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Abstract 

In this paper, we consider the problem of compressed sensing where the goal is to recover all sparse 
vectors using a small number offixed linear measurements. For this problem, we propose a novel 
partial hard-thresholding operator that leads to a general family of iterative algorithms. While one 
extreme of the family yields well known hard thresholding algorithms like ITI and HTP[17, 10], the 
other end of the spectrum leads to a novel algorithm that we call Orthogonal Matching Pursnit with 
Replacement (OMPR). OMPR, like the classic greedy algorithm OMP, adds exactly one coordinate 
to the support at each iteration, based on the correlation with the current residnal. However, unlike 
OMP, OMPR also removes one coordinate from the support. This simple change allows us to prove 
that OMPR has the best known guarantees for sparse recovery in terms of the Restricted Isometry 
Property (a condition on the measurement matrix). In contrast, OMP is known to have very weak 
performance guarantees under RIP. Given its simple structore, we are able to extend OMPR using 
locality sensitive hashing to get OMPR-Hasb, the first provably sub-linear (in dimensionality) al­
gorithm for sparse recovery. Our proof techniques are novel and flexible enough to also permit the 
tightest known analysis of popular iterative algorithms such as CoSaMP and Subspace Pursnit. We 
provide experimental results on large problems providing recovery for vectors of size up to million 
dimensions. We demonstrste that for large-scale problems our proposed methods are more robust 
and faster than existing methods. 

1 Introduction 

We nowadays routinely face high-dimensional datasets in diverse application areas such as biology, astronomy, and 
finance. The associated curse of dimensionality is often alleviated by prior knowledge that the object being estimsted 
has some structore. One of the most natorsl and well-stodied structural assumption for vectors is sparsity. Accordingly, 
a huge amount of recent work in machine learning, statistics and signal processing has been devoted to finding better 
ways to leverage sparse structures. Compressed sensing, a new and active branch of modem signal processing, deals 
with the problem of designing measurement matrices and recovery algorithms, such that almost all sparse signals can 
be recovered from a smalI number of measurements. It has important applications in imsging, computer vision and 
machine learning (see, for example, [9,24, 14]). 

In this paper, we focus on the compressed sensing setting [3, 7] where we want to design a measurement matrix 
A E R=xn such that a sparse vector x* E Rn with Ilx*llo := I BUpp(X*)I ::; k < n can be efficiently recovered from 
the measurements b = Ax* E R=. Initial work focused on various random ensembles of matrices A such that, if A 
was chosen randomly from that ensemble, one would be able to recover all or almost all sparse vectors x* from Ax*. 
Candes and Tao[3] isolated a key property called the restricted Isometry property (RIP) and proved that, as long as the 
measurement matrix A satisfies RIP, the true sparse vector can be obtained by solving an i,-optimization problem, 

min Ilxll, S.t. Ax = b. 

The above problem can be easily formulated as a linear program and is hence efficiently solvable. We recall for the 
reader that a matrix A is said to satisfY RIP of order k if there is some Ok E 10,1) such that, for all x with Ilxllo ::; k, 
we have 
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Several random matrix ensembles are known to satisfY 00> < {} with high probability provided one chooses 
m ~ 0 (~ log ~) measurements. It was shown in [2] that i,-minimization recovers all k-sparse vectors provided A 
satisfies t.k < 0.414 although the conditioohas been recently intproved to 02k < 0.473 [11]. Note that, in compressed 
sensing, the goal is to recover all, or most, k-sparse signals using the same measurement matrix A. Hence, weaker 
cooditioos such as restricted coovexity [20] studied in the statistical literature (where the aint is to recover a single 
sparse vector from noisy linear measurements) typically do not suffice. In fact, if RIP is not satisfied then multiple 
sparse vectors x can lead to the sante observatioo b, hence making recovery of the true sparse vector intpossible. 

Based on its RIP guarantees, i,-minimizatioo can guarantee recovery using just O(k log(n/ k») measurements, but it 
has been observed in practice that i,-minimization is too expensive in large scale applications [8], for example, when 
the dimensionality is in the millions. This has sparked a huge interest in other iterative methods for sparse recovery. 
An early classic iterative method is Orthogooal Matching Pursuit (OMP) [21, 6] that greedily chooses elements to add 
to the support. It is a natural, easy-to-intplement and fast method but unfortuoately lacks stroug theoretical guarantees. 
Indeed, it is known that, if run for k iterations, OMP cannot uoiformly recover all k-sparse vectors assumiug RIP 
cooditioo of the form 02k :'0 IJ [22, 18]. However, Zhang [26] showed that OMP, if run for 30k iterations, recovers the 
optimal solution when 03'k :'0 1/3; a significantly more restrictive cooditioo than the ones required by other methods 
like i,-minimization. 

Several other iterative approaches have been proposed that include Iterative Soft Thresholding (1ST) [17], Iterative 
Hard Thresholding (!BT) [I], Compressive Santpling Matching Pursuit (CoSaMP) [19], Subspace Pursuit (SP) [4], 
Iterative Thresholding with Inversion (IT!) [16], Hard Thresholding Pursuit (HTP) [10] and many others. In the family 
ofiterative hard thresholding algorithms, we can identifY two major subfamilies [17]: one- and two-stage algorithms. 
As their nantes suggest, the distiuctioo is based on the number of stages in each iteration of the algorithm. One-stage 
algorithms such as IHT, m and HTP, decide on the choice of the next support set and then usually solve a least 
squares problem on the updated support. The one-stage methods always set the support set to have size k, where k 
is the target sparsity level. On the other hand, two-stage algorithms, notable examples being CoSaMP and SP, first 
enlarge the support set, solve a least squares 00 it, and then reduce the support set back again to the desired size. A 
secood least squares problem is then solved 00 the reduced support. These algorithms typically enlarge and reduce 
the support set by k or 2k elements. An exceptioo is the two-stage algorithm FoBa [25] that adds and removes single 
elements from the support. However, it differs from our proposed methods as its analysis requires very restrictive RIP 
cooditioos (08k < 0.1 as quoted in [14]) and the connection to locality sensitive hashing (see below) is not made. 
Another algorithm with replacentent steps was studied by Shalev-Shwartz et al. [23]. However, the algorithm and the 
settiug under which it is analyzed are different from ours. 

In this paper, we present and provide a unified analysis for a family of one-stage iterative hard thresholding algorithms. 
The family is parameterized by a positive integer I :'0 k. At the extrente value I ~ k, we recover the algorithm ITIIHTP. 
At the other extrente k ~ 1, we get a novel algorithm that we call Orthogonal Matching Pursuit with Replacement 
(OMPR). OMPR can be thought of as a sintple modification of the classic greedy algorithm OMP: instead of sintply 
adding an element to the existiug support, it replaces an existiug support element with a new one. Surprisingly, this 
change allows us to prove sparse recovery under the condition 02k < 0.499. This is the best 02k based RIP condition 
under which any method, including i, -minimization, is (currently) known to provably perform sparse recovery. 

OMPR also lends itself to a faster intplententatioo using locality sensitive hashing (LSH). This allows us to provide 
recovery guarantees using an algorithm whose run-time is provably sub-linear in n, the number of dimensions. An 
added advantage of OMPR, unlike many iterative methods, is that no careful tuning of the step-size parameter is 
required even under noisy settiugs or even when RIP does not hold. The default step-size of 1 is always guaranteed to 
converge to at least a local optimum. 

Finally, we show that our proof techniques used in the analysis of the OMPR family are useful in tightening the 
analysis of two-stage algorithms, such as CoSaMP and SP, as well. As a result, we are able to prove better recovery 
guarantees for these algorithms: 04k < 0.35 for CoSaMP, and 03k < 0.35 for SP. We hope that this unified analysis 
sheds more light on the interrelationships between the various kinds of iterative hard thresholding algorithms. 

In summary, the contributions of this paper are as follows . 

• We present a family of iterative hard thresholding algorithms that on one end of the spectrum includes ex­
isting methods such as ITIIHTP while on the other end gives OMPR. OMPR is an intproventent over the 
classical OMP method as it enjoys better theoretical guarantees and is also better in practice as shown in our 
experiments . 

• Unlike other intprovements over OMP, such as CoSaMP or SP, OMPR changes ouly ooe elentent of the 
support at a tinte. This allows us to use Locality Sensitive Hashing (LSH) to speed it up resultiug in the first 
provably sub-linear (in the ambient dimensionality n) time sparse recovery algorithm. 
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Algorithm 1 OMPR 

1: Input: matrix A, vector b, sparsity level k 
2: Parameter: s1ep size 1/ > 0 
3: Initialize Xl S.t I supp(xl)1 = k, h = supp(XI) 
4: for t = 1 to T do 
5: zHI <- x' + 1/AT(b - Ax') 
6 . I HII : Jt+l +- argmaxj~It Zj 

7: J'+1 <- I, U {iHI} 
8: yt+l +- H (zt+l) 

k Jt +l 
9: It+1 <- supp(y'+1) 

10 xHI A \b xHI 0 : [Hl +- It+l , it+l +-

11: end for 

Algorithm 2 OMPR (I) 

1: Input: matrix A, vector b, sparsity level k 
2: Parameter: step size 1/ > 0, replacement budget 1 
3: Initialize Xl S.t I supp(xl)1 = k, h = supp(xl ) 
4: fort = ltoTdo 
5: zHI <- x' + 1/AT(b - Ax') 
6: tOPHI <- indices of top 1 elements of Iz};'"11 

7: J'+1 <- I, U tOPHI 

8: yt+l +- Hk (z~~:J 
9: IHI <- supp(yHI) 

10: XHI <- A \b x'.+1 <- 0 I t +1 It+l' 1t+l 
11: end for 

• We provide a general proof for all the algorithms in our partial hard thresholding based family. In particular, 
we can guarantee recovery using OMPR, under both noiseless and noisy settings, provided 02' < 0.499. 
This is the least restrictive 02. cooditioo under which any efficient sparse recovery method is known to work. 
Furthermore, our proof technique can be used to provide a general theorem that provides the least restrictive 
known guarantees for all the two-stage algorithms such as CoSaMP and SP (see Appendix D). 

All proofs omitted from the main body of the paper can be found in the appendix. 

2 Orthogonal Matching PUl"lIuit with Replacement 
Orthogonal matching pursuit (OMP), is a classic iterative algorithm for sparse recovery. At every stage, it selecta a 
coordinate to include in the current support set by maximizing the inner product between columns of the measurement 
matrix A and the current residnal b - Ax'. Doce the new coordinate has been added, it solves a least squares problem 
to fully miuimize the error on the current support set As a result, the residnal becomes orthogonal to the columos of 
A that correspond to the current support set. Thus, the least squares s1ep is also referred to as orthogonalization by 
some authors [5]. 

Let us briefly explain some of our notation. We use the MATI..AB notation: 

A\b:= argmin IIAx - bl1 2 • 
z 

The hard thresholding operator H.O sorts its argument vector in decreasing order (in absolute value) and retains 
ooly the top k entries. It is defined formally in the next sectioo. Also, we use subscripts to denote sub-vectors and 
submatrices, e.g. if I <;; Inl is a set of cardinality k and x ERn, XI E R' denotes the sub-vector of X indexed by I. 
Similarly, AI for a matrix A E Rmx n denotes a sub-matrix of size m x k with columns indexed by I. The complement 
of set I is denoted by I and x I denotes the subvector not indexed by I. The support (indices of non-zero entries) of a 
vector x is denoted by supp(x). 

Our new algorithm called Orthogooal Matching Pursuit with Replacement (OMPR), shown as Algorithm 1, differs 
from OMP in two respects. First, the selection of the coordinate to include is based not just on the magnitude of entries 
in AT (b - Ax') but instead on a weighted combination x' + 1/AT (b - Ax') with the s1ep-size 1/ cootrolling the relative 
importance of the two addends. Second, the selected coordinate replaces one of the existing elements in the support, 
namely the one corresponding to the minimum magnitude entry in the weighted combination mentioned above. 

Doce the support IHI of the next iterate has been determined, the actna1 iterate XHI is obtained by solving the least 
squares problem: 

X
HI = argmin IIAx - bli2 . 

x: supp(z)=It+l 

Note that if the matrix A satisfies RIP of order k or larger, the above problem will be well conditioned and can be 
solved quickly and reliably using an iterative least squares solver. We will show that OMPR, uulike OMP, recovers any 
k-sparse vector under the RIP based cooditioo 02. :<:; 0.499. This appears to be the least restrictive recovery condition 
(i.e., best known coodition) under which any method, be it basis pursuit (ll-minimizatioo) or some iterative algorithm, 
is guaranteed to recover all k-sparse vectors. 

In the literature on sparse recovery, RIP based cooditioos of a different order other than 2k are often provided. It is 
seldom possible to directly compare two conditions, say, one based on 62• and the other based on 63 •• Foucart [10] has 
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given a heuristic to compare such RIP conditions based on the number of samples it takes in the Gaussian ensemble 
to satisfy a given RIP condition. This heuristic says that an RIP condition of the form lic' < 9 is less restrictive if the 
ratio c/92 is smaller. For the OMPR condition Ii,. < 0.499, this ratio is 2/0.4992 "" 8 which makes it heuristically 
the least restrictive RIP condition for sparse recovery. The following summarize our main results on OMPR. 

Theorem 1 (Noiseless Case). Suppose the vector x* E IRn is k-sparse and the matrix A satisfies 1i2• < 0.499 and 
Ii, < 0.002. Then OMPR converges to an E approximate solution (i.e. 1/211Ax - bl1 2 ~ E) from measurements 
b ~ Ax* in O(klog(k/E)) iterations. 

Theorem 2 (Noisy Case). Suppose the vector x* E IRn is k-sparse and the matrix A satisfies 1i2• < 0.499 and 
Ii, < 0.002. Then OMPR converges to a (C,E) approximate solution (i.e. 1/211Ax - bll' ~ ~llell' + E) from 
measurements b ~ Ax* + e in O(k log((k + IleI1 2)/E)) iterations. Here C > 1 is a constant dependent only on 1i2 •. 

The above theorems are special cases of our convergence results for a family of algorithms that contains OMPR as a 
special case. We now tum our attention to this family. We note that the condition 1i2 < 0.002 is very mild and will 
typically hold for standard random matrix ensembles as soon as the number of rows sampled is larger than a fixed 
universal constant 

3 A New Family of Iterative Algorithms 
In this section we show that OMPR is one particular member of a family of algorithms parameterized by a single 
integer 1 E {I, ... , k}. The I-th member of this family, OMPR (I), showo in Algorithm 2, replaces at most 1 elements 
of the curreot support with new elements. OMPR corresponds to the choice 1 ~ 1. Hence, OMPR and OMPR (1) 
refer to the same algorithm. 

Our first result in this section conoects the OMPR family to hard thresholding. Given a set I of cardinality k, define 
the partial hard thresholding operator 

Hk (z; I, I):~ argmin Ily - zll . (I) 
hlo:S;k 

I supp(y)\II5:l 

As is clear from the definition, the above operator tries to find a vector V close to a given vector z under two constraints: 
(i) the vector V should have bounded support (1lvllo ~ k), and (ii) its support should not include more than 1 new 
elements outside a given support I. 

The name partial hard thresholding operator is justified because of the following reasoning. When 1 ~ k, the constraint 
I supp(Y)\I1 ~ 1 is trivially implied by IIYllo ~ k and hence the operator becomes independent of!. In fact, itbecomes 
identical to the standard hard thresholding operator 

H. (z; I, k) ~ H. (z) :~ argmin Ily - zll . 
11.1109 

(2) 

Even though the definition of Hk (z) seems to involve searching through GJ subsets, it can in fact be computed 
efficiently by simply sorting the vector z by decreasing absolute value and retaming the top k entries. 

The following result shows that even the partial hard thresholding operator is easy to compute. In fact, lines 6-8 in 
Algorithm 2 precisely compute H. (zt+1; It, I). 

Proposition 3. Let III ~ k and z be given. Then Y ~ H. (z;I, I) can be computed using the sequence of operations 

top ~ indices of top 1 elements oflzll, J ~ I U top, V ~ Hk (ZJ) . 

The proof of this proposition is straightforward and elementary. However, using it, we can now see that the OMPR (I) 
algorithm has a simple conceptoa1 s1ructore. In each iteration (with current iterate x' having support It ~ supp(xt», 
we do the following: 

1. (Gradient Descent) Fonn zHI ~ xt - '1AT(Axt - b). Note that AT(Axt - b) is the gradient of the objective 
function ~IIAx - bll' at x'. 

2. (partial Hard Thresholding) Form VH1 by partially hard thresholding zHI using the operator H. (.; It, I). 
3. (Least Squares) Form the next iterate XHI by solving a least squares problem on the support IHI ofyHI. 

A nice property enjoyed by the entire OMPR family is guaranteed sparse recovery under RIP based conditions. Note 
from below that the condition under which OMPR (I) recovers sparse vectors becomes more restrictive as I increases. 
This could be an artifact of our analysis, as in experiments, we do not see any degradation in recovery ability as I is 
increased. 
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Theorem 4 (Noiseless Case). Suppose the vector x' E IRn is k-sporse. Then OMPR (I) converges to an < approxima­
tion solution (i.e. 1/211Ax - bl12 :5 <)from measurements b = Ax* in O( ~ log(k/<» iterations provided we choose a 
step size 1'/ that satisfies 1'/(1 + 02.) < 1 and 1'/(1 - 02.) > 1/2. 
Theorem S (Noisy Case). Suppose the vector x' E IRn is k-sparse. Then OMPR (I) converges to a (C, <) approximate 
solution (i.e., 1/211Ax - bl1 2 :5 t IIell2 + <) from measurements b = Ax' + e in O( t log«k + IleI1 2)1<) iterations 
provided we choose a step size 1'/ that satisfies 1'/(1 + 02,) < 1 and 1'/(1 - 02.) > 1/2. Here C > 1 is a constant 
dependent only on 02., 02 •. 
Proof Here we provide a rough sketch of the proof of Theorem 4; the complete proof is giveo in Appeodix A. 

Our proof uses the following crucial observatioo regarding the structure of the vector zH1 = x' - 1'/AT (Ax' - b) . 
Due to the least squares step of the previous iteration, the curreot residual Ax' - b is orthogoual to columns of AI,. 
This meaos that 

ZH1 - x' z~+1 = -nA'!' (Ax' - b) . It - It' It " It (3) 

As the algorithm proceeds, elemeots come in and move out of the curreot set I,. Let us give names to the set offound 
and lost elements as we move from I, to 1'+1: 

(found): F, = IH1 \I" 

Heoce, using (3) and updates for YH1: Y~;' = Z~;' = -1'/A~,A(x' - x'), and Z~;' = xL. Now let J(x) = 

1/211Ax - b11 2, theo using upper RIP and the fact that I supp(yH1 - x')1 = IF, U L,I :5 21, we can sbow that (details 
are in the Appeodix A): 

J(yH1) - J(x'):5 C ~02' - D IIyWII2 + 1 ~02'llxUI2. (4) 

Furthermore, since yH1 is choseo based on the k largest eotries in z~;:" we have: IIY~;'112 = Ilz~;'112 ~ Ilz~;'112 = 

IlxL 112 . Plugging this into (4), we get: 

J(yH1) - J(x'):5 (1 +O2'-~) M;'112. (5) 

Since J(xH1 ) :5 J(yH1) :5 J(x'), the above expression shows that if 1'/ < 1':." then our method moootonically 
decreases the objective function and converges to a local optimum even if RIP is not satisfied (note that upper RIP 
bound is indepeodeot oflower RIP bound, and can always be satisfied by nurma1izing the matrix appropriately). 

However, to prove convergeoce to the global optimum, we need to show that at least ooe new elemeot is added at each 
step, i.e., IF,I ~ 1. Furthermore, we need to show sufficieot decrease, i.e, IIY~;'112 ~ elJ(x'). We show both these 
conditions for global coovergeoce in Lemma 6, whose proof is giveo in Appeodix A. 

Lemma 6. Let 02k < 1 - 2~ and 1/2 < 1'/ < 1. Then assuming J(x') > 0, at least one new element is found i.e. 

F, '" 0. Furthermore, IIY~;'11 > teJ(x'), where e = min(41'/(1 - 1'/),,2(21'/- 1-~"» > 0 is a constant. 

Assunling Lemma 6, (5) shows that at each iteration OMPR (I) reduces the objective functioo value by at least a 
constant fractioo. Furthermore, if XO is choseo to have eotries bounded by 1, theo J(XO) :5 (1 + 02k)k. Heoce, afier 
O(k/llog(k/<» iteratioos, the optimal solution x* would be obtained within < error. D 

Speeial Cases: We have already observed that the OMPR algorithm of the previous sectioo is simply OMPR (1). 
Also note that Theorem I immediately follows from Theorem 4. 

The algorithm at the other extreme of 1 = k has appeared at least three times in the receot literature: as Iterative (hard) 
Thresholding with Inversioo (IT!) in [16], as SVP-Newton (in its matrix avatar) in [15], and as Hard Thresholding 
Pursuit (HTP) in [10]). Let us call it IHT-Newton as the least squares step can be viewed as a Newton step for the 
quadrstic objective. The above geoera1 result for the OMPR family immediately implies that it recovers sparse vectors 
as soon as the measuremeot matrix A satisfies 02, < 1/3. 
CoroUary 7. Suppose the vector x' E an is k-sparse and the matrix A satisfies 02k < 1/3. Then IlIT-Newton 
recovers x* from measurements b = Ax' in O(1og(k» iterations. 
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4 Tighter Analysis of Two Stage Hard Thresholding Algorithms 

Recently, Maleki and Donoho [17] proposed a novel family of algorithms, namely two-stage hard thresholding algo­
rithms. Doring each iteration, these algorithms add a fixed nwnber (say l) of elements to the current iterate's support 
set. A least squares problem is solved over the larger support set and then I elements with smallest magnitude are 
dropped to form next iterate's support set. Next iterate is then obtained by agaiu solviug the least squares over next 
iterate's support set. See Appendix D for a more detailed description of the algorithm. 

Usiug proof techniques developed for our proof of Theorem 4, we can obtain a simple proof for the entire spectrum of 
algorithms iu the two-stage hard thresholding family. 
Theorem 8. Suppose the vector x* E {-I, 0, l}n is k-sparse. Then the 7Wo-stage Hard Thresholding algorithm with 
replacement size I recovers x* from measurements b = Ax* in O(k) iterations provided: 6.H1 :::; .35. 
Note that CoSaMP [19] and Subspace Pursuit(SP) [4] are popular special cases of the two-stage family. Usiug our 
general analysis, we are able to provide significantly less restrictive RIP conditions for recovery. 
CoroUary 9. CoSaMP[l9] recovers k-sparse x* E {-1,0, l}n from measurements b = Ax* provided 64k :::; 0.35. 
CoroUary 10. Subspace Pursuit[4] recovers k-sparse x* E {-I, 0, I}n from measurements b = Ax* provided 
63k :::; 0.35. 
Note that CoSaMP's analysis given by [19] requires 64k :::; 0.1 while Subspace Pursuit's analysis given by [4] requires 
63k :::; 0.205. See Appendix Diu the supplementary material for proofs of the ahove theorem and coroUaries. 

5 Fast Implementation Using Hashing 

In this section, we discuss a fast implementation of the OMPR method usiug locality-sensitive hashiug. The 
mall iutuition behind our approach is that the OMPR method selects at most one element at each step (given by 
argmax, IAT(Ax' - b) I); hence, selection of the top most element is equivalent to finding the column Ai that is most 
"similar" (iu magnitude) to r, = Ax' - b, i.e., this may be viewed as the similarity search task for queries of the form 
r, and -r, from a database of N vectors IAI"'" ANI. 

To this end, we use locality sensitive hashiug (LSH) [12], a well known data-structore for approximate nearest­
neighbor retrieval. Note that while LSH is designed for nearest neighbor search (iu terms of Euclidean distances) and 
iu general might not have any guarantees for the similar neighbor search task, we are still able to apply it to our task 
because we can lower-hound the similarity of the most similar neighbor. 

We first briefly describe the LSH scheme that we use. LSH generates hash bits for a vector usiug randoruized hash 
functions that have the property that the probability of collision between two vectors is proportional to the similarity 
between them. For our problem, we use the following hash function: h,.(a) = sign(uT a), where u ~ N(O, J) is a 
random hyper-plane generated from the standard multivariate Gaussian distribution. It can be shown that [13] 

() () I -I ( af a2 ) 
Pr[hu al = hu a. ] = 1-;;: cos Iladlla211' 

Now, an .-bit hash key is created by randoruly sampling hash functions h,., i.e., g( a) 
[hu,(a),hu,(a), ... ,hu.(a)], where each Ui is sampled randoruly from the standard multivariate Gaussian 
distribution. Next, q hash tables are constructed doring the pre-processiug stage usiug iudependently constructed hash 
key functions gl, 92, ... , gq' Doring the query stage, a query is iudexed iuto each hash table usiug hash-key functions 
91, 92, ... ,9q and then the nearest neighbors are retrieved by doing an exhaustive search over the indexed elements. 

Below we state the following theorem from [12] that guarantees sub-liuear time nearest neighbor retrieval for LSH. 

Theorem 11. Let. = O(logn) and q = O(log 1/6)nr1<, then with probability 1 - 6, LSH recovers (I + f)-nearest 
neighbors, i.e., Ila' - rl12 :::; (1 + f)lla' - rll·, where a' is the nearest neighbor to r and a' is a point retrieved by 
LSH. 
However, we cannot directly use the above theorem to guarantee convergence of our hashing based OMPR algorithm 
as our algorithm requires finding the most similar poiut iu terms of magnitude of the iuner product. Below, we provide 
appropriate settings of the LSH parameters to guarantee sub-liuear time convergence of our method under a slightly 
weaker condition on the RIP constant. A detailed proof of the theorem below can be found iu Appendix B. 
Theorem 12. Let 62• < 1/4 -")' and 'f/ = I -")" where")' > 0 is a small constant, then with probability I - 6, OMPR 
with hashing converges to the optimal solution in O(kmnl /(1+0(I/k)) log k/6) computational steps. 
The above theorem shows that the time complexity is sub-liuear iu n. However, currently our guarantees are not 
particularly strung as for large k the exponent of n will be close to 1. We believe that the exponent can be improved 
by more careful analysis and our empirical results iudicate that LSH does speed up the OMPR method significantly. 
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(a)OMPR (b)OMP (c) nIT-Newton 

Figure 1: Phase Transition Diagrams for different methods. Red represents high probability of success while blue 
represents low probability of success. Clearly, OMPR recovers correct solution for a much larger region of the plot 
than OMP and is comparable to nIT-Newton. (Best viewed in color) 

6 Experimental Results 
In this section we present empirical results to demonstrate accurate and fast recovery by our OMPR method. In the first 
set of experiments, we present a phase transition diagram for OMPR and compare it to the phase transition diagrams 
of OMP and nIT-Newton with step size 1. For the second set of experiments, we demonstrate robostoess of OMPR 
compared to many existiog methods when measurements are noisy or smaller in number than what is required for exact 
recovery. For the third set of experiments, we demonstrate efficiency of our LSH based implementation by comparing 
recovery error and time required for our method with OMP and nIT-Newtoo (with step-size 1 and 1/2). We do not 
present results for the i,ibasis pursuit methods, as it has a1readybeen shown in several recent papers [10, 17] that the 
i, relaxation based methods are relatively inefficient for very large scale recovery problems. 

In all the experiments we generate the measurement matrix by sampling each entry independently from the standard 
normal distribotion N (0, 1) and then normalize each column to have uuit norm. The underlying k-sparse vectors are 
generated by randomly selecting a support set of size k and then each entry in the support set is sampled uuiformiy from 
{ +1, -I}. We use our own optimized implementation of OMP and nIT-Newtoo. All the methods are implemented in 
MATLAB and our hashing routioe uses mex files. 

6.1 Phase Transition Diagrams 
We first compare different methods using phase transition diagrams which are commouly used in compressed sensing 
literatore to compare different methods [17]. We first fix the number of measurements to be m = 400 and generate 
different problem sizes by varying p = kim and 6 = min. For each problem size (m, n, k), we generate random 
m x n Gaussian measurement matrices and k-sparse random vectors. We then estimate the probability of success of 
each of the method by applying the method to 100 randomly generated instances. A method is considered successful 
for a particular instance if it recovers the underlying k-sparse vector with at most 1 % relative error. 

In Figure 1, we show the phase transition diagram of our OMPR method as well as that ofOMP and nIT-Newtoo (with 
step size 1). The plots shows probability of successful recovery as a function of p = min and 6 = kim. Figure 1 (a) 
shows color coding of different success probabilities; red represents high probability of success while blue represents 
low probability of success. Note that for Gaussian measurement matrices, the RIP constant 62• is less than a fixed 
constant if and ouly ifm = Ck log(nlk), where C is a uuiversal constant This implies that * = Clog p and hence a 
method that recovers for high 62• will have a large fraction in the phase transition diagram wbere successful recovery 
probability is high. We observe this phenomenon for both OMPR and nIT-Newton method which is consistent with 
their respective theoretical goarantees (see Theorem 4). On the other hand, as expected, the phase transition diagram 
of OMP has a negligible fraction of the plot that shows high recovery probability. 

6_2 Performance for Noisy or Under-sampled Observations 
Next, we empirically compare performance of OMPR to various existing compressed sensing methods. As shown 
in the phase transition diagrams in Figure 1, OMPR provides comparable recovery to the nIT-Newton method for 
noiseless cases. Here, we show that OMPR is fairly robust under the noisy settiog as well as in the case of under­
sampled observations, where the number of observations is much smaller than what is required for exact recovery. 

For this experiment, we generate random Gaussian measurement matrix of size m = 200, n = 3000. We then generate 
random binary vector x of sparsity k aod add Gaussian noise to it Figure 2 (a) shows recovery error (1iAx - bll) 
incurred by various methods for increasing k and noise level of 10%. Clearly, our method outperforms the existing 
methods, perhaps a consequence of goaranteed convergence to a local minimum for fixed step size 1/ = 1. Similarly, 
Figure 2 (b) shows recovery error incurred by various methods for fixed k = 50 and varying noise level. Here again, 
our method outperforms existiog methods and is more robust to noise. Fina11y, in Figure 2 ( c) we show difference in 
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Figure 2: Error in recovery <lIAx - bll) of n = 3000 dimensiooal vectors from m = 200 measurements. (a): Error 
incurred by various methods as the sparsity level k increases. Note that OMPR incurs the least error as it provably 
converges to at least a local minimum forfixed step size 1/ = 1. (b): Error incurred by various methods as the noise 
level increases. Here again OMPR performs significaotly better than the existing methods. (c): Differeoce in error 
incurred by IHT-Newton aod OMPR . Numbers in bracket dooote confideoce interval at 95% significaoce level. 
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Figure 3: (a): Error (11Ax - bll) incurred by various methods as k increases. The measuremoots b = Ax are computing 
by gooerating x with support size milO. (b),(c): Error incurred aod time required by various methods to recover 
vectors of support size 0.1 mas n increases. IlIT-Newton(1/2) refers to the IHT-Newton method with step size 1/ = 1/2. 

error incurred along with confideoce interval (at 95% signficaoce level) by IHT-Newton aod OMPR for varying levels 
of noises aod k. Our method is better thao !HT-Newton (at 95% signficaoce level) in terms of recovery error in arouod 
30 cells of the table, aod is not worse in aoy of the cells but one. 

6.3 Performance of LSD based implementation 
Next, we empirically study recovery properties of OMPR-Hasb in the following real-time setop: gooerate a raodom 
measuremoot matrix from the Gaussiao ensemble aod construct bash tables ollline using hash functioos specified in 
Section 5. During the reconstruction stage, measurements arrive one at a time and the goal is to recover the underlying 
sigoal accurately in real-time.For our experimoots, we gooerate measuremoots using raodom sparse vectors aod thoo 
report recovery error IIAx - bll aod computatiooal time required by each method averaged over 20 runs. 

In our first set of experimoots, we eropirically study the performaoce of different methods as k increases. Here, we fix 
m = 500, n = 500, 000 aod gooerate measuremoots using n-dimoosional raodom vectors of support set size milO. 
We thoo run differeot methods to estimate vectors x of support size k that minimize IIAx - bll. For our OMPR-Hash 
method, we use 8 = 20 bits bash-keys aod gooerate q = ..;n bash-tables. Figure 3 (a) shows the error incurred by 
OMPR, OMPR-Hash, aod IHT-Newton for differeot k (recall that k is ao input to both OMPR aod IlIT-Newton). 
Note that although OMPR-Hash performs ao approximation at each step, it is still able to achieve error similar to 
OMPR aod !HT-Newton. Also, note that since the number of measure moots are not ooough for exact recovery by the 
IHT-Newton method, it typically diverges after a few steps. As a result, we use IHT-Newton with step size 1/ = 1/2 
which is always goaraoteed to monotonically converge to at least a local minimum (see Theorem 4). In cootrast, in 
OMPR aod OMPR-Hasb cao always set step size 1/ aggressively to be 1. 

Next, we evaluate OMPR-Hash as dimoosiooality of the data n increases. For OMPR-Hasb, we use 8 = log2(n) 
bash-keys aod q = ..;n hash-tables. Figures 3(b) aod (c) compare error incurred aod time required by OMPR-Hash 
with OMPR aod IHT-Newton. Here again we use step size 1/ = 1/2 for !HT-Newton as it does not converge for 1/ = 1. 
Note that OMPR-Hash is ao order of magnitude faster thao OMPR while incurring slightly higher error. OMPR-Hash 
is also nearly 2 times faster thao IHT-Newton. 
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