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Abstract

Machine Learning competitions such as the Netflix Prize have proven reasonably
successful as a method of “crowdsourcing” prediction tasks. But these compe-
titions have a number of weaknesses, particularly in the incentive structure they
create for the participants. We propose a new approach, called a Crowdsourced
Learning Mechanism, in which participants collaboratively “learn” a hypothesis
for a given prediction task. The approach draws heavily from the concept of a
prediction market, where traders bet on the likelihood of a future event. In our
framework, the mechanism continues to publish the current hypothesis, and par-
ticipants can modify this hypothesis by wagering on an update. The critical in-
centive property is that a participant will profit an amount that scales according to
how much her update improves performance on a released test set.

1 Introduction

The last several years has revealed a new trend in Machine Learning: prediction and learning prob-
lems rolled into prize-driven competitions. One of the first, and certainly the most well-known, was
the Netflix prize released in the Fall of 2006. Netflix, aiming to improve the algorithm used to pre-
dict users’ preferences on its database of films, released a dataset of 100M ratings to the public and
asked competing teams to submit a list of predictions on a test set withheld from the public. Netflix
offered $1,000,000 to the first team achieving prediction accuracy exceeding a given threshold, a
goal that was eventually met. This competitive model for solving a prediction task has been used
for a range of similar competitions since, and there is even a new company (kaggle.com) that
creates and hosts such competitions. Such prediction competitions have proven quite valuable for
a couple of important reasons: (a) they leverage the abilities and knowledge of the public at large,
commonly known as “crowdsourcing”, and (b) they provide an incentivized mechanism for an indi-
vidual or team to apply their own knowledge and techniques which could be particularly beneficial
to the problem at hand. This type of prediction competition provides a nice tool for companies and
institutions that need help with a given prediction task yet can not afford to hire an expert. The po-
tential leverage can be quite high: the Netflix prize winners apparently spent more than $1,000,000
in effort on their algorithm alone.

Despite the extent of its popularity, is the Netflix competition model the ideal way to “crowdsource”
a learning problem? We note several weaknesses:

It is anti-collaborative. Competitors are strongly incentivized to keep their techniques private.
This is in stark contrast to many other projects that rely on crowdsourcing — Wikipedia being a
prime example, where participants must build off the work of others. Indeed, in the case of the
Netflix prize, not only do leading participants lack incentives to share, but the work of non-winning
competitors is effectively wasted.



The incentives are skewed and misaligned. The winner-take-all prize structure means that sec-
ond place is as good as having not competed at all. This ultimately leads to an equilibrium where
only a few teams are actually competing, and where potential new teams never form since catching
up seems so unlikely. In addition, the fixed achievement benchmark, set by Netflix as a 10% im-
provement in prediction RMSE over a baseline, leads to misaligned incentives. Effectively, the prize
structure implies that an improvement of %9.9 percent is worth nothing to Netflix, whereas a 20%
improvement is still only worth $1,000,000 to Netflix. This is clearly not optimal.

The nature of the competition precludes the use of proprietary methods. By requiring that the
winner reveal the winning algorithm, potential competitors utilizing non-open software or propri-
etary techniques will be unwilling to compete. By participating in the competition, a user must
effectively give away his intellectual property.

In this paper we describe a new and very general mechanism to crowdsource prediction/learning
problems. Our mechanism requires participants to place bets, yet the space they are betting over
is the set of hypotheses for the learning task at hand. At any given time the mechanism publishes
the current hypothesis w and participants can wager on a modification of w to w’, upon which the
modified w’ is posted. Eventually the wagering period finishes, a set of test data is revealed, and
each participant receives a payout according to their bets. The critical property is that every trader’s
profit scales according to how well their modification improved the solution on the test data.

The framework we propose has many qualities similar to that of an information or prediction market,
and many of the ideas derive from recent research on the design of automated market makers [7, 8,
3, 4, 1]. Many information markets already exist; at sites like Intrade .comand Betfair.com,
individuals can bet on everything ranging from election outcomes to geopolitical events. There has
been a burst of interest in such markets in recent years, not least of which is due to their potential
for combining large amounts of information from a range of sources. In the words of Hanson et
al [9]: “Rational expectations theory predicts that, in equilibrium, asset prices will reflect all of
the information held by market participants. This theorized information aggregation property of
prices has lead economists to become increasingly interested in using securities markets to predict
future events.” In practice, prediction markets have proven impressively accurate as a forecasting
tool [11, 2, 12].

The central contribution of the present paper is to take the framework of a prediction market as a
tool for information aggregation and to apply this tool for the purpose of “aggregating” a hypothesis
(classifier, predictor, etc.) for a given learning problem. The crowd of ML researchers, practitioners,
and domain experts represents a highly diverse range of expertise and algorithmic tools. In contrast
to the Netflix prize, which pitted teams of participants against each other, the mechanism we propose
allows for everyone to contribute whatever knowledge they may have available towards the final
solution. In a sense, this approach decentralizes the process of solving the task, as individual experts
can potentially apply their expertise to a subset of the problem on which they have an advantage.
Whereas a market price can be thought of as representing a consensus estimate of the value of an
asset, our goal is to construct a consensus hypothesis reflecting all the knowledge and capabilities
about a particular learning problem!.

Layout: We begin in Section 2.1 by introducing the simple notion of a generalized scoring rule
L(-,-) representing the “loss function” of the learning task at hand. In Section 2.2 we describe our
proposed Crowdsourced Learning Mechanism (CLM) in detail, and discuss how to structure a CLM
for a particular scoring function L, in order that the traders are given incentives to minimize L.
In Section 3 we give an example based on the design of Huffman codes. In Section 4 we discuss
previous work on the design of prediction markets using an automated prediction market maker
(APMM). In Section 5 we finish by considering two learning settings (e.g. linear regression) and we
construct a CLM for each. The proofs have been omitted throughout, but these are available in the
full version of the present paper.

Notation: Given a smooth strictly convex function R : R4 — R, and points x,y € dom(R), we
define the Bregman divergence Dg(x,y) as the quantity R(x) — R(y) — VR(y) - (x —y). For any
convex function R, we let R* denote the convex conjugate of R, that is R*(y) := SUPxcdom(r) Y *

x — R(x). We shall use A(.S) to refer to the set of integrable probability distributions over the set

'Tt is worth noting that Barbu and Lay utilized concepts from prediction markets to design algorithms for
classifier aggregation [10], although their approach was unrelated to crowdsourcing.



S, and A, to refer to the set of probability vectors p € R"™. The function H : A,, — R shall
denote the entropy function, that is H(p) := — >, p(i) log p(i). We use the notation KL(p; q)
to describe the relative entropy or Kullback-Leibler divergence between distributions p,q € A,

that is KL(p; q) := >, p(i) log %. We will also use e; € R™ to denote the ith standard basis
vector, having a 1 in the ¢th coordinate and 0’s elsewhere.

2 Scoring Rules and Crowdsourced Learning Mechanisms

2.1 Generalized Scoring Rules

For the remainder of this section, we shall let H denote some set of hypotheses, which we will
assume is a convex subset of R”. We let O be some arbitrary set of outcomes. We use the symbol
X to refer to either an element of O, or a random variable taking values in O.

We recall the notion of a scoring rule, a concept that arises frequently in economics and statistics [6].

Definition 1. Let P C A(O) be some convex set of distributions on an outcome space O. A scoring
rule is a function S : P x O — R where, for all P € P, P € argmaxgep ExopS(Q, X).

In other words, if you are paid S(P, X) upon stating belief P € P and outcome X occurring, then
you maximize your expected utility by stating your true belief. We offer a much weaker notion:

Definition 2. Given a convex hypothesis space H C R"™ and an outcome space O, let L : H x O —
R be a continuous function. Given any P € A(O), let W,(P) := argmingcy Ex~p[L(w; X)].
Then we say that L is a Generalized Scoring Rule (GSR) if W, (P) is a nonempty convex set for
every P € A(O).

The generalized scoring rule shall represent the “loss function” for the learning problem at hand,
and in Section 2.2 we will see how L is utilized in the mechanism. The hypothesis w shall represent
the advice we receive from the crowd, X shall represent the test data to be revealed at the close of
the mechanism, and L(w; X) shall represent the loss of the advised w on the data X . Notice that
we do not define L to be convex in its first argument as this does not hold for many important cases.
Instead, we require the weaker condition that E x [L(w; X)] is minimized on a convex set for any
distribution on X.

Our scoring rule differs from traditional scoring rules in an important way. Instead of starting with
the desire know about the true value of X, and then designing a scoring rule which incentivizes
participants to elicit their belief P € P, our objective is precisely to minimize our scoring rule.
In other words, traditional scoring rules were a means to an end (eliciting P) but our generalized
scoring rule is the end itself. One can recover the traditional scoring rule definition by setting H = P
and imposing the constraint that P € W, (P).

A useful class of GSRs L are those based on a Bregman divergence.

Definition 3. We say that a GSR L : H x O — R is divergence-based if there exists an alternative
hypothesis space H' C R™, for some m, where we can write

L(w; X) = Dr(p(X), p(w)) + f(X) (D

Sor arbitrary maps p : O — H',f : O = R, and ) : H — H', and any closed strictly convex
R : H' — R whose convex conjugate R* is finite on all of R™.

This property allows us to think of L(w; X) as a kind of distance between p(X) and ¢)(w). Clearly
then, the minimum value of L for a given X will be attained when ¢(w) = p(X), given that
Dr(x,x) = 0 for any Bregman divergence. In fact, as the following proposition shows, we can
even think of the expected value E[L(w; X)], as a distance between E[p(X)] and t(w).

Proposition 1. Given a divergence-based GSR L(w; X) = Dgr(p(X), ¥(w)) + f(X) and a belief
distribution P on O, we have W1,(P) = ¢! (Ex~p [p(X)])

We now can see that the divergence-based property greatly simplifies the task of minimizing L; in-
stead of worrying about E[L(-; X)] one can simply base the hypothesis directly on the expectation
E[p(X)]. As we will see in section 4, this also leads to efficient prediction markets and crowdsourc-
ing mechanisms.



2.2 The Crowdsourced Learning Mechanism

We will now define our actual mechanism rigorously.

Definition 4. A Crowdsourced Learning Mechanism (CLM) is the procedure in Algorithm I as
defined by the tuple (H, O, Cost,Payout). The function Cost : H x H — R sets the cost charged
to a participant that makes a modification to the posted hypothesis. The function Payout : H X H X
O — R determines the amount paid to each participant when the outcome is revealed to be X.

Algorithm 1 Crowdsourced Learning Mechanism for (#, O, Cost, Payout)

—_

: Mechanism sets initial hypothesis to some wy € H
: forroundst =0,1,2,...do

Mechanism posts current hypothesis w; € ‘H

Some participant places a bid on the update w; — w’

Mechanism charges participant Cost (wy, w’)

Mechanisms updates hypothesis w11 <+ w’
end for
: Market closes after 7" rounds and the outcome (test data) X € O is revealed
: for each ¢ do

Participant responsible for the update w; — w1 receives Payout(wy, wyy1; X)
end for

TeYRIIUNAELD

—_—

The above procedure describes the process by which participants can provide advice to the mecha-
nism to select a good w, and the profit they earn by doing so. Of course, this profit will precisely
determine the incentives of our mechanism, and hence a key question is: how can we design Cost
and Payout so that participants are incentivized to provide good hypotheses? The answer is that we
shall structure the incentives around a GSR L(w; X) chosen by the mechanism designer.

Definition 5. For a CLM A = (H, O, Cost,Payout), denote the ex-post profit for the bid (w —
w') when the outcome is X € O by Profit(w,w’; X) := Payout(w,w’; X) — Cost(w, w’). We
say that A implements a GSR L : H' x O — R if there exists a surjective map @ : H — H' such
that for all wy,ws € Hand X € O,

Profit(wy,wy; X) = L(p(w1); X) — L(p(ws); X). (2)
If additionally H' = H and ¢ = idy, we call A an L-CLM and say that A is L-incentivized.

When a CLM implements a given L, the incentives are structured in order that the participants will
work to minimize L(w; X). Of course, the input X is unknown to the participants, yet we can
assume that the mechanism has provided a public “training set” to use in a learning algorithm. The
participants are thus asked not only to propose a “good” hypothesis w; but to wager on whether the
update w;_; — W; improves generalization error. It is worth making clear that knowledge of the
true distribution on X provides a straightforward optimal strategy.

Proposition 2. Givena GSR L : H x O — R and an L-CLM (Cost, Payout), any participant who
knows the true distribution P € P over X will maximize expected profit by modifying the hypothesis
to any w € W (P).

Cost of operating a CLM. It is clear that the agent operating the mechanism must pay the par-
ticipants at the close of the competition, and is thus at risk of losing money (in fact, it is pos-
sible he may gain). How much money is lost depends on the bets (w; — w;,1) made by
the participants, and of course the final outcome X. The agent has a clear interest in knowing
precisely the potential cost — fortunately this cost is easy to compute. The loss to the agent is
clearly the total ex-post profit earned by the participants, and by construction this sum telescopes:
ZtT:O Profit(wy, wy1; X) = L(wg; X) — L(wy; X). This is a simple yet appealing property of
the CLM: the agent pays only as much in reward to the participants as it benefits from the improve-
ment of wr over the initial wg. It is worth noting that this value could be negative when wr is
actually “worse” than wy; in this case, as we shall see in section 3, the CLM can act as an insurance
policy with respect to the mistakes of the participants. A more typical scenario, of course, is where
the participants provide an improved hypothesis, in which case the CLM will run at a cost. We can
compute the WorstCaseLoss(L-CLM) := maxwen, xeo (L(wo; X) — L(w; X)). Given a budget



of size $ B, the mechanism can always rescale L in order that WorstCaseLoss(L-CLM) = B. This
requires, of course, that the WorstCaseLoss is finite.

Computational efficiency of operating a CLM. We shall say that a CLM has the efficient com-
putation (EC) property if both Cost and Payout are efficiently computable functions. We shall say
a CLM has the tractable trading (TT) property if, given a current hypothesis w, a belief P € A(O)
and a budget B, one can efficiently compute an element of the set

argmin{]EXNP [Profit(w,w’, X)] : Cost(w,w') < B}.
w/eH

The EC property ensures that the mechanism operator can run the CLM efficiently. The TT property
says that participants can compute the optimal hypothesis to bet on given a belief on the outcome
and a budget. This is absolutely essential for the CLM to successfully aggregate the knowledge and
expertise of the crowd — without it, despite their motivation to lower L(; ), the participants would
not be able to compute the optimal bet.

Suitable collateral requirements. We say that a CLM has the escrow (ES) property if the Cost
and Payout functions are structured in order that, given any wager (w — w’), we have that
Payout(w,w’; X) > 0 for all X € O. It is clear that, when designing an L-CLM for a par-
ticular L, the Payout function is fully specified once Cost is fixed, since we have the relation
Payout(w,w’; X) = L(w; X) — L(w'; X) + Cost(w,w’) forevery w,w' € Hand X € O. A
curious reader might ask, why not simply set Cost(w, w’) = 0 and Payout = Profit? The prob-
lem with this approach is that potentially Payout(w, w’; X ) < 0 which implies that the participant
who wagered on (w — w’) can be indebted to the mechanism and could default on this obligation.
Thus the Cost function should be set in order to require every participant to deposit at least enough
collateral in escrow to cover any possible losses.

Subsidizing with a voucher pool. One practical weakness of a wagering-based mechanism is
that individuals may be hesitant to participate when it requires depositing actual money into the
system. This can be allayed to a reasonable degree by including a voucher pool where each of the
first m participants may receive a voucher in the amount of $C. These candidates need not pay to
participate, yet have the opportunity to win. Of course, these vouchers must be paid for by the agent
running the mechanism, and hence a value of m(C' is added to the total operational cost.

3 A Warm-up: Compressing an Unfamiliar Data Stream

Let us now introduce a particular setting motivated by a well-known problem in information theory.
Imagine a firm is looking to do compression on an unfamiliar channel, and from this channel the
firm will receive a stream of m characters from an n-sized alphabet which we shall index by [n]. The
goal is to select a binary encoding of this alpha in such a way that minimizes the total bits required
to store the data, as a cost of $1 is required for each bit.

A first-order approach to encode such a stream is to assign a probability distribution q € A,, to
the alphabet, and to select an encoding of character ¢ with a binary word of length log(1/q()) (we
ignore round-off for simplicity). This can be achieved using Huffman Codes for example, and we
refer the reader to Cover and Thomas ([5], Chapter 5) for more details. Thus, given a distribution
q, the firm pays L(q;i) = —logq(¢) for each character . It is easy to see that if the characters
are sampled from some “true” distribution p, then the expected cost L(q; p) := E;~, [L(q; )] =
KL(p;q) + H(p), which is minimized at @ = p. Not knowing the true distribution p, the firm is
thus interested in finding a q with a low expected cost L(q; p).

An attractive option available to the firm is to crowdsource the task of lowering this cost L(; -) by
setting up an L-CLM. It is reasonably likely that outside individuals have private information about
the behavior of the channel and, in particular, may be able to provide a better estimate q of the true
distribution of the characters in the channel. As just discussed, the better the estimate the cheaper
the compression.

We set H = A,, and O = [n], where a hypothesis q represents the proposed distribution over the n
characters, and X is some character sampled uniformly from the stream after it has been observed.



We define Cost and Payout as
Cost(q,q’) := 12161%5]( log(q(i)/q'(4)), Payout(q,q’;4) := log(q(i)/q'(i)) + Cost(q,q’),

which is clearly an L-CLM for the loss defined above. It is worth noting that L is a divergence-based
GSR if we take R(q) = —H(q), p(i) = e;, f =0, =ida,,, using the convention 0log 0 = 0 (in
fact, L is the LMSR). Finally, the firm will initially set qg to be its best guess of p, which we will
assume to be uniform (but need not be).

We have devised this payout scheme according to the selection of a single character i, and it is
worth noting that because this character is sampled uniformly at random from the stream (with
private randomness), the participants cannot know which character will be released. This forces the
participants to wager on the empirical distribution p of the characters from the stream. A reasonable
alternative, and one which lowers the payment variance, is to payout according to the L(q; p), which
is also equal to the average of L(q; ) when ¢ is chosen uniformly from the stream.

The obvious question to ask is: how does this CLM benefit the firm that wants to design the encod-
ing? More precisely, if the firm uses the final estimate q7 from the mechanism, instead of the initial
guess qg, what is the trade-off between the money paid to participants and the money gained by us-
ing the crowdsourced hypothesis? At first glance, it appears that this trade-off can be arbitrarily bad:
the worst case cost of encoding the stream using the final estimate qr is sup; , —log(qr(i)) = oc.
Amazingly, however, by virtue of the aligned incentives, the firm has a very strong control of its total
cost (the CLLM cost plus the encoding cost). Suppose the firm scales L by a parameter «, to separate
the scale of the CLM from the scale of the encoding cost (which we assumed to be $1 per bit). Then
given any initial estimate qp and final estimate q, the expected total cost over p is

Encoding cost of using qr given p Mechanism’s cost of getting advice qr

H(p) + KL(p;ar) + a(KL(p;qo) — KL(p;qr))
H(p) + (1 — a)KL(p; qr) + oKL(p; qo)

Total expected cost

Let us spend a moment to analyze the above expression. Imagine that the firm set « = 1. Then
the total cost of the firm would be H(p) + KL(p; qp), which is bounded by log n for q¢ uniform.
Notice that this expression does not depend on qr — in fact, this cost precisely corresponds to the
scenario where the firm had not set up a CLM and instead used the initial estimate qq to encode. In
other words, for o = 1, the firm is entirely neutral to the quality of the estimate qr; even if the CLM
provided an estimate g, which performed worse than qg, the cost increase due to the bad choice of
q is recouped from payments of the ill-informed participants.

The firm may not want to be neutral to the estimate of the crowd, however, and under the reasonable
assumption that the final estimate g will improve upon qq, the firm should set 0 < a < 1 (of
course, positivity is needed for nonzero payouts). In this case, the firm will strictly gain by using the
CLM when KL(p; qr) < KL(p; qo), but still has some insurance policy if the estimate qr is poor.

4 Prediction Markets as a Special Case

Let us briefly review the literature for the type of prediction markets relevant to the present work. In
such a prediction market, we imagine a future event to reveal one of n uncertain outcomes. Hanson
[7, 8] proposed a framework in which traders make “reports” to the market about their internal
belief in the form of a distribution p € A,,. Each trader would receive a reward (or loss) based on a
function of their proposed belief and the belief of the previous trader, and the function suggested by
Hanson was the Logarithmic Market Scoring Rule (LMSR). It was shown later that the LMSR-based
market is equivalent to what is known as a cost function based automated market makers, proposed
by Chen and Pennock [3]. More recently a much broader equivalence was established by Chen and
Wortman Vaughan [4] between markets based on cost functions and those based on scoring rules.

The market framework proposed by Chen and Pennock allows traders to buy and sell Arrow-Debreu
securities (equivalently: shares, contracts), where an Arrow-Debreu security corresponding to out-
come i pays out $1 if and only if 7 is realized. All shares are bought and sold through an automated
market maker, which is the entity managing the market and setting prices. At any time period, traders
can purchase bundles of contracts r € R™, where r() represents the number of shares purchased on



outcome i. The price of a bundle r is set as C'(s + r) — C(s), where C' is some differentiable con-
vex cost function and s € R" is the “quantity vector” representing the total number of outstanding

shares. The LMSR cost function is C(s) := %] log (3°7_, exp(ns(i))).

This cost function framework was extended by Abernethy et al. [1] to deal with prohibitively large
outcome spaces. When the set of potential outcomes O is of exponential size or even infinite,
the market designer can offer a restricted number of contracts, say n (< |Q)|), rather than offer
an Arrow-Debreu contract for each member of O. To determine the payout structure, the market
designer chooses a function p : O — R™, where contract ¢ returns a payout of p;(X) and, thus, a
contract bundle r pays p(X) - r. As with the framework of Chen and Pennock, the contract prices
are set according to a cost function C, so that a bundle r has a price of C'(s +r) — C'(s). The design
of the function C'is addressed at length in Abernethy et al., to which we refer the reader.

For the remainder of this section we shall discuss the prediction market template of Abernethy et al.
as it provides the most general model; we shall refer to such a market as an Automated Prediction
Market Maker. We now precisely state the ingredients of this framework.

Definition 6. An Automated Prediction Market Maker (APMM) is defined by a tuple (S, O, p, C)
where S is the share space of the market, which we will assume to be the linear space R™; O is the set
of outcomes; C : S — R is a smooth and convex cost function with VC(S) = relint(VC(S)) (here,
we use VC(S) := {VC(s) | s € S} to denote the derivative space of C); and p : O — VC(S) isa
payoff function®.

Fortunately, we need not provide a full description of the procedure of the APMM mechanism: The
APMM is precisely a special case of a CLM! Indeed, the APMM framework can be described as a
CLM (H, O, Cost, Payout) where

H=8=R") Cost(s,s') =C(s') —C(s)  Payout(s,s’; X)=p(X) (s —s). (3)

Hence we can think of APMM prediction markets in terms of our learning mechanism. Markets
of this form are an important special class of CLMs — in particular, we can guarantee that they are
efficient to work with, as we show in the following proposition.

Proposition 3. An APMM (S, O, p, C) with efficiently computable C satisfies EC and TT.

We now ask, what is the learning problem that the participants of an APMM are trying to solve?
More precisely, when we think of an APMM as a CLM, does it implement a particular L?

Theorem 1. Given APMM A := (S, O, p,C), then A implements L : VC(S) x O — R defined by
L(w; X) = Dc-(p(X), w), )
where C* is the conjugate dual of the function C.

There is another more subtle benefit to APMMs — and, in fact, to most prediction market mechanisms
in practice — which is that participants make bets via purchasing of shares or share bundles. When a
trader makes a bet, she purchases a contract bundle r, is charged C'(s +r) — C(s) (when the current
quantity vector is s), and shall receive payout p(X) - r if and when X is realized. But at any point
before X is observed and trading is open, the trader can sell off this bundle, to the APMM or another
trader, and hence neutralize her risk. In this sense bets made in an APMM are stateless, whereas for
an arbitrary CLM this may not be the case: the wager defined by (w; — wy,1) can not necessarily
be sold back to the mechanism, as the posted hypothesis may no longer remain at wy ;.

Given a learning problem defined by the GSR L : H x O — R, it is natural to ask whether we
can design a CLM which implements this L and has this “share-based property” of APMMs. More
precisely, under what conditions is it possible to implement L with an APMM?

Theorem 2. For any divergence-based GSR L(w; X) = Dr(p(X),¢¥(w)) + f(X), with : H —
H' one-to-one, H' = relint(H'), and p(O) C (H), there exists an APMM which implements L.

We point out, as a corollary, that if an APMM implements some arbitrary L, then we must be able to
write L as a divergence function. This fully specifies the class of problems solvable using APMMs.

2The conditions that p(O) C VC(S) and VC/(S) = relint(VC(S)) are technical but important, and we
do not address these details in the present extended abstract although they will be considered in the full version.
More relevant discussion can also be found in Abernethy et al. [1].



Corollary 1. I[fAPMM (S, O, p,C) implements a GSR L : Hx O — R, then L is divergence-based.

Theorem 1 establishes a strong connection between prediction markets and a natural class of GSRs.
One interpretation of this result is that any GSR based on a Bregman divergence has a “dual” char-
acterization as a share-based market, where participants buy and sell shares rather than directly
altering the share prices (the hypothesis). This has many advantages for prediction markets, not
least of which is that shares are often easier to think about than the underlying hypothesis space.

Our notion of a CLM offers another interpretation. In light of Proposition 3, any machine learning
problem whose hypotheses can be evaluated in terms of a divergence leads to a tractable crowdsourc-
ing mechanism, as was the case in Section 3. Moreover, this theorem does not preclude efficient yet
non-divergence-based loss functions as we see in the next section.

5 Example CLMs for Typical Machine Learning Tasks

Regression. We now construct a CLM for a typical regression problem. We let H be the
¢y-norm ball of radius 1 in R? and we shall let an outcome be a batch of a data, that is
X = {(x1,41),- -+, (Xn,yn)} where for each i we have x; € R? y; € [~1,1], and we as-
sume Hleg <1 We construct a GSR according to the mean squared error, L(w {(xz, y) ) =

5D i (WX — y;)? for some parameter o > 0. It is worth noting that L is not dlvergence -based.

In order to satisfy the escrow property (ES), we can set Cost(w,w’) := 2«a||lw — w'||> because
the function L(w; X) is 2a-lipschitz with respect to w for any X. To ensure that the CLM is
L-incentivized, we must set Payout(w,w’; X) := Cost(w,w’) + L(w; X) — L(w'; X).

If we set the initial hypothesis wo = O, it is easy to check that WorstCaseLoss = «a/2. It re-
mains to check whether this CLM is tractable. It’s clear that we can efficiently compute Cost
and Payout, hence the EC property holds. Given how Cost is defined, it is clear that the set
{w’ : Cost(w,w’) < B} is just an ¢3-norm ball. Also, since L is convex in w for each X, so
is the function Ex . p [Profit(w,w’, X)] for every P. A budget-constrained profit-maximizing
participant must simply solve a convex optimization problem, and hence the TT property holds.

Betting Directly on the Labels. Let us return our attention to the Netflix Prize model as discussed
in the Introduction. For this style of competition a host releases a dataset for a given prediction task.
The host then requests participants to provide predictions on a specified set of instances on which
it has correct labels. For every submission the agent computes an error measure, say the MSE, and
reports this to the participants. Of course, the correct labels are withheld throughout.

Our CLM framework is general enough to apply to this problem framework as well. Define H =
O = K™ where K C R bounded is the set of valid labels, and m is the number of requested test set
predictions. For some w € H andy € O, w(k) specifies the kth predicted label, and y (k) specifies
the true label. A natural scoring function is the total squared loss, L(w;y) := > " (w(k)—y(k))%.
Of course, this approach is quite different from the Netflix Prize model, in two key respects: (a) the
participants have to wager on their predictions and (b) by participating in the mechanism they are
required to reveal their modification to all of the other players. Hence while we have structured a
competitive process the participants are de facto forced to collaborate on the solution.

A reasonable critique of this collaborative mechanism approach to a Netflix-style competition is that
it does not provide the instant feedback of the “leaderboard” where individuals observe performance
improvements in real time. However, we can adjust our mechanism to be online with a very simple
modification of the CLM protocol, which we sketch here. Rather than make payouts in a large batch
at the end, the competition designer could perform a mini-payout at the end of each of a sequence
of time intervals. At each interval, the designer could select a (potentially random) subset S of
user/movie pairs in the remaining test set, freeze updates on the predictions w (k) for all k € S, and
perform payouts to the participants on only these labels. What makes this possible, of course, is that
the generalized scoring rule we chose decomposes as a sum over the individual labels.
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