θ̃s;i = θs;i +

∑

j θst;ijµt;j , wheret ∈ Z and(s, t) ∈ E. θ̃st;ij = θst;ij ∀(s, t) ∈ Ẽ. Run
max product over this new graph and update the MAP assignment.

4.2 Relationship with the Hybrid Algorithm

Apart from the fact that the hybrid algorithm passes different messages simultaneously and EM
does it iteratively, to see the connection with the hybrid algorithm, let us first consider the message
passed in the E-step at iterationk. xs are fixed at the last assignment which maximizes the message
at iterationk − 1, denoted asx∗ here. TheM (k−1)

ut are the messages computed at iterationk − 1.

M
(k)
ts (zs) = κ1{exp[θst(zs, x

∗
t ) + θt(x

∗
t )]

∏

u∈N(t)\s

M
(k−1)
ut (x∗t )} (13)

Now assume there exists an iterative algorithm which, at each iteration, computes the messages
used in both steps of the message-passing variant of the EM algorithm, denotedM̃ts. Eq (13) then
becomes

M̃
(k)
ts (zs) == κ1 max

x′

{exp[θst(zs, x
′
t) + θt(x

′
t)]

∏

u∈N(t)\s

M̃
(k−1)
ut (x′t)}

So the max nodes (x’s) should pass the max messages to its neighbors (z’s), which is what the hybrid
message-passing algorithm does.

In the M-step for EM (as discussed in Sec. 4), all the sum nodest are removed from the graph
and the parameters of the adjacent max nodes are modified as:θs;i = θs;i +

∑

j θst;ijµt;j . µt is
computed by the sum product at the E-step of iterationk, and these sum messages are used (in form
of the marginalsµt) in the subsequent M-step (with the sum nodes removed). However, a max node
may prefer different assignments according to different neighboring nodes. With such uncertainties,
especially during the first a few iterations, it is very likely that making hard decisions will directly
lead to the bad local optima. In comparison, the hybrid message passing algorithm passes mixed
messages instead of making deterministic assignments in each iteration.

5 MBR Decoding

Most work on finding “best” solutions in graphical models focuses on the MAP estimation problem:
find thex that maximizespθ(x). In many practical applications, one wishes to find anx thatmin-
imizes some risk, parameterized by a given loss function. This is the minimum Bayes risk (MBR)
setting, which has proven useful in a number of domains, suchas speech recognition [9], natural
language parsing [19, 20], and machine translation [1]. We are given a loss functionℓ(x, x̂) which
measures theloss of x̂ assumingx is the truth. We assume losses are non-negative. Given this loss
function, the minimum Bayes risk solution is the minimizer of Eq (14):

MBRθ = argmin
x̂

Ex∼p[ℓ(x, x̂)] = argmin
x̂

∑

x

p(x)ℓ(x, x̂) (14)

We now assume thatℓ decomposes over the structure ofx. In particular, suppose that:ℓ(x, x̂) =
∑

c∈C ℓ(xc, x̂c), whereC is some set of cliques inx, andxc denotes the variables associated with
that clique. For example, for Hamming loss, the cliques are simply the set of pairs of vertices of the
form (xi, x̂i), and the loss simply counts the number of disagreements. Such decompositionality is
widely assumed in structured prediction algorithms [21, 22].

Assumelc(x, x′) ≤ L ∀c, x, x′. Thereforel(x, x′) ≤ |C|L. We can then expand Eq (14) into the
following:

MBRθ = argmin
x̂

∑

x

p(x)ℓ(x, x̂) = argmax
x′

∑

x

p(x)(|C|L− l(x, x′))

= argmax
x̂

∑

x

exp

[

〈θ, x〉+ log
∑

c

[L− ℓ(xc, x̂c)]−A(θ)

]

This resulting expression has exactly the same form as the MAP-with-marginal problem, where
x is the variable being marginalized andx̂ being the variable being maximized. Fig. 1 shows a
simple example of transforming a MAP lattice problem into anMBR problem under Hamming loss.
Therefore, we can apply our hybrid algorithm to solve the MBRproblem.
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Figure 1: The Augmented Model For Solving
The MBR Problem Under Hamming Loss over
a 6-node simple lattice
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Figure 2: Comparison of Various Algorithms For
Marginals on 10-Node Chain Graph

6 EXPERIMENTS

We perform the experiments on synthetic datasets as well as areal-world protein side-chain pre-
diction dataset [23], and compare our hybrid message-passing algorithm (both its standard belief
propagation and the tree-reweighted belief propagation (TRBP) versions) against a number of base-
lines such as the standard sum/max product based MAP estimates, EM, TRBP, and the greedy local
search algorithm proposed in [6].

6.1 Synthetic Data
For synthetic data, we first take a 10-node chain graph with varying splits of sum vs max nodes,
and random potentials. Each node can take one of the two states (0/1). The node and the edge
potentials are drawn from UNIFORM(0,1) and we randomly pick nodes in the graph to be sum
or max nodes. For this small graph, the true assignment is computable by explicitly maximizing
p(x) =

∑

z p(x, z) = 1
Z

∑

z

∏

s∈V ψs(vs)
∏

(s,t)∈E ψst(vs, vt), whereZ is some normalization
constant andψs(vs) = exp θs(vs).

First, we compare the various algorithms on the MAP assignments. Assume that the aforementioned
maximization gives assignmentx∗ = (x∗1, . . . , x

∗
n) and some algorithm gives the approximate as-

signmentx = (x1, . . . , xn). The metrics we use here are the0/1 loss and the Hamming loss.
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Figure 3:Comparison of Various Algorithms For MAP Estimates on 10-Node Chain Graph: 0-1 Loss (Left),
Hamming Loss (Right)

Fig. 3 shows the loss on the assignment of the max nodes. In thefigure, as the number of sum nodes
goes up, the accuracy of the standard sum-product based estimation (sum) gets better, whereas the
accuracy of standard max-product based estimation (max) worsens. However, our hybrid message-
passing algorithm (hybrid), on an average, results in the lowest loss compared to the other baselines,
with running times similar to the sum/max product algorithms.

We also compare a stochastic greedy search approach described in [6] initialized by the results of
sum/max/hybrid algorithm (sum/max/hybrid+local search). As shown in [6], local search with sum
product initialization empirically performs better than with max product, so later on, we only com-
pare the results with local search using sum product initialization (LS). Best of the three initialization
methods, by starting at the hybrid algorithm results, the search algorithm in very few steps can find
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Figure 4: Approximate Log-Partition Function Scores on a 50-Node Tree (Left) and an 8*10 Grid (Right)
Graph Normalized By the Result of Hybrid Algorithm

the local optimum, which often happened to be the global optimum as well. In particular, it only
takes 1 or 2 steps of search in the 10-node chain case and 1 to 3 steps in the 50-node tree case.

Next, we experiment with the marginals estimation. Fig 2 shows the mean of KL-divergence on the
marginals for the three message-passing algorithms (each averaged over 100 random experiments)
compared to the true marginals ofp(z|x). Greedy search of [6] is not included since it only provides
MAP, not marginals. The x-axis shows the percentage of sum nodes in the graph. Just like in the
MAP case, our hybrid method consistently produces the smallest KL-divergence compared to others.

When the computation of the truth is intractable, the loglikelihood of the assignment can be approx-
imated by the log-partition function with Bethe approximation according to Sec. 3.2. Note that this
is exact on trees. Here, we use a 50-node tree with binary nodestates and8 × 10 grid with various
states1 ≤ |Ys| ≤ 20. On the grid graph, we apply tree-reweighted sum or max product [14, 13],
and our hybrid version based on TRBP. For the edge appearanceprobability in TRBP, we apply a
common approach that use a greedy algorithm to finding the spanning trees with as many uncovered
edges as possible until all the edges in the graph are coveredat least once. Even if the message-
passing algorithms are not guaranteed to converge on loopy graphs, we can still compare the best
result they provide after a certain number of iterations

Fig. 4 presents the results. In the tree case, as expected, using hybrid message-passing algorithms’s
result to initialize the local search algorithm performs the best. On the grid graph, the local search
algorithm initialized by the sum product results works wellwhen there are few max nodes, but as
the search space grows exponentially with the number of max nodes, so it takes hundreds of steps to
find the optimum. On the other hand, because the hybrid TRBP starts in a good area, it consistently
achieves the highest likelihood among all four algorithms with fewer extra steps.

6.2 Real-world Data

Table 1: Accuracy on the 1st, the 1st & 2rd
Angles

χ1 ALL SURFACE CORE
sum product 0.7900 0.7564 0.8325
max product 0.7900 0.7555 0.8336
hybrid 0.7910 0.7573 0.8336
TRBP 0.7942 0.7608 0.8364
hybrid TRBP 0.7950 0.7626 0.8359
χ1 ∧ χ2 ALL SURFACE CORE
sum product 0.6482 0.6069 0.7005
max product 0.6512 0.6064 0.7078
hybrid 0.6485 0.6051 0.7033
TRBP 0.6592 0.6112 0.7174
hybrid TRBP 0.6597 0.6140 0.7186

We then experiment with the protein side-chain pre-
diction dataset [23, 24] which consists a set of pro-
tein structures for which we need to find lowest en-
ergy assignment for rotamer residues. There are two
sets of residues: core residues and surface residues.
The core residues are the residues which are con-
nected to more than 19 other residues, and the sur-
face ones are the others. Since the MAP results are
usually lower on the surface residues than the core
residues nodes [24], we choose the surface residues
to be max nodes and the core nodes to be the sum
nodes. The ground truth is given by the maximum
likelihood assignment of the residues, so we do not
expect to have a better results on the core nodes, but
we hope that any improvement on the accuracy of the surface nodes can make up the loss on the
core nodes and thus give a better performance overall. As shown in Table 6.2, the improvements of
the hybrid methods on the surface nodes are more than the lossthe the core nodes, thus improving
the overall performance.
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