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Abstract

We consider a general inference setting for discrete piibsabgraphical models
where we seek maximum a posteriori (MAP) estimates for aetudfshe random
variables (max nodes), marginalizing over the rest (sunegpd\Ve present a hy-
brid message-passing algorithm to accomplish this. Theithgbgorithm passes
a mix of sum and max messages depending on the type of soudee(siom or
max). We derive our algorithm by showing that it falls outfas $olution of a par-
ticular relaxation of a variational framework. We furthosy that the Expectation
Maximization algorithm can be seen as an approximation toatgorithm. Ex-
perimental results on synthetic and real-world datasgtinat several baselines,
demonstrate the efficacy of our proposed algorithm.

1 Introduction

Probabilistic graphical models provide a compact and jplad representation for capturing com-
plex statistical dependencies among a set of random vasabi this paper, we consider the general
maximuma posteriori (MAP) problem in which we want to maximize over a subset ofitheables
(max nodes, denoted), marginalizing the rest (sum nodes, denofd This problem is termed
as the Marginal-MAP problem. A typical example is the minimBayes risk (MBR) problem [1]
where the goal is to find an assignmeénthich optimizes a losé(z, =) with regard to some usually
unknown truthz. Sincez is latent, we need to marginalize it before optimizing with respect to

Although the specific problems of estimating marginals astireting MAP individually have been
studied extensively [2, 3, 4], similar developments for there general problem of simultaneous
marginaland MAP estimation are lacking. More recently, [5] proposed d@hnd based optimizing

a variational objective on specific graph structures, aadisnultaneous development as the method
we propose in this paper (please refer to the supplementatgrial for further details and other
related work).

This problem is fundamentally difficult. As mentioned in [g, even for a tree-structured model,
we cannot solve the Marginal-MAP problem exactly in polyi unless? = N P. Moreover, it
has been shown [8] that even if a joint distributipfx, z) belongs to the exponential family, the
corresponding marginal distributigriz) = >~ p(z, z) is in generahot exponential family (with a
very short list of exceptions, such as Gaussian random fieldgs means that we cannot directly
apply algorithms for MAP inference to our task. Motivatedthis problem, we propose a hybrid
message passing algorithm which is both intuitive andfjestiaccording to variational principles.
Our hybrid message passing algorithm uses a mix of sum andmaagages with the message type
depending on the source node type.

Experimental results on chain and grid structured syrtlttta sets and another real-world dataset
show that our hybrid message-passing algorithm works &blgrcompared to standard sum-
product, standard max-product, or the Expectation-Mazation algorithm which iteratively pro-
vides MAP and marginal estimates. Our estimates can beefuirttproved by a few steps of local



search [6]. Therefore, using the solution found by our hyladgorithm to initialize some local
search algorithms largely improves the performance on &othracy and convergence speed, com-
pared to the greedy stochastic search method describedl ilVESalso give an example in Sec. 5
of how our algorithm can also be used to solve other pragpicgblem which can be cast under the
Marginal-MAP framework. In particular, the Minimum BayessR [9] problem for decomposable
loss-functions can be readily solved under this framework.

2 Problem Setting

In our setting, the nodes in a graphical model with discratelom variables are divided into two
sets:max andsumnodes. We denote a gragh= (V, E), V = X U Z whereX is the set of nodes
for which we want to compute the MAP assignmenax nodes), and~ is the set of nodes for which
we need the marginalsymnodes). Letz = {x1,..., 2} (x5 € Xs), 2 = {z1,..., 20} (25 € Z5)
be the random variables associated with the nodés amd Z respectively. The exponential family
distributionp over these random variables is defined as follows:

po(x,2) = exp[(0, ¢(z, 2)) — A(0)]

whereg(z, z) is the sufficient statistics of the enumeration of all nodggrsnents, and is the vec-

tor of canonical or exponential parameters(f)) = log >, . exp[(0, ¢(z, 2))] is the log-partition
function. In this paper, we consider only pairwise noderatéons and use standard overcomplete
representation of the sufficient statistics [10] (definednaljcator functionl later).

The general MAP problem can be formalized as the followingim&ation problem:

2" = arg max Zpg (z,2) (D)
with corresponding marginal probabilities of theodes, givern:*.
p(zs|z™) = Z p(zlz"), s=1,...,n )
Z\{z:}

Before proceeding, we introduce some notations for clarftgxposition: Subscripts, u, ¢, etc.
denote nodes in the graphical model, =, are sum and masandom variables respectively, asso-
ciated with some node v, can be either a sumx() or a max randomuaf;) variable, associated with
some node. N (s) is the set of neighbors of node X, Z;, V; are the state spaces from whiech
zs, Vs take values.

2.1 Message Passing Algorithms

The sum-product and max-product algorithms are standasdage-passing algorithms for inferring
marginal and MAP estimates respectively in probabilistapdical models. Their idea is to store
a belief state associated with each node, and iteratively passing messsg@een adjacent nodes,
which are used to update the belief states. It is known [14f tilese algorithms are guaranteed to
converge to the exact solution on trees or polytrees. Orylgogphs, they are no longer guaranteed
to converge, but they can still provide good estimates wioenerged [12].

In the standard sum product algorithm, the messegepassed from nodeto one of its neighbors
tis as follows:

Mis(vs) < K Z exp[0st (v, vg) + 04 (v})] H My (v}) 3)
vy EVy weEN (t)\s

wherex is a normalization constant. When the messages convergg).g, M., } does not change
for every pair of nodes andt, the belief (psuedomarginal distribution) for the nadis given by
ts(vs) = kexp{0s(vs)} [1se v(s) Mris(vs). The outgoing messages for max product algorithm have
the same form but with a maximization instead of a summatioBq. (3). After convergence, the
MAP assignment for each node is the assignment with the kighax-marginal probability.

On loopy graphs, the tree-weighted sum and max product A3¢dn help find the upper bound
of the marginal or MAP problem. They decompose the loopy lgiafp several spanning trees and
reweight the messages by the edge appearance probability.
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2.2 Local Search Algorithm

Eq (1) can be viewed as doing a variable eliminationfoodes first, followed by a maximization
overz. Its maximization step may be performed using heuristiccdechniques [7, 6]. Eq (2) can
be computed by running standard sum-product aveyiven the MAPz* assignments. In [6], the
assignment for the MAP nodes are found by greedily seardhiedpest neighboring assignments
which only differs on one node. However, the hybrid algarittve propose allows simultaneously
approximating both Eq (1) and Eq (2).

3 HYBRID MESSAGE PASSING

In our setting, we wish to compute MAP estimates for one seiofes and marginals for the rest.
One possible approach is to run standard sum/max produmtthigns over the graph, and find the
most-likely assignment for each max node according to theirmam of sum or max marginals
These néve approaches have their own shortcomings; for exampleowdh using standard max-
product may perform reasonably when there are many max nibdssvitably ignores the effect of
sum nodes which should ideally be summed over. This is anabtp the difference between EM
for Gaussian mixture models ari¢tmeans. (See Sec. 6)

3.1 ALGORITHM

We now present a hybrid message-passing algorithm whidepasim-style or max-style messages
based on the type of nodes from which the message origindtethe hybrid message-passing
algorithm, a sum node sends sum messages to its neighboesraag node sends max messages.
The type of message passed depends on the type of sourcannbtiee destination node.

More specifically, the outgoing messages from a source n@dassfollows:
e Message fronsum nodet to any neighbos:

Mis(vs) < K1 Z expl0si(vs, 21) + 04 (21)] H My (1) 4)
2 ez wEN(t)\s

e Message fronmax nodet to any neighbos:

Mis(vg) < ko max exp|Ost (vs, 7}) + 0:(x})] H M () (5)
frEt weN(t)\s

andx1,k2 are normalization constants. Algo 1 shows the procedure toydrid message-passing.

Algorithm 1 Hybrid Message-Passing Algorithm

Inputs: GraphG = (V, E),V = X U Z, potentiald,, s € V andf,, (s,t) € E.
1. Initialize the messages to some arbitrary value.
2. Foreach node € V in G, do the following until messages converge (or maximum numbe
of iterations reached)
e If s € X, update messages by Eq.(5).
e If s € Z, update messages by Eq.(4).
3. Compute the local belief for each noge
s (ys) = K exp{fs(vs)} HteN(s) Mis(vs)
4. Forallz, € X, returnarg max,_ e x. fis(Zs)
5. Forallz, € Z, returnu,(z,).

When there is only a single type of node in the graph, the hyddgdrithm reduces to the standard
max or sum-product algorithm. Otherwise, it passes diffeneessages simultaneously and gives an
approximation to the MAP assignment on max nodes as wellas#rginals on sum nodes. On
the loopy graphs, we can also apply this scheme to pass hybedeweighted messages between
nodes to obtain marginal and MAP estimates. (See Appendixi®supplementary material)

'Running the standard sum-product algorithm and choosing the maximetidikd assignment for the
max nodes is also called maximum marginal decoding [15, 16].



3.2 VARIATIONAL DERIVATION

In this section, we show that the Marginal-MAP problem carireeed under a variational frame-
work, and the hybrid message passing algorithm turns owt sodolution of it. (a detailed derivation
is in Appendix A of the supplementary material). To see tisconstruct a new graghx with s’
assignments fixed to lee X = X} x --- x X}, so the log-partition functiod (%) of the graph
G,-( is

A(fz) =log Y " p(X, 2) + log A(0) = log p(X) + const (6)

As the constant only depends on the log-partition functibthe original graph and does not vary
with different assignments of MAP node$(fx) exactly estimates the log-likelihood of assignment
X. Thereforeargmaxg y log p(X) = argmaxycy A(fx). Moreover,A(fx) can be approximated
by the following [10]:
A(ei) ~ sup <07 /~L> + HBethe (,U/) (7)
pneM(Gg)

whereM (Gx) is the following marginal polytope of graphi,:
s (2s), st (vs, v ): marginals withx fixed to its assignment

(1 ifa, =2 ®)
ps(rs) =93 5 else

Recall,vs stands forxs or z;. Hpene () is the Bethe energy of the graph:

HBethe(/L) - ZHS(,LLS) - Z Ist(ﬂst)7Hs(/Ls) = — Z ,us(vs)log,us(vs)

(s,t)€E vsEVs

st (US7 Ut) (9)
ot (s = st(vs, v¢) log ————=
st(fest) Z ot (vs, ve) log s (vs) e (ve)

(vs,0L) EVs X Vi

For readability, we us@sum, itmax t0 Subsume the node and pairwise marginals for sum/max nodes
andsum-—max Mmax—sum are the pairwise marginals for edges between differenstgpaodes. The
direction here is used to be consistent with the distinatitihe constraints as well as the messages.

Solving the Marginal-MAP problem is therefore equivalemtsblving the following optimization
problem:

max  sup (0, u) + Hpewne(pt) =  sup sup (0, 1) + Hpethe (1) (10)
xeX lLoIherGJW(G ) Mmax €Mz /J«otherGM(G;()
lother CONtains all other node/pairwise marginals except.. The Bethe entropy terms can be
written as {{ is the entropy and is mutual information)

HBEthe( ) Hﬂmax + Hllfsum - Iﬂmaxﬁﬂmax - Iﬂsumﬁﬂsum - Iﬂmax‘ﬁisum - Illfsum‘)limax

If we force to satisfy the second condition in (8), the emyropmax nodedd ., = Hq(us) = 0,
Vs € X and the mutual information between max nodgs, — 1. = Ist(zs,2¢) = 0, Vs, t € X.
For mutual information between different types of nodescae either forcers to have integral so-
lutions, or relaxzs to have non-integral solution, or relas on one directioh In practice, we relax
the mutual information on the message from sum nodes to mdasn@o the mutual information

on the other directiod .. om = Lst(xs,2) = E(ms,zt)exsxzt pst(xs, z¢) log 7/:(5;2“)’;;2(2) =
donez, Mst(¥, 2¢) log % =0,Vs € X,t € Z, wherez* is the assigned state ofat node
s. Finally, we only require sum nodes to satisfy normalizagmd marginalization conditions, the

entropy for sum nodes, mutual information between sum naates from sum node to max node
can be nonzero.

The above process relaxes the polytdpéGx) to be Mx x L, ( %), Where
. pa(za) = L pa(s) = Liff 25 = &,
Do, Mst(vs, 2¢) = pus(vs),
Lz(Gi) =qpu=>0 Zzs Mst(ZSaUt) = Ut(vt)
prst (s, 20) = pue(20) iff 2o = 2o,
st (s, ) = 1iff x5 = Ts, 0 = Ty

2This results in four different relaxations for different combinationsnefssage types and the hybrid algo-
rithm performed empirically the best.



This analysis results in the following optimization praile

sup sup (0, 1) + H (psum) — I (psum—sum) — 1 (Hsum—max)
Pmax €Mz pothersE M (Gz)

Further relaxing:;s to have non-integral solutions, define

Do, Bs(vs) =1,
L(G) = >0 X, nst(vs,ve) = ps(vs),
Finally we get 2v, pot (s, 00) = pe(ve)
sup <,u, 9> + H(,usum) - I(,Usum—>sum) - I(Msum—>max) (11)
neL(G)

SoM; x M, (Gz) € Mz x L.(Gz) C L(G). UnfortunatelyM; x M, (G3) is not guaranteed to be
convex and we can only obtain an approximate solution to tbblem defined in Eq (11). Taking
the Lagrangian formulation, for annode, the partial derivative of the Lagrangian with respect
us(xs), s € X keeps the same form as in max product derivation[10], andlithations are identical
for us(zs), s € Z and pairwise psuedo-marginals, so the hybrid messagé@gadgorithm provides

a solution to Eq (11) (see Appendix A of the supplementaryenietfor a detailed derivation).

4 Expectation Maximization

Another plausible approach to solve the Marginal MAP proble by the Expectation Maximiza-
tion(EM) algorithm [17], typically used for maximum likélood parameter estimation in latent vari-
able models. In our setting, the variablgsorrespond to the latent variables. We now show one
way of approaching this problem by applying the sum-prodinct max-product algorithms in the E
and M step respectively. To see this, let us first défine

F(p,x) = Ellogp(z, 2)] + H(p(2)) 12
whereH (p) = —E;[log p(2)].

Then EM can be interpreted as a joint maximization of the fioncF' [18]: At iteration ¢, for
the E-step(*) is set to be the that maximizesF (p,z(*~)) and for the M-stepz® is the z

that maximizesF (5", z). Given F, the following two propertigsshow that jointly maximizing
function F' is equivalent to maximizing the objective functiptw) = > p(z, 2).

1. With the value of: fixed in functionF, the unique solution to maximizing(p, ) is given
by p(z) = p(z|x).
2. If p(z) = p(z|z), thenF'(p, z) = log p(x) = log 3", p(z, 2).

4.1 Expectation Maximization via Message Passing

Now we can derive the EM algorithm for solving the MarginalAR problem by jointly maximizing
function F. In the E-step, we need to estimaie) = p(z|x) givenz. This can be done by fixing
values at their MAP assignments and running the sum-pragotithm over the resulting graph:

The M-step works by maximizing,, . | z) log pe(z, 2), wherez is the assignment given by the pre-
vious M-step. This is equivalent to maximizifig .., .- | z) log pe( | 2), as thdog py(z) termin the
maximization is independent of max, E.,, . | ) logpe(z | 2) = max, Y p(z | Z)(0, ¢(z, 2)),
which in the overcomplete representation [10] can be apprated by

Z 95;1' + Z /Lt;jest;ij Hs;i(xs) + Z Z ast;ij]lst;ij (7537 xt) + C

seX,i teZ,j (s,t)EE,s,teX (i,5)

whereC' subsumes the terms irrelevant to the maximization aver; is the psuedo-marginal of
nodet givenz®. Then, the M-step amounts to running the max product algorivith potentials on
x nodes modified according to Eq. (13). Summarizing, the EMrétlgm for solving marginal-MAP
estimation can be interpreted as follows:
e E-step Fix zs to be the MAP assignment value from iterat{@n- 1) and run sum product
to get beliefs on sum nodes, sayu., t € Z.

*By directly applying Jensen’s inequality to the objective functiomx, log > p(z, 2)

“The proofs are straightforward following Lemma 1 and 2 in [18] pade #ore details are in Appendix
B of the supplementary material

°A detailed derivation is in Appendix B.4 of the supplementary material



o M-step: Build a new graph = (V, E) only containing the max node$/=X andE =
{(s t)|V(s,t) € E,s,t € X}. For each max node in the graph, set its potential as
Osi = Oui + 32, Ostijuzy, Wheret € Z and(s,t) € E. Ost:ij = Osti5 V(s,t) € E. Run
max product over this new graph and update the MAP assignment

4.2 Relationship with the Hybrid Algorithm

Apart from the fact that the hybrid algorithm passes diifénmessages simultaneously and EM
does it iteratively, to see the connection with the hybrgbathm, let us first consider the message
passed in the E-step at iteratibnas are fixed at the last assignment which maximizes the message

at iterationk — 1, denoted ag™* here. TherL’f_l) are the messages computed at iterakion 1.

M (z) = ri{explbu(zo 27) + 00w [ M~V @i)) (13)
u€N(t)\s
Now assume there exists an iterative algorithm which, ah ét@cation, computes the messages
used in both steps of the message-passing variant of the gdvithim, denoted\/,,. Eq (13) then
becomes

]V[t(sk)(zs) ==K max{exp[ st(zs, 7}) + 0y (x H M (k—1) xy)}
uEN(t)\s
So the max nodeg:{s) should pass the max messages to its neighla) (vhich is what the hybrid
message-passing algorithm does.

In the M-step for EM (as discussed in Sec. 4), all the sum nodee removed from the graph
and the parameters of the adjacent max nodes are modifiet.ass 0;.; + Ej Ostiijtte;j. [ 1S
computed by the sum product at the E-step of iteratioand these sum messages are used (in form
of the marginalg:,;) in the subsequent M-step (with the sum nodes removed). i#awa max node
may prefer different assignments according to differegimaoring nodes. With such uncertainties,
especially during the first a few iterations, it is very lik¢hat making hard decisions will directly
lead to the bad local optima. In comparison, the hybrid mngssemssing algorithm passes mixed
messages instead of making deterministic assignmentgimiteaation.

5 MBR Decoding

Most work on finding “best” solutions in graphical modelsidises on the MAP estimation problem:
find thex that maximizeg,(x). In many practical applications, one wishes to findratihat min-
imizes some risk, parameterized by a given loss function. Thisésnimimum Bayes risk (MBR)
setting, which has proven useful in a number of domains, siscépeech recognition [9], natural
language parsing [19, 20], and machine translation [1]. YWegaven a loss functiof(z, Z) which
measures thioss of & assuminge is the truth. We assume losses are non-negative. Giverosss |
function, the minimum Bayes risk solution is the minimizéEg (14):

MBRy = arg mln E,pll(z,%)] = arg mmZp (z, ) (14)

We now assume tha@tdecomposes over the structureaofln particular, suppose that(z, &) =

> ece Uz, 2c), whereC is some set of cliques im, andz. denotes the variables associated with
that clique. For example, for Hamming loss, the cliques emply the set of pairs of vertices of the
form (z;, 2;), and the loss simply counts the number of disagreement G&eompositionality is
widely assumed in structured prediction algorithms [2], 22

Assumel.(z,2') < L Ve,z,2’. Thereforel(xz,2’) < |C|L. We can then expand Eq (14) into the
following:

MBRy = arg mjan(a:)E(m, z) = argmaXZp(m)(\C\L —l(z,2"))
= arg mngeXp (0, x) + log Z[L —l(xe, )] — A(O)
This resulting expression has exactly the same form as th®-i#h-marginal problem, where
z is the variable being marginalized asdbeing the variable being maximized. Fig. 1 shows a
simple example of transforming a MAP lattice problem intdBR problem under Hamming loss.

Therefore, we can apply our hybrid algorithm to solve the MBBblem.
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Figure 1: The Augmented Model For Solvingigure 2: Comparison of Various Algorithms For
The MBR Problem Under Hamming Loss ovéfiarginals on 10-Node Chain Graph
a 6-node simple lattice

6 EXPERIMENTS

We perform the experiments on synthetic datasets as wellraalavorld protein side-chain pre-
diction dataset [23], and compare our hybrid messagefmasdgorithm (both its standard belief
propagation and the tree-reweighted belief propagati®B{) versions) against a number of base-
lines such as the standard sum/max product based MAP essintd¥l, TRBP, and the greedy local
search algorithm proposed in [6].

6.1 Synthetic Data

For synthetic data, we first take a 10-node chain graph withing splits of sum vs max nodes,
and random potentials. Each node can take one of the tws q@tE). The node and the edge
potentials are drawn from AUFORM(0,1) and we randomly pick nodes in the graph to be sum
or max nodes. For this small graph, the true assignment ipuotable by explicitly maximizing
p@) = >, p(x,2) = 23, ey ¥s(vs) [s.0ep ¥st(vs, v), whereZ is some normalization
constant and, (vs) = exp 6, (vs).

First, we compare the various algorithms on the MAP assignisné\ssume that the aforementioned

maximization gives assignmert = (z7,..., ) and some algorithm gives the approximate as-
signmentx = (z1,...,xz,). The metrics we use here are thd loss and the Hamming loss.
0/1 Loss on a 10—node chain graph Hamming loss on a 10-node chain graph
0.7 0.25

- ©- max+local search - ©- max+local search
0.5- - 9~ sum+local search - ©- sum+local search
- o hybrid+local search| - ©- hybrid+local search

Error rate
Error rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of sum nodes

Figure 3:Comparison of Various Algorithms For MAP Estimates on 10-Node Chaaptar0-1 Loss (Left),
Hamming Loss (Right)

Fig. 3 shows the loss on the assignment of the max nodes. figtive, as the number of sum nodes
goes up, the accuracy of the standard sum-product basethésti um) gets better, whereas the
accuracy of standard max-product based estimati@x)(worsens. However, our hybrid message-
passing algorithmhiybrid), on an average, results in the lowest loss compared to tiee baselines,
with running times similar to the sum/max product algorithm

We also compare a stochastic greedy search approach aesarifg] initialized by the results of
sum/max/hybrid algorithmsgm/max/hybrid+local search). As shown in [6], local search with sum
product initialization empirically performs better thaitlvmax product, so later on, we only com-
pare the results with local search using sum product iintieibn LS). Best of the three initialization
methods, by starting at the hybrid algorithm results, tfeecfealgorithm in very few steps can find
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Figure 4: Approximate Log-Partition Function Scores on a 50-Node Tree (Leff)an8*10 Grid (Right)
Graph Normalized By the Result of Hybrid Algorithm

the local optimum, which often happened to be the globalhamwth as well. In particular, it only
takes 1 or 2 steps of search in the 10-node chain case and 1eps3is the 50-node tree case.

Next, we experiment with the marginals estimation. Fig 2ghthe mean of KL-divergence on the
marginals for the three message-passing algorithms (eachged over 100 random experiments)
compared to the true marginalsyaf:|x). Greedy search of [6] is not included since it only provides
MAP, not marginals. The x-axis shows the percentage of sutesn the graph. Just like in the
MAP case, our hybrid method consistently produces the sstdflL-divergence compared to others.

When the computation of the truth is intractable, the lodiiieod of the assignment can be approx-
imated by the log-partition function with Bethe approxiimataccording to Sec. 3.2. Note that this
is exact on trees. Here, we use a 50-node tree with binary statles an@ x 10 grid with various
statesl < |V,| < 20. On the grid graph, we apply tree-reweighted sum or max miofdé, 13],
and our hybrid version based on TRBP. For the edge appeapaolability in TRBP, we apply a
common approach that use a greedy algorithm to finding thenspgitrees with as many uncovered
edges as possible until all the edges in the graph are coatiledst once. Even if the message-
passing algorithms are not guaranteed to converge on lo@mhg, we can still compare the best
result they provide after a certain number of iterations

Fig. 4 presents the results. In the tree case, as expectad,hybrid message-passing algorithms’s
result to initialize the local search algorithm performe tiest. On the grid graph, the local search
algorithm initialized by the sum product results works welien there are few max nodes, but as
the search space grows exponentially with the number of madg$) so it takes hundreds of steps to
find the optimum. On the other hand, because the hybrid TR&fssh a good area, it consistently

achieves the highest likelihood among all four algorithnithiewer extra steps.

6.2 Real-world Data

We then experiment with the protein side-chain pre-

diction dataset [23, 24] which consists a set of pra, 1 1. accuracy on the 1st, the 1st & 2rd
tein structures for which we need to find lowest €kngles ' '

ergy assignment for rotamer residues. There are two™, |

] ! - ALL  SURFACE CORE
sets of residues: core residues and surface residues.sum product  0.7900 0.7564 0.8325
i i i _ max product 0.7900 0.7555 0.8336
The core residues are the re5|du_es which are con hybrid 07910 07573 08336
nected to more than 19 othgar residues, and the sur- trpgp 07942  0.7608 0.8364
face ones are the others. Since the MAP results are hybrid TRBP  0.7950 0.7626  0.8359
usually lower on the surface residues than the core ;(ulm/\pi(c?duct /SLeL4 - SUROFQOCGEQ C(E'))R;I(EJOS
residues nodes [24], we choose the surface residues oy product 06512 06064 07078
to be max nodes and the core nodes to be the sum hybrid 0.6485 0.6051 0.7033
H H H TRBP 0.6592 0.6112 0.7174
nodes. The ground truth is given by the maximum hybrid TRBP 06507 06140  0.7186

likelihood assignment of the residues, so we do not
expect to have a better results on the core nodes, but

we hope that any improvement on the accuracy of the surfadesncan make up the loss on the
core nodes and thus give a better performance overall. AgrshioTable 6.2, the improvements of
the hybrid methods on the surface nodes are more than théhlsise core nodes, thus improving

the overall performance.
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